首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用137Cs示踪技术评价东北黑土侵蚀和沉积过程   总被引:6,自引:1,他引:6  
Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the ^137Cs reference inventory in the study area; 2) calculate erosion and deposition rates of black soil on different slope locations; 3) conduct a sensitivity analysis of some model parameters; and 4) compare overall outputs using four different models. Three transects were set in the field with five slope locations for each transect, including summit, shoulder-slope, back-slope, foot-slope, and toe-slope. Field measurements and model simulation were used to estimate a bomb-derived ^137Cs reference inventory in the study area. Soil erosion and deposition rates were estimated using four ^137Cs models and percentage of ^137Cs loss/gain. The ^137Cs reference value in the study area was 2 232.8 Bq m^-2 with ^137Cs showing a clear topographic pattern, decreasing from the summit to shoulder-slope, then increasing again at the foot-slope and reaching a maximum at the toe-slope, Predicted soil redistribution rates for different slope locations varied. Among models, the Yang Model (YANG-M) overestimated erosion loss but underestimated deposition. However, the standard mass balance model (MBM1) gave predictions similar to a mass balance model incorporating soil movement by tillage (MBM2). Sensitivity analysis of the proportion factor and distribution pattern of ^137Cs in the surface layer demonstrated the impact of ^137Cs enrichment on calculation of the soil erosion rate. Factors influencing the redistribution of fallout ^137Cs in landscape should be fully considered as calculating soil redistribution rate using ^137Cs technique.  相似文献   

2.
The development of pedotransfer functions offers a potential means of alleviating cost and labour burdens associated with bulk‐density determinations. As a means of incorporating a priori knowledge into the model‐building process, we propose a conceptual model for predicting soil bulk density from other more regularly measured properties. The model considers soil bulk density to be a function of soil mineral packing structures (ρm) and soil structure (Δρ). Bulk‐density maxima were found for soils with approximately 80% sand. Bulk densities were also observed to increase with depth, suggesting the influence of over‐burden pressure. Residuals from the ρm model, hereby known as Δρ, correlated with organic carbon. All models were trained using Australian soil data, with limits set at bulk densities between 0.7 and 1.8 g cm?3 and containing organic carbon levels below 12%. Performance of the conceptual model (r2 = 0.49) was found to be comparable with a multiple linear regression model (r2 = 0.49) and outperformed models developed using an artificial neural network (r2 = 0.47) and a regression tree (r2 = 0.43). Further development of the conceptual model should allow the inclusion of soil morphological data to improve bulk‐density predictions.  相似文献   

3.
Enrichment ratios (ER) are widely used to predict loss of sorbed nutrients or pesticides with runoff sediment, while ER is frequently neglected in studies which quantify past erosion from global fallout 137Cs losses. The ER of 137Cs (ER- 137Cs) in the soil loss and the subsequent depletion of 137Cs at the soil surface were determined for eight small watersheds (1.6–16.8 ha) with different soils and land use. Due to preferential loss of the clay fraction, the upper 5 mm of the soil surface was significantly depleted of 137Cs after a heavy storm. A total of 31 watershed-events were investigated with soil losses ranging between 1.2 and 480 kg-ha?1 and sediment concentrations between 1.98 and 54.1 g?L?1 The correspondent ER-137Cs (mean: 1.72, range: 0.40–4.95) was positively correlated to the ER of clay, organic carbon, total nitrogen and calcium-acetate-lactate-extractable phosphorus (PCAL). A close correlation between ER-137Cs and ER-PCAL was also found for sediment samples of detention ponds, where most of the ER values were less than 1.0 due to depletion. Therefore, ER-PCAL seems to be a suitable estimate of ER-137Cs for both, erosion and deposition processes. Our findings strongly support the need for considering ER-137Cs, when ,37Cs data are used to assess rates and pattern of soil redistribution. Otherwise, soil loss will be overestimated in a range of about factor 2 in many cases.  相似文献   

