首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Afforestation and ecological restoration have often been carried out with fast-growing exotic tree species because of their high apparent growth and yield. Moreover, fast-growing forest plantations have become an important component of mitigation measures to offset greenhouse gas emissions. However, information on the long-term performance of exotic and fast-growing species is often lacking especially with respect to their vulnerability to disturbance compared to native species. We compared carbon (C) storage and C accumulation rates in vegetation (above- and belowground) and soil in 21-year-old exotic slash pine (Pinus elliottii Engelm.) and native Masson pine (Pinus massoniana Lamb.) plantations, as well as their responses to a severe ice storm in 2008. Our results showed that mean C storage was 116.77 ± 7.49 t C ha?1 in slash pine plantation and 117.89 ± 8.27 t C ha?1 in Masson pine plantation. The aboveground C increased at a rate of 2.18 t C ha?1 year?1 in Masson pine and 2.23 t C ha?1 year?1 in slash pine plantation, and there was no significant difference in C storage accumulation between the two plantation types. However, we observed significant differences in ice storm damage with nearly 7.5 % of aboveground biomass loss in slash pine plantation compared with only 0.3 % loss in Masson pine plantation. Our findings indicated that the native pine species was more resistant to ice storm because of their adaptive biological traits (tree shape, crown structure, and leaf surface area). Overall, the native pine species might be a safer choice for both afforestation and ecological restoration in our study region.  相似文献   

2.
Carbon (C) sequestration potential was quantified for five tree species, commonly used in tree-based intercropping (TBI) and for conventional agricultural systems in southern Ontario, Canada. In the 25-year-old TBI system, hybrid poplar (Populus deltoides × Populus nigra clone DN-177), Norway spruce (Picae abies), red oak (Quercus rubra), black walnut (Juglans nigra), and white cedar (Thuja occidentalis) were intercropped with soybean (Glycine max). In the conventional agricultural system, soybean was grown as a sole crop. Above- and belowground tree C Content, soil organic C, soil respiration, litterfall and litter decomposition were quantified for each tree species in each system. Total C pools for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and a soybean sole-cropping system were 113.4, 99.4, 99.2, 91.5, 91.3, and 71.1 t C ha?1, respectively at a tree density of 111 trees ha?1, including mean tree C content and soil organic C stocks. Net C flux for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and soybean sole-crop were 2.1, 1.4, 0.8, 1.8, 1.6 and ?1.2 t C ha?1 year?1, respectively. Results presented suggest greater atmospheric CO2 sequestration potential for all five tree species when compared to a conventional agricultural system.  相似文献   

3.
Although agrosystems are recognized for their socio-economic value, few works have been conducted to assign its sequestration potential and ecological services. Accordingly, this study aimed to evaluate the ecological services of the eucalyptus stands in order to permit to small producers the access in carbon credit market. Three stands were selected according to age. Data were compared to that of a savannah (control). In total, 12,817 individuals belonging to 30 families, 53 genera and 70 species were identified in the plantations against 7107 individuals belonging to 24 families, 36 genera and 42 species in the savannah. Gmelina, Annona, Hymenocardia, Allophyllus, Daniellia, Terminalia and Piliostigma were the most represented genera. There was no significant difference between Savannah and plantations in terms of diversity (p > 0.05). The largest stock of carbon was found in oldest stands (108.51 ± 26.46 t C/ha) against 13.62 ± 3.03 t C/ha in Savannah. Eucalyptus saligna stored 39.66 t C/ha (4 t C ha?1year?1) in young stands; 57.28 t C/ha (6 t C ha?1year?1) in medium stands and 85.46 t C/ha (9 t C ha?1year?1) in old stands. The sequestration potential was higher in eucalyptus stands (398.25 t CO2eq/ha) than savannah (50.05 t CO2eq/ha). In total 956.82 t CO2eq/ha were sequestered for an economic value of $9568.45/ha against 50.05 t CO2eq/ha corresponding to $500.56/ha in Savannah. Eucalyptus stands are carbon sinks and could be an opportunity for financial benefits in the event of payment for environmental services in the context of the CDM process.  相似文献   

