首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study aimed to obtain information about the types of spirochaetes colonising urban dogs in Thailand, and to investigate their pathogenic potential in a day-old chick model of intestinal spirochaetosis. Spirochaetes were isolated from the faeces of six of 47 (12.8%) healthy dogs and 11 of 104 (10.6%) dogs with diarrhoea. Their biochemical properties and 16S ribosomal DNA sequences were analysed. Four isolates were identified as Brachyspira pilosicoli, three resembled "Brachyspira pulli", nine clustered with "Brachyspira canis" and one was similar to Brachyspira intermedia. Canine isolates of B. pilosicoli, "B. canis" and "B. pulli", and control strains of Brachyspira hyodysenteriae, B. pilosicoli and Brachyspira innocens colonised experimentally infected day-old chicks. The chicks did not develop diarrhoea, but were significantly lighter than the non-infected group and those infected with B. innocens after 21 days (P<0.05). Using immunohistochemistry, spirochaetes were observed covering the surface epithelium and in the crypts of chicks in all three groups challenged with the canine isolates. Variable histopathological changes were seen, with the greatest inflammatory cell infiltration into the lamina propria occurring in the group infected with "B. pulli". Canine "B. canis", "B. pulli" and B. pilosicoli isolates may have pathogenic potential.  相似文献   

2.
The Brachyspira (formerly Serpulina) species rrl gene encoding 23S ribosomal RNA (rRNA) was used as a target for amplification of a 517bp DNA fragment by polymerase chain reaction (PCR). The primers for PCR amplification had sequences that were conserved among Brachyspira 23S rRNA gene and were designed from nucleotide sequences of Brachyspira hyodysenteriae, Serpulina intermedia, Brachyspira innocens and Brachyspira pilosicoli available from the GenBank database. Digestion of PCR-generated products from reference and field isolates of swine intestinal spirochetes with restriction enzymes Taq I and Alu I revealed five restriction fragment length polymorphism (RFLP) patterns. Each RFLP pattern corresponded to previously established genetic groups including B. hyodysenteriae (I), S. intermedia/B. innocens (II), Brachyspira murdochii (III), B. pilosicoli (IV) and B. alvinipulli (V). The 23S rRNA PCR/RFLP provided a relatively simple genotypic method for identification of porcine pathogenic B. hyodysenteriae and B. pilosicoli.  相似文献   

3.
Anaerobic intestinal spirochaetes of the genus Brachyspira are known to colonise dogs, but relatively little is known about their prevalence, distribution or pathogenic potential. One species, Brachyspira pilosicoli, is thought to cause diarrhoea in dogs, as well as in other animals and humans. To investigate the prevalence and distribution of infection, faecal samples from 49 puppies from six pet shops in the suburbs of Perth, Western Australia were subjected to selective culture for anaerobic intestinal spirochaetes. Growth from the primary plates was also harvested, the DNA extracted and a polymerase chain reaction (PCR) amplification of a portion of the 16S rRNA gene of B. pilosicoli applied. Weakly beta-haemolytic intestinal spirochaetes (WBHIS) grew on plates from 20 of the dogs (40.8%). Seven plates (14.2%) yielded PCR positive amplification for B. pilosicoli. Seven WBHIS isolates were obtained in pure culture, and two of these were shown to be B. pilosicoli by PCR. Application of multilocus enzyme electrophoresis to the seven isolates confirmed that the two PCR positive isolates were B. pilosicoli, whilst the other five belonged to a group previously designated "Brachyspira canis". All the "B. canis" isolates came from healthy puppies, suggesting that this WBHIS is a commensal. Three of the seven puppies with PCR evidence of B. pilosicoli had diarrhoea, but the sample size was small and the association between colonisation and diarrhoea was not statistically significant. Pet shop puppies are commonly infected with intestinal spirochaetes, and may act as a reservoir of B. pilosicoli for other animals and humans.  相似文献   

4.
The purpose of this study was to determine whether methods used to control swine dysentery (SD), caused by the intestinal spirochaete Brachyspira (Serpulina) hyodysenteriae, would also be effective in controlling porcine intestinal spirochaetosis (PIS) caused by the related spirochaete Brachyspira (Serpulina) pilosicoli. Weaner pigs in Groups I (n=8) and II (n=6) received a standard weaner pig diet based on wheat and lupins, whilst Group III (n=6) received an experimental diet based on cooked white rice and animal protein. Pigs in Group II were vaccinated intramuscularly twice at a 3-week-interval with a formalinised bacterin made from B. pilosicoli porcine strain 95/1000 resuspended in Freund's incomplete adjuvant. Eleven days later pigs in all groups were infected orally with 10(10) cells of strain 95/1000 on three successive days. One control pig in Group I developed acute diarrhoea, and at post-mortem had a severe erosive colitis with end-on attachment of spirochaetes to the colonic epithelium. All other pigs developed transient mild diarrhoea and had moderate patchy colitis at post-mortem 3 weeks later. B. pilosicoli was isolated from the faeces of all pigs, except for one fed rice, and was isolated from the mesenteric nodes of three pigs from Group I and from one vaccinated pig in Group II. Consumption of the rice-based diet, but not vaccination, delayed and significantly (p<0.001) reduced the onset of faecal excretion of B. pilosicoli after experimental challenge. Vaccination induced a primary and secondary serological response to B. pilosicoli, as measured using sonicated whole cells of strain 95/1000 as an ELISA plate coating antigen. Antibody titres in the vaccinated pigs then declined, despite intestinal colonisation by B. pilosicoli. Both groups of unvaccinated animals also failed to develop a post-infection increase in circulating antibody titres.  相似文献   