4.
A field method for the measurement of substrate‐induced soil respiration A novel method for in situ measurements of microbial soil activity using the CO2 efflux combined with kinetic analysis is proposed. The results are compared with two conventional, laboratory methods, (1) substrate‐induced respiration using a ’︁Sapromat’ and (2) dehydrogenase activity. Soil respiration was measured in situ after addition of aqueous solutions containing 0 to 6 g glucose kg—1 soil. The respiration data were analysed using kinetic models to describe the nutritional status of the soil bacteria employing few representative parameters. The two‐phase soil respiration response gave best fit results with the Hanes' or non‐parametric kinetic model with Michaelis‐Menten constants (Km) of 0.05—0.1 g glucose kg—1 soil. The maximum respiration rates (Vmax) were obtained above 1 g glucose. Substrate‐induced respiration rates of the novel in situ method were significantly correlated to results of the ’︁Sapromat’ measurements (r2 = 0.81***). The in situ method combined with kinetic analysis was suitable for the characterisation of microbial activity in soil; it showed respiration rates lower by 59% than measured in the laboratory with disturbed samples.  相似文献   

5.
Cesium and soil carbon in a small agricultural watershed   总被引:8,自引:1,他引:8  
Scientific, political, and social interests have developed recently in the concept of using agricultural soils to sequester carbon. Studies supporting this concept indicate that soil erosion and subsequent redeposition of eroded soils in the same field may establish an ecosystem disequilibrium that promotes the buildup of carbon on agricultural landscapes. The problem is to determine the patterns of soil erosion and redeposition on the landscape and to relate these to soil carbon patterns. Radioactive 137cesium (137Cs) can be used to estimate soil erosion patterns and, more importantly, redeposition patterns at the field level. The purpose of this study was to determine the relationship between 137Cs, soil erosion, and soil carbon patterns on a small agricultural watershed. Profiles of soils from an upland area and soils in an adjacent riparian system were collected in 5 cm increments and the concentrations of 137Cs and carbon were determined. 137Cs and carbon were uniformly mixed in the upper 15–20 cm of upland soils. 137Cs (Bq g−1) and carbon (%) in the upland soils were significantly correlated (r2=0.66). Carbon content of the 0–20 cm layer was higher (1.4±0.3%) in areas of soil deposition than carbon content (1.1±0.3%) in areas of soil erosion as determined by the 137Cs technique. These data suggest that measurements of 137Cs in the soils can be useful for understanding carbon distribution patterns in surface soil. Carbon content of the upland soils ranged from 0.5 to 1.9% with an average of 1.2±0.4% in the 0–20 cm layer while carbon below this upper tilled layer (20–30 cm) ranged from 0.2 to 1.5% with an average of 0.5±0.3%. Total carbon was 2.66 and 3.20 kg m−2 in the upper 20 cm and upper 30 cm of the upland soils, respectively. Carbon content of the 0–20 cm layer in the riparian system ranged from 1.1 to 67.0% with an average 11.7±17.1%. Carbon content below 20 cm ranged from 1.8 to 79.3% with an average of 18.3±17.5%. Soil carbon in the upper 20 cm of the riparian profile was 10.1 and 15.0 kg m−2 in the upper 30 cm of the riparian profiles. This is an increase of organic carbon by a factor of 3.8 and 4.7 for the upper 20 cm and upper 30 cm of the riparian profiles, respectively, when compared to the upland soil profiles.  相似文献   

6.
三峡库区紫色土坡耕地土壤侵蚀的137Cs示踪研究   总被引:7,自引:2,他引:5  
坡耕地是三峡库区的重点水土流失区和河流泥沙的主要来源地.采用~(137)Cs示踪技术对三峡库区紫色土坡耕地的土壤侵蚀速率进行了定量研究.结果表明,新政小流域的~(137)Cs本底值为1 420.9 Bq/m~2;平均坡度为11.4°的缓坡耕地的~(137)Cs面积活度介于398.5~1 649.6 Bq/m~2之间,坡长加权平均值为816.0Bq/m~2;采用改进的简化质量平衡模型计算了坡耕地的土壤侵蚀速率,结果得出该坡地的土壤侵蚀模数介于-3 358.8~4 937.4 t/(km~2·a),其加权平均值为1 294.6 t/(km~2·a).受犁耕作用的影响,坡耕地两个坡段的土壤侵蚀速率随坡长增加大致都呈下降趋势,并在坡段下方出现了堆积.坡耕地土壤侵蚀速率不高的原因,一方面是由于所研究坡耕地属于缓坡,坡度较小,另一方面则是由于当地农民总结出了一套有效防止水土流失的耕作方式,使得土壤侵蚀强度大大降低.  相似文献   