4.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

5.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

6.
The effect of forest conservation on the organic carbon (C) stock of temperate forest soils is hardly investigated. Coarse woody debris (CWD) represents an important C reservoir in unmanaged forests and potential source of C input to soils. Here, we compared aboveground CWD and soil C stocks at the stand level of three unmanaged and three adjacent managed forests in different geological and climatic regions of Bavaria, Germany. CWD accumulated over 40–100 years and yielded C stocks of 11 Mg C ha?1 in the unmanaged spruce forest and 23 and 30 Mg C ha?1 in the two unmanaged beech–oak forests. C stocks of the organic layer were smaller in the beech–oak forests (8 and 19 Mg C ha?1) and greater in the spruce forest (36 Mg C ha?1) than the C stock of CWD. Elevated aboveground CWD stocks did not coincide with greater C stocks in the organic layers and the mineral soils of the unmanaged forests. However, radiocarbon signatures of the O e and O a horizons differed among unmanaged and managed beech–oak forests. We attributed these differences to partly faster turnover of organic C, stimulated by greater CWD input in the unmanaged forest. Alternatively, the slower turnover of organic C in the managed forests resulted from lower litter quality following thinning or different tree species composition. Radiocarbon signatures of water-extractable dissolved organic carbon (DOC) from the top mineral soils point to CWD as potent DOC source. Our results suggest that 40–100 years of forest protection is too short to generate significant changes in C stocks and radiocarbon signatures of forest soils at the stand level.  相似文献   

7.
In tropical areas of Mexico, Leucaena leucocephala is widely used in silvopastoral systems. However, little information exists on other native woody species of high forage potential, such as Guazuma ulmifolia. The aim of this study was to evaluate the components of biomass, forage yield and quality, and availability of N in fodder banks of L. leucocephala, G. ulmifolia, and a mixture of both species during dry and rainy seasons, under sub-humid tropical conditions. The experimental unit was a 5 × 10 m plot, containing three rows with 2 m between rows; each row had 20 plant positions with 0.50 m between plants. Within each plant position there was either a single plant, in the case of pure-crop, or two plants, in the case of mixed of both species. A complete randomized block design with three repetitions was used. In both seasons, there were a significantly greater proportion of leaves in the G. ulmifolia fodder banks (71 %) and in mixed fodder banks (69 %) than in L. leucocephala fodder banks (64 %). Consequently, these systems had leaf-to-stem ratios of 2.4, 2.2 and 1.9, respectively. The forage yield of fodder banks was not influenced by season. The mixed fodder bank had greater forage yield (5.1 t DM ha?1) than the L. leucocephala fodder bank (3.4 t DM ha?1) in each season. Additionally, the mixed fodder bank accumulated more forage yield during the experimental period (10.2 t DM ha?1 year?1) than G. ulmifolia (9.0 t DM ha?1 year?1) or L. leucocephala (6.9 t DM ha?1 year?1). The concentrations of CP, C and C:N were not influenced by season. Forage NDF and ADF concentrations were greater in the rainy season (476 g kg?1 DM) compared with the dry season (325 g kg?1 DM). Mixed fodder banks had the greatest N yield (185.9 kg ha?1) and consequently the greatest availability of N (371.8 kg N ha?1 year?1). We conclude that mixed fodder banks of L. leucocephala and G. ulmifolia are a better option for improving productivity and forage quality in comparison with pure fodder banks in Yucatan, Mexico.  相似文献   

8.
In the Northern and Baltic countries, grey alder is a prospective tree species for short-rotation forestry. Hence, knowledge about the functioning of such forest ecosystems is critical in order to manage them in a sustainable and environmentally sound way. The 17-year-long continuous time series study is conducted in a grey alder plantation growing on abandoned agricultural land. The results of above- and below-ground biomass and production of the 17-year-old stand are compared to the earlier published respective data from the same stand at the ages of 5 and 10 years. The objectives of the current study were to assess (1) above-ground biomass (AGB) and production; (2) below-ground biomass: coarse root biomass (CRB), fine root biomass (FRB) and fine root production (FRP); (3) carbon (C) and nitrogen (N) accumulation dynamics in grey alder stand growing on former arable land. The main results of the 17-year-old stand were as follows: AGB 120.8 t ha?1; current annual increment of the stem mass 5.7 t ha year?1; calculated CRB 22.3 t ha?1; FRB 81 ± 10 g m?2; nodule biomass 31 ± 19 g m?2; fine root necromass 11 ± 2 g m?2; FRP 53 g DM m?2 year?1; fine root turnover rate 0.54 year?1; and fine root longevity 1.9 years. FRB was strongly correlated with the stand basal area and stem mass. Fine root efficiency was the highest at the age of 10 years; at the age of 17 years, it had slightly reduced. Grey alder stand significantly increased N and Corg content in topsoil. The role of fine roots for the sequestration of C is quite modest compared to leaf litter C flux.  相似文献   