7.
Pot and field experiments were conducted to clarify the effect of soil exchangeable potassium (K) and cesium-137 (137Cs) on 137Cs accumulation and to establish soil index in rice (Oryza sativa L.). Four paddy soils in Fukushima Prefecture, Japan, showing different transfer factors for radioactive Cs derived from the accident of Fukushima Daiichi Nuclear Power Station in the field were compared in terms of 137Cs accumulation in rice in a pot experiment. 137Cs accumulation in shoots and brown rice widely varied among soils with the transfer factor ranging from 0.018 to 0.068 for shoots and 0.004 to 0.065 for brown rice. 137Cs concentration in brown rice and shoots tended to decrease with higher levels of soil exchangeable K, and they were more closely related to the exchangeable Cs/K ratio. Similar relationships between the Cs/K ratio and Cs accumulation in plants were obtained for the stable isotope cesium-133 (133Cs). The distributions of 137Cs and 133Cs in grains were also similar and variable among soils. The transfer factors obtained in pot experiments mostly agreed with field observations. The results imply that the exchangeable 137Cs/K can be a potential soil index to estimate 137Cs accumulation in rice.  相似文献   

8.
宜兴茶园土壤侵蚀及生态影响   总被引:9,自引:2,他引:9  
张燕  杨浩  金峰  张洪  彭补拙 《土壤学报》2003,40(6):815-821
茶园是苏南丘陵坡地的一种典型利用方式 ,其上发生的土壤侵蚀及产生的生态影响不容忽视。而要测度土壤侵蚀 ,137Cs示踪法是目前使用较多的一种有用工具 ,但要用此法 ,需找到研究区的137Cs背景值 ,并建立合适的估算模型。本文在对宜兴茶园研究时 ,确定了这里的137Cs背景值为 2 2 0 0Bqm- 2 ,并建立了估算耕作土壤的较合理的模型h =Hc× (Cref-Ct) /(Cref-Cin)。在此基础上衡量了研究对象的土壤侵蚀量 ;并进一步探讨了由此引发的生态影响 ,包括土层减薄、土壤质地改变和养分流失这样的直接影响 ,以及与之相应的一些间接影响 ,如能耗增加、水体富营养化及土地适宜性变化等 ;并且 ,还采用等值侵蚀模数这个指标 ,在与其他地区尤其是黄土和红壤区比较中揭示了苏南地区土壤侵蚀的生态危害的严重性  相似文献   

9.
Ondráček  J.  Ždímal  V.  Smolík  J.  Lazaridis  M. 《Water, air, and soil pollution》2009,198(1-4):219-232
The work focuses on application of linear regression method for assessment of soil physicochemical parameters influence on 137Cs accumulation. Besides organic matter content and pH, the parameters related to sorption properties of mineral parts and mobile ions concentration were considered. Before linear regression model is applied the data were transformed using Box–Cox formula. Selection of explanatory variables for regression was based on Akaike Information Criterion (AIC). Analysis of residuals distribution showed that linear regression can be applied for assessment of Cs+ accumulation in soil horizons. The important conclusion is that Cs+ cation migration in soil is usually influenced by more than a single horizon parameter. Common influence of two or more parameters on 137Cs activity in soil horizon was observed. Our results suppose that migration of Cs in soil is affected mainly by horizon’s acidity, presence of minerals and ion exchangeable substances. Some processes are probably affected by Cs+ individual properties, but other ones are not so selective.  相似文献   

10.
Purpose

This study investigates the effects of surface liming on soil attenuation radiation properties. For this, measurements of soil chemical attributes (pH, organic carbon, H+Al, Al3+, Ca2+, and Mg2+) and attenuation radiation parameters (mass attenuation coefficient, μm, atomic and electronic cross sections, σa and σe, effective atomic number and electron density, Zeff and Nel) were carried out. This aim was motivated by the fact that possible μm variation might cause as well variation in the determination of soil physical properties.

Materials and methods

The studied soil, classified as a Dystrudept sity-clay, is located in South Brazil. The trial consisted of five stripes, one of them under pasture and the remaining under no-till system (NTS). Lime rates of 0, 10, 15, and 20 t ha?1 were broadcast on the NTS soil surface. Disturbed soil samples were collected 30 months after liming at the top (0–10 cm) and subsoil (10–20 cm) layers. Soil chemical attributes were characterized following standard experimental procedures. The soil oxide composition, obtained by EDXRF analysis, was used to calculate μm for 241Am and 137Cs photon energies with XCOM computer code. μm values were employed to calculate σa, σe, Zeff, and Nel and to predict variations in soil bulk density (ρ) and total porosity (φ).

Results and discussion

Surface liming notably increased contents of soil pH, Ca2+, and Mg2+ while reduced H+Al and Al3+ at the top soil layer, where μm, σa, σe, and Zeff were also increased with the lime rates. However, at the subsoil layer, liming neither lessened soil acidity nor induced remarkable changes in the attenuation parameters. When using 137Cs photon energy, incoherent scattering totally dominated over the radiation interaction processes whereas photoelectric absorption and coherent scattering substantially contributed when 241Am photon energy was used. Therefore, the increasing in soil attenuation parameters at the top soil layer was more accentuated considering 241Am than 137Cs photon energy. Variation in μm caused considerable variation in ρ and φ only for 241Am photon energy.

Conclusions

The findings regarding the effect of μm variation induced by liming on the determination of soil physical properties are extremely relevant because traditionally, in the soil science area, μm values are calculated without considering any chemical modification to which the soil can be submitted. Bearing in mind that ρ and φ are important parameters from the agricultural and environmental points of view, not representative measurements of μm can lead to biased values of ρ and φ.

  相似文献   

11.
Radionuclide fallout during nuclear accidents on the land may impair the atmosphere, contaminate farmland soils and crops, and can even reach the groundwater. Previous research focused on the field distribution of deposited radionuclides in farmland soils, but details of the amounts of radionuclides in the plough layer and the changes in their proportional distribution in the soil profile with time are still inadequate. In this study, a lysimeter experiment was conducted to determine the vertical migration of 137Cs and 60Co in brown and aeolian sandy soils, collected from the farmlands adjoining Shidaowan Nuclear Power Plant(NPP) in eastern China, and to identify the factors influencing their migration depths in soil. At the end of the experiment(800 d), >96% of added 137Cs and 60Co were retained in the top 0–20 cm soil layer of both soils;very little 137Cs or 60Co initially migrated to 20–30 cm, but their amounts at this depth increased with time. The migration depth of 137Cs was greater in the aeolian sandy soil than in the brown soil during 0–577 d, but at the end of the experiment, 137Cs migrated to the same depth(25 cm) in both soils. Three phases on the vertical migration rate(v) of 60Co in the aeolian sandy soil can be identified: an initial rapid movement(0–355 d, v = 219 ± 17 mm year-1), followed by a steady movement(355–577 d, v = 150 ± 24 mm year-1) and a very slow movement(577–800 d, v = 107 ± 7 mm year-1). In contrast, its migration rate in the brown soil(v = 133 ± 17 mm year-1) was steady throughout the 800-d experimental period. The migration of both 137Cs and 60Co in the two soils appears to be regulated by soil clay and silt fractions that provide most of the soil surface area, soil organic carbon(SOC), and soil pH, which were manifested by the solid-liquid distribution coefficient of 137Cs and 60Co. The results of this study suggest that most 137Cs and 60Co remained within the top layer(0–20 cm depth) of farmland soils following a simulated NPP accident, and little reached the subsurface(20–30 cm depth). Fixation of radionuclides onto clay minerals may limit their migration in soil, but some could be laterally distributed by soil erosion and taken up by crops, and migrate into groundwater in a high water table level area after several decades.Remediation measures, therefore, should focus on reducing their impact on the farmland soils, crops, and water.  相似文献   