9.
Changes in coffee economics are leading producers to reduce agrochemical use and increase the use of shade. Research is needed on how to balance the competition from shade trees with the provision of ecological services to the coffee. In 2000, long-term coffee experiments were established in Costa Rica and Nicaragua to compare coffee agroecosystem performance under full sun, legume and non-legume shade types, and intensive and moderate conventional and organic inputs. Coffee yield from intensive organic production was not significantly different from intensive conventional in Nicaragua, but in Costa Rica it was lower during three of the six harvests. Full sun coffee production over 6 years was greater than shaded coffee in Costa Rica (61.8 vs. 44.7 t ha?1, P = 0.0002). In Nicaragua, full sun coffee production over 5 years (32.1 t ha?1) was equal to coffee with shade that included Tabebuia rosea (Bertol.) DC., (27?C30 t ha?1) and both were more productive (P = 0.03) than coffee shaded with Inga laurina (Sw.) Willd. (21.6 t ha?1). Moderate input organic production was significantly lower than other managements under all shade types, except in the presence of Erythrina poepiggina (Walp.) O.F. Cook. Inga and Erythrina had greater basal area and nutrient recycling from prunings than other shade species. Intensive organic production increased soil pH and P, and had higher K compared to moderate conventional. Although legume shade trees potentially provide ecological services to associated coffee, this depends on management of the competition from those same trees.  相似文献   

10.
Narrowing the uncertainties in carbon (C) and nitrogen (N) dynamics during decomposition of coarse woody debris (CWD) can significantly improve our understanding of forest ecosystem functioning. We examined C, N and pH dynamics in the least studied CWD component—tree bark in a 66-year-long decomposition chronosequence. The relative C concentration decreased by ca. 32% in pine bark, increased by ca. 18% in birch bark and remained stable in spruce and aspen bark. Nitrogen increased in bark of all tree species. In conifer bark, it increased along with epixylic succession. Over 45 years, the relative C/N ratio in bark decreased by 63 and 45% for coniferous and deciduous species, respectively. Bark pH did not change. Due to bark fragmentation, the total C and N amounts in bark of individual logs of aspen, birch, pine and spruce decreased at average rates of 0.03, 0.02, 0.26 and 0.05 year?1, and 0.02, 0.02, 0.03 and 0.03 year?1, respectively. At the forest stand level, the total amounts of C and N in log bark were 853 and 21 kg ha?1 or 11.2 and 45.5% of the C and N amounts stored in downed logs and ca. 2.3–3.8 and 2.2–2.4%, respectively, of total C and N amounts stored in forest litter. In boreal forests, decomposing log bark may act as a long-term source of N for wood-inhabiting communities.  相似文献   

11.
With increasing concerns raised by climate change, understanding biological processes within cocoa (Theobroma cacao L.) agroforest (CAF) and fallow systems is a prerequisite for developing actions related to emission reduction in the shifting agricultural landscape of Cameroon. Carbon (C) stocks and accretion were assessed and modeled in various C components (large trees, small trees, dead wood, litter, roots, soil, and total C) of fallow and CAF systems along a 50-year chronosequence. Several functions were empirically fitted to a time series of C stocks. Large tree, soil, and total C stocks were best described by a logistic growth function while that for small trees by a rational quadratic function. The best-fitted functions explained 72–96 % of C stock accumulation over time. Two metrics describing C stock accretion were derived from these functions: the point of maximum C growth and the C growth coefficient (GC). The rate of maximum growth of total C stock was reached after 12–13 years in both fallow and CAF, with maximum GCs of 6.9 and 6.3 Mg C ha?1 year?1, respectively. Over the 50-year period, the GCs of total C stocks varied between 0.2 and 6.9 Mg C ha?1 year?1, with quick accumulation within the first decade that then slowed until it levelled off after 45 years. Over a period of about 30 years, both systems sequestered a total of ~200 Mg C ha?1. This indicates that cocoa agroforests, a main source of income for local populations, can also provide significant climate change mitigation services.  相似文献   

12.
Afforestation of degraded croplands by planting N2-fixing trees in arid regions is highly recognized. However, fixation of atmospheric nitrogen gas (N2) by woody perennials is often limited on phosphorus (P) poor soils, while any factor limiting N nutrition inhibits tree growth. In a two-factorial field experiment, the effect of three P amendments was examined during 2006–2008 on N2 fixation, biomass production, and foliage feed quality of actinorhizal Elaeagnus angustifolia L. and leguminous Robinia pseudoacacia L. With the 15N natural abundance method, N2 fixation was quantified based on foliar and whole-tree sampling against three non-N2-fixing reference species: Gleditsia triacanthos L., Populus euphratica Oliv., and Ulmus pumila L. The P applications, in March 2006 and April 2007 only, included (i) high-P (90 kg P ha?1), (ii) low-P (45 kg P ha?1), and (iii) 0-P. After 3 years, the average proportion of N derived from atmosphere (Ndfa, %) increased from 78 % with 0-P to 87 % with high P when confounded over both N2-fixing species. With the used density of 5,714 trees ha?1, the total amount of N2 fixed (Ndfa, kg N ha?1) with high-P increased from 64 kg N ha?1 (year 1) to 807 kg N ha?1 (year 3) in E. angustifolia and from 9 kg N ha?1 (year 1) to 155 kg N ha?1 (year 3) in R. pseudoacacia. Total above-ground biomass increases were too variable to be significant. Leaf N content and therewith also leaf crude protein content, which is an indicator for feed quality, increased significantly (24 %) with high-P when compared to 0-P for E. angustifolia. Overall findings indicated the suitability of the two N2-fixing species for afforestating salt-affected croplands, low in soil P. With P-applications as low as 90 kg P ha?1, the production potential of E. angustifolia and R. pseudoacacia, including the supply of protein-rich feed, could be increased on salt-affected croplands.  相似文献   

13.
Soil organic carbon (SOC) plays an important role in soil fertility and productivity. It occurs in soil in labile and non-labile forms that help in maintaining the soil health. An investigation was undertaken to evaluate the dynamics of total soil organic carbon (C tot), oxidisable organic carbon (C oc), very labile carbon (C frac 1), labile carbon (C frac 2), less labile carbon (C frac 3), non-labile carbon (C frac 4), microbial biomass carbon (C mic) and SOC sequestration in a 6-year-old fruit orchards. The mango, guava and litchi orchards caused an enrichment of C tot by 17.2, 12.6 and 11 %, respectively, over the control. The mango orchard registered highest significant increase of 20.7, 13.5 and 17.4 % in C frac 1, C frac 2 and C frac 4, respectively, over control. There is greater accumulation of all the C fractions in the surface soil (0–0.30 m). The maximum total active carbon pool was 36.2 Mg C ha?1 in mango orchard and resulted in 1.2 times higher than control. The passive pool of carbon constituted about 42.4 % of C tot and registered maximum in the mango orchard. The maximum C mic was 370 mg C kg?1 in guava orchard and constituted 4.2 % of C tot. The carbon management index registered 1.2 (mango orchard)- and 1.13 (guava and litchi orchard)-fold increase over control. The mango orchard registered highest carbon build rate of 1.53 Mg C ha?1 year?1 and resulted in 17.3 % carbon build-up over control. Among the carbon fractions, C frac 1 was highly correlated (r = 0.567**) with C mic.  相似文献   