12.
Investigations of diurnal and seasonal variations in soil respiration support modeling of regional CO2 budgets and therefore in estimating their potential contribution to greenhouse gases. This study quantifies temporal changes in soil respiration and their driving factors in grassland and arable soils located in Northern Germany. Field measurements at an arable site showed diurnal mean soil respiration rates between 67 and 99 mg CO2 m–2 h–1 with a hysteresis effect following changes in mean soil temperatures. Field soil respiration peaked in April at 5767 mg CO2 m–2 day–1, while values below 300 mg CO2 m–2 day–1 were measured in wintertime. Laboratory incubations were carried out in dark open flow chambers at temperatures from 5°C to 40°C, with 5°C intervals, and soil moisture was controlled at 30%, 50%, and 70% of full water holding capacity. Respiration rates were higher in grassland soils than in arable soils when the incubating temperature exceeded 15°C. The respiration rate difference between them rose with increasing temperature. Monthly median values of incubated soil respiration rates ranged from 0 to 26.12 and 0 to 7.84 µg CO2 g–1 dry weight h–1, respectively, in grassland and arable land. A shortage of available substrate leads to a temporal decline in soil respiration rates, as indicated by a decrease in dissolved organic carbon. Temporal Q10 values decreased from about 4.0 to below 1.5 as temperatures increased in the field. Moreover, the results of our laboratory experiments confirmed that soil temperature is the main controlling factor for the Q10 values. Within the temperature interval between 20°C and 30°C, Q10 values were around 2 while the Q10 values of arable soils were slightly lower compared to that of grassland soils. Thus, laboratory studies may underestimate temperature sensitivity of soil respiration, awareness for transforming laboratory data to field conditions must therefore be taken into account.  相似文献   

13.
The vertical distribution and bioavailability of 137Cs in Histosols and mineral soils with different physicochemical properties from the southeast of Bavaria (Germany) more than ten years after the Chernobyl accident were the focus of this study. The vertical distribution of 137Cs was low in the investigated soils. About 85–98 % of the total 137Cs was located in the upper 10 cm of the mineral soils. Slightly higher 137Cs percentages were observed in deeper soil layers of the peat soils. Although the organic matter is assumed to enhance 137Cs mobility in soils, 137Cs was also located in the upper 10 cm of the peat soils (73–85 %). The highest 137Cs‐activities were found in the humus layers of forest soils, where 45–93 % of the total 137Cs soil inventories were observed. To determine the bioavailability of radiocesium, the soil‐to‐plant transfer of 137Cs and additionally added 134Cs was investigated under controlled conditions. The results revealed that the 134+137Cs soil‐to‐plant transfer factors as well as the percentages of NH4‐exchangeable 134+137Cs were much higher for the peat soils and humus layers than for the mineral soils. Nevertheless, the migration of 137Cs from the humus layers to the underlying soils was low. Considering the high bioavailability and low migration of radiocesium in the humus layers, it is suggested that radiocesium is involved in a shortcut element cycle in the system humus layer‐plant uptake‐litter. Furthermore, the organic matter has to be taken into account for radiocesium immobilization.  相似文献   

14.
在假设137Cs在耕层中得到充分混合而变得均一的基础上,根据质量平衡原理建立了一个根据农业耕作土壤剖面中137Cs的沉积量和土壤沉积量之间关系的定量模型.在建立模型的过程中,充分考虑了137Cs的衰变常数,年沉降分量,耕层厚度和采样年份等因素.模型的模拟结果表明,137Cs的沉积量与年平均土壤沉积量之间的关系是一种复杂的曲线关系.  相似文献   