14.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

15.
Field experiments were conducted during rainy seasons of three consecutive years (2008–2010) to study the effect of green leaf manuring on dry matter partitioning and productivity of lowland rice (Oryza sativa L.). Green leaves of five indigenous agroforestry tree species viz., Erythrina indica, Acacia auriculiformis, Alnus nepalensis, Parkia roxburghii, and Cassia siamea were treated at 10 t ha?1 on fresh weight basis in rice fields and compared with recommended N–P2O5–K2O (80:60:40 kg ha?1) and control treatments. During 2008–2009 year, yield attributes and rice yield were greater in NPK plots as compared to the green-leaf manured ones. However, in the third year, green leaf manuring (except that of Alnus) surpassed even the recommended N–P2O5–K2O treatment in terms of dry matter production and yield; better response was however observed with Erythrina. The soil available N after final harvest increased by ca. 14–20 % in Alnus and Erythrina treated plots as compared to the control. Over all, it could be said that management of plant residues can have long-term implications apart from the desired maintenance of soil organic matter and improving crop yield.  相似文献   

16.
Diverse kinds of fast growing multipurpose trees are traditionally grown as support trees (standards) for trailing black pepper vines in the humid tropics of India. Apart from differential black pepper yields, such trees exhibit considerable variability to accumulate biomass, carbon and nutrients. An attempt was made to assess the biomass production, carbon sequestration potential (tree + soil) and nutrient stocks of six multipurpose tree species (age: 22 years) used for trailing black pepper vines (Acacia auriculiformis, Artocarpus heterophyllus, Grevillea robusta, Macaranga peltata, Ailanthus triphysa and Casuarina equisetifolia). Results indicate that G. robusta showed the highest total biomass production (365.72 Mg ha?1), with A. triphysa having the least value (155.13 Mg ha?1). Biomass allocation among tissue types followed the order stemwood > roots > branchwood > twigs > leaves. Total C stocks were also highest for G. robusta (169 Mg C ha?1), followed by A. auriculiformis (155 Mg C ha?1). Mean annual carbon increment also followed a similar trend. Among the various tissue fractions, stemwood accounted for the highest N, P and K stocks, implying the potential for nutrient export from the site through wood harvest. All the support trees showed significantly higher soil carbon content compared to the treeless control. Soil N, P and K contents were higher under A. auriculiformis than other species. Nitrogen fixation potential, successional stage of the species, stand age and tree management practices such as lopping may modify the biomass allocation patterns and system productivity.  相似文献   

17.
The Indo-gangetic plains (IGP) in India occupies 13 % of the total geographical area and produces 50 % of total food grain to feed 40 % population of the country. Dynamic CO2FIX model v3.1 has been used to assess the baseline (2011) carbon and to estimate the carbon sequestration potential (CSP) of agroforestry systems (AFS) for a simulation period of 30 years in three districts viz. Ludhiana (upper IGP in Punjab), Sultanpur (middle IGP in Uttar Pradesh) and Uttar Dinajpur (lower IGP in West Bengal) respectively. The estimated numbers of trees existing in farmer’s field on per hectare basis in these districts were 37.95, 6.14 and 6.20, respectively. The baseline standing biomass in the tree components varied from 2.45 to 2.88 Mg DM ha?1 and the total biomass (tree + crop) from 11.14 to 25.97 Mg DM ha?1 in the three districts. The soil organic carbon in the baseline ranged from 8.13 to 9.12 Mg C ha?1 and is expected to increase from 8.63 to 24.51 Mg C ha?1. The CSP of existing AFS (for 30 years simulation) has been estimated to the tune of 0.111, 0.126 and 0.551 Mg C ha?1 year?1 for Sultanpur, Dinajpur and Ludhiana districts, respectively. CSP of AFS increases with increasing tree density per hectare. Site specific climatic parameters like monthly temperature, annual precipitation and evapotranspiration also moderates the CSP of AFS. The preliminary estimates of the area under AFS’s were 2.06 % (3,256 ha), 2.08 % (6,440 ha) and 12.69 % (38,860 ha) in Sultanpur, Dinajpur and Ludhiana respectively.  相似文献   