15.
A coniferous woodland in the vicinity of theBritish Nuclear Fuels reprocessing plant atSellafield, Cumbria, was used to examine the spatial,temporal and depth distribution of 134Cs,137Cs, 238Pu, 239+240Pu and 241Amin soil and leaf litter. All the radionuclides, withthe exception of 134Cs, showed a consistent fallin accumulated soil and litter deposits withincreasing distance from the woodland edge nearest toSellafield. 137Cs levels in soil declined from 53to 28 kBq m-2, 239+240Pu from 5.5 to 3.6 kBqm-2 and 241Am from 2.9 to 1.1 kBq m-2within 100 m of the forest edge. This decline isattributed to greater deposition occurring at theleading edge of the woodland. The uniform depositionpattern of 134Cs in soil is consistent with thehypothesis that, at the time of sampling, thesedeposits derived largely from wet deposition duringpassage of the Chernobyl plume over Cumbria in May1986. Results for the leaf litter indicate a similarspatial distribution to that observed in soil.Radionuclide concentrations were also similar but thisis not attributable to adventitious soil contaminationbecause significant differences between isotopicratios of 134Cs:137Cs and 238Pu:239+240Pu imply that the contamination on leaflitter is of more recent origin than that in soils.  相似文献   

16.
After the Chernobyl accident in 1986 the fate of radiocaesium from the fallout became of pressing concern. Specific soil amendments, as K fertilizer and specific clay minerals, promised to mitigate the worst effects. We therefore investigated the influence of bentonite and the K status of the soil on the radiocaesium equilibria in soil and on its availability to ryegrass. A sample of a sandy soil was contaminated with 134Cs and amended with K and Ca salts (0–0.97 mmol kg?1) and K bentonite (0–2%). After 4 weeks' incubation of the soil mixtures, ryegrass was grown for 18 weeks in a pot trial and harvested on seven occasions. No significant treatment effects on 134Cs activity concentrations were found at the first and second harvest. From the third harvest onwards, however, 134Cs activity concentrations in the grass were reduced up to twofold (P < 0.05) by increasing rates of K bentonite. Adsorption studies with 137Cs revealed that the radiocaesium interception potential (RIP) of the soil–bentonite mixtures (> 1% bentonite) increased about 10‐fold during plant growth. The RIP of the K bentonite after plant growth was up to 10 times larger than that of pure illite. The formation of specific Cs sorption sites is ascribed to the in situ illitization of the K bentonite. The increase in RIP during plant growth is reflected in a decrease in exchangeable K+ at 2% K bentonite of about 18%. Radiocaesium concentrations in grass could be reliably predicted from the Cs+ and K+ concentrations in the soil solution. Adding K bentonite to a soil contaminated with radiocaesium is effective in fixing Cs in the soil.  相似文献   

17.
Five peat soils and a mineral soil were artificially contaminated with 137Cs. Soil solution activity and radio–lability of 137Cs were monitored over 709 days to quantify progressive 137Cs fixation. The peat soils fixed large amounts of 137Cs, but less than the mineral soil did. Distribution coefficients (Kd, cm3 g?1) ranged from 30 to 5000 at the end of equilibration. A labile 137Cs distribution coefficient, Kdt, was estimated by a method involving solid ? solution equilibration in dilute solution. In a separate study several concentrations of KCl were added to soils in increasing concentration both before and after the addition of 137Cs. Differences in apparent adsorption strength of radiocaesium indicated that K+ induced the collapse of expanded mineral interlayers, thereby trapping ions. It seemed that I37Cs adsorbs at sites in the small micaceous clay fraction of the peat soils. The different rates of 137Cs adsorption and fixation in the peat and mineral soils, in which the rate of access of 137Cs to fixation sites in peat soils is less, seems to have been caused partly by lack of K, and partly by the scarcity of fixation sites.  相似文献   

18.
Migration and chemical availability of 137Cs and90Sr in the long-term was studied on a36-yr-old deposition experiment on pastureconsisting of a sandy soil and a clay soil,contaminated in 1961 with radionuclides in aqueoussolution. Comparisons were made with a study of thesame soils in 1967. Soil samples to 55 cm depth wereanalysed for 137Cs and 90Sr to establish thevertical distribution. Chemical availability wasstudied using sequential extractions with H2O,NH4Ac, NH2OH·HCl, H2O2 andHNO3. Both 137Cs and 90Sr were found atall depths in both soil types. Cs-137 waspredominantly retained within the upper 10 cm (70%)in both soils. For 90Sr, the soils differedsignificantly, retention within the upper 10 cm was27% in sandy soil and 47% in clay soil. Migrationsince 1967 was faster in the sandy soil for bothnuclides. More than 95% of 137Cs was bound inthe acid-digestible and residual fractions in bothsoils. The residual fraction was larger in clay soil.90Sr was highly available in both soils. Noresidual fraction was found, and the easilyexchangeable fraction was 63–75%.  相似文献   