18.
Intensification of coffee (Coffea arabica) production is associated with increases in inorganic fertilizer application and decreases in species diversity. Both the use of organic fertilizers and the incorporation of trees on farms can, in theory, reduce nutrient loss in comparison with intensified practices. To test this, we measured nutrient concentrations in leachate at 15 and 100 cm depths on working farms. We examined (1) organically managed coffee agroforests (38 kg N ha?1 year?1; n = 4), (2) conventionally managed coffee agroforests (96 kg N ha?1 year?1; n = 4), and (3) one conventionally managed monoculture coffee farm in Costa Rica (300 kg N ha?1 year?1). Concentrations of nitrate (NO3 ?-N) and phosphate (PO4 3?-P) were higher in the monoculture compared to agroforests at both depths. Nitrate concentrations were higher in conventional than organic agroforests at 15 cm only. Soil solutions collected under nitrogen (N)-fixing Erythrina poeppigiana had elevated NO3 ?-N concentrations at 15 cm compared to Musa acuminata (banana) or Coffea. Total soil N and carbon (C) were also higher under Erythrina. This research shows that both fertilizer type and species affect concentrations of N and P in leachate in coffee agroecosystems.  相似文献   

19.
The impacts of wood harvest, biomass removal and inter-rotation site management practices on productivity of Acacia mangium in South Sumatra were studied over 12 years across successive rotations. The productivity measured as MAI increased from 29.4 m3 ha?1 year?1 in the first to 48.0 m3 ha?1 year?1 in the second rotation. Whole tree harvesting (total stem, branches and leaves) caused a 21 % reduction in volume compared to harvesting merchantable wood alone in the next rotation. The rates of nutrients accumulation in trees were highest during the first year of growth, and declined from age 2 years. Significant amounts of nutrients were recycled through litter fall from 1 year after planting. Results highlight the importance of management which promotes nutrient supply on stand growth. Removal of slash and litter lowered soil pH, by about 0.1 unit. A small reduction was also found in soil organic carbon and nitrogen in the top soil during the first 3–4 years but values returned to pre-harvest levels by the end of the rotation. Extractable soil phosphorus and exchangeable cations decreased by the end of second rotation but these measures underestimate the nutrient pools available for A. mangium. These findings along with results from other studies have helped to implement operations which promote conservation of site resources for sustainable production in the region.  相似文献   

20.

? Context

Coarse woody debris (CWD, ≥10 cm in diameter) is an important structural and functional component of forests. There are few studies that have estimated the mass and carbon (C) and nitrogen (N) stocks of CWD in subtropical forests. Evergreen broad-leaved forests are distributed widely in subtropical zones in China.

? Aims

This study aimed to evaluate the pools of mass, C and N in CWD in five natural forests of Altingia gracilipes Hemsl., Tsoongiodendron odorum Chun, Castanopsis carlesii (Hemsl.) Hayata, Cinnamomum chekiangense Nakai and Castanopsis fabri Hance in southern China.

? Methods

The mass of CWD was determined using the fixed-area plot method. All types of CWD (logs, snags, stumps and large branches) within the plot were measured. The species, length, diameter and decay class of each piece of CWD were recorded. The C and N pools of CWD were calculated by multiplying the concentrations of C and N by the estimated mass in each forest and decay category.

? Results

Total mass of CWD varied from 16.75 Mg ha?1 in the C. fabri forest to 40.60 Mg ha?1 in the A. gracilipes forest; of this CWD, the log contribution ranged from 54.75 to 94.86 %. The largest CWD (≥60 cm diameter) was found only in the A. gracilipes forest. CWD in the 40–60 cm size class represented above 65 % of total mass, while most of CWD accumulations in the C. carlesii, C. chekiangense and C. fabri forests were composed of pieces with diameter less than 40 cm. The A. gracilipes, T. odorum, C. carlesii and C. chekiangense forests contained the full decay classes (from 1 to 5 classes) of CWD. In the C. fabri forest, the CWD in decay classes 2–3 accounted for about 90 % of the total CWD mass. Increasing N concentrations and decreasing densities, C concentrations, and C:N ratios were found with stage of decay. Linear regression showed a strong correlation between the density and C:N ratio (R 2?=?0.821). CWD C-stock ranged from 7.62 to 17.74 Mg ha?1, while the N stock varied from 85.05 to 204.49 kg ha?1. The highest overall pools of C and N in CWD were noted in the A. gracilipes forest.

? Conclusion

Differences among five forests can be attributed mainly to characteristics of the tree species. It is very important to preserve the current natural evergreen broad-leaved forest and maintain the structural and functional integrity of CWD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号