19.
To improve phosphorus (P) fertilization and environmental assessments, a better understanding of release kinetics of solid-phase P to soil solution is needed. In this study, Fe (hydr)oxide-coated filter papers (Fh papers), isotopic exchange kinetics (IEK) and chemical extractions were used to assess the sizes of fast and slowly desorbing P pools in the soils of six long-term Swedish field experiments. The P desorption data from the Fh-paper extraction of soil (20 days of continual P removal) were fitted with the Lookman two-compartment desorption model, which estimates the pools of fast (Q1) and slowly (Q2) desorbing P, and their desorption rates k1 and k2. The amounts of isotope-exchangeable P (E) were calculated (E1min to E>3 months) and compared with Q1 and Q2. The strongest relationship was found between E1 min and Q1 (r2 = .87, p < .01). There was also an inverse relationship between the IEK parameter n (the rate of exchange) and k1 (r2 = .52, p < .01) and k2 (r2 = .52, p < .01), suggesting that a soil with a high value of n desorbs less P per time unit. The relationships between these results show that they deliver similar information, but both methods are hard to implement in routine analysis. However, Olsen-extractable P was similar in magnitude to Q1 (P-Olsen = 1.1 × Q1 + 2.3, r2 = .96), n and k1 were related to P-Olsen/P-CaCl2, while k2 was related to P-oxalate/P-Olsen. Therefore, these extractions can be used to estimate the sizes and desorption rates of the different P pools, which could be important for assessments of plant availability and leaching.  相似文献   

20.
In order to assess its potential for estimating soil redistribution rates, the naturally occurring fallout radionuclide 210Pbex has been used in parallel with 137Cs, derived from the atmospheric testing of nuclear weapon testing in the 1950s to 1970s, to estimate rates of soil redistribution on a sloping field with traditional erosion control measures located near Jiajia Village, Jianyang County, in the Sichuan Hilly Basin of China. The local 210Pbex reference inventory of 12,860 Bq m− 2 is higher than those reported for many other areas of the world and may reflect the influence of cloudy weather in preventing 210Pb released to the atmosphere across the local region moving up into the upper troposphere, where is would be more widely dispersed. The mean 210Pbex and 137Cs inventories measured in cores collected from the upper part of the field with an average slope of 10° were 8028 Bq m− 2 and 993 Bq m− 2, respectively, and the equivalent values for the lower part of the field, where the slopes are steeper (20°) were 11,388 Bq m− 2 and 1299 Bq m− 2. The pattern of post-fallout 210Pbex and 137Cs redistribution on the sloping field reflects not only the effects of water erosion and redistribution by tillage, but also the local traditional practice of “Tiaoshamiantu”, whereby sediment trapped in the ditches is returned to the fields by the farmer. The estimates of annual rates of soil loss provided by the 210Pbex measurement are closely comparable with those derived from the 137Cs measurements and are consistent with existing knowledge for the study area. The results obtained from this study confirm the potential for using 210Pbex measurement to estimate soil erosion rates over medium-term timescale of 50–100 years. By combining the estimates of erosion rates provided by the 210Pbex and 137Cs measurements, the weighted mean net soil loss was estimated to be 48.7 t ha− 1 year− 1 from the upper subfield and 16.9 t ha− 1 year− 1 from the lower subfield. These rates are considerably lower than the erosion rates obtained from runoff plot measurements in the local area. It is suggested that the traditional erosion control practices and the practice of “Tiaoshamiantu” have a significant effect in reducing soil loss and conserving valuable cultivated soil on sloping fields in the Sichuan Hilly Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号