5.
Brachyspira (Serpulina) hyodysenteriae was isolated from 10 of 11 pigs with clinically suspected swine dysentery in six herds in northern Italy. All strains were successfully isolated in the selective blood agar modified medium with spectinomycin and rifampin (BAM-SR) currently used in our laboratory to isolate B. (S.) pilosicoli of human origin, after pre-treatment of intestinal material with spectinomycin and rifampin in foetal calf serum. Isolates had phenotypic characteristics typical of B. (S.) hyodysenteriae.  相似文献   

6.
Principal aim of this study was to examine fecal samples from pigs suffering from diarrhea for the presence of Lawsonia intracellularis, Brachyspira hyodysenteriae and Brachyspira pilosicoli. The molecular techniques such as PCR and nested PCR were employed to detect the presence of p78 fragment of genomic DNA specific for Lawsonia intracellularis as well as fragment of tlyA gene specific for Brachyspira hyodysenteriae and 16S rDNA gene of Brachyspira pilosicoli. We assumed that about 25% of pigs were infected with Lawsonia intracellularis, about 10% with Brachyspira hyodysenteriae and only 0,8% with Brachyspira pilosicoli. In about 3% mixed infection with L. intracellularis and B. hyodysenteriae was observed. Results were comparable in herds that differed in quantity, breeding technology, hygienic standards and preventive treatment with different chemotherapeutics.  相似文献   

7.
Faeces samples were taken three times at two-week intervals, from the farrowing units of four herds of known Brachyspira (formerly Serpulina) status and one of unknown Brachyspira status. Brachyspira hyodysenteriae, Brachyspira pilosicoli, Brachyspira intermedia and Brachyspira group III were isolated from the faecal samples from the weaners in the herds using either a maximum of 50 ppm of olaquindox or no feed additives. The detection rates were relatively consistent. However, B hyodysenteriae was not detected at one sampling in a known positive herd. The prevalence of Brachyspira species was also studied in feeder pigs originating from LSO 2000 health class farrowing units, comparable with specific pathogen-free herds. These farms were free from swine dysentery, sarcoptic mange, swine enzootic pneumonia and progressive atrophic rhinitis. Fifty of 428 herds were sampled once. B hyodysenteriae was not isolated from any of them, but B intermedia, B pilosicoli and Brachyspira group III were isolated from five, 14 and 37 of the herds, respectively. The detection of Brachyspira species did not relate to the prevalence of diarrhoea in the herds, as judged by the farmers. The herds using carbadox (40 to 50 ppm) had a lower prevalence of Brachyspira species than those using olaquindox (40 to 50 ppm).  相似文献   

8.
Multilocus enzyme electrophoresis (MLEE) was used to identify, examine genetic relationships and look at disease associations of a collection of 53 intestinal spirochaete isolates previously recovered from the faeces of adult hens on 14 farms in Qld, Australia. The MLEE results were compared with those previously obtained using species-specific PCR amplifications. The isolates were divided into five Brachyspira species groups by MLEE: Brachyspira murdochii (n=17), B. intermedia (n=15), B. pilosicoli (n=14), B. innocens (n=2) and "B. pulli" (n=1). Three new MLEE groups each containing single isolates also were identified. The results of the PCR assay for B. pilosicoli were concordant with the MLEE results, but the 23S rDNA-based PCR for B. intermedia had failed to detect 8 of the 15 isolates. The B. innocens/B. murdochii nox-based PCR had correctly identified all the isolates of B. murdochii, but did not identify either of the two B. innocens isolates. Using MLEE, isolates from two farms (14%) were identified as B. murdochii, whilst the pathogenic species B. intermedia and B. pilosicoli were present in hens from eight (57%) and five (36%) farms, respectively, and were identified together in four (29%) farms. All seven of the farms with production problems or wet litter were colonised with B. intermedia and/or B. pilosicoli. Six farms had multiple spirochaete isolates available for examination. Two broiler breeder farms both had five isolates of B. pilosicoli that shared the same MLEE electrophoretic type (ET), whilst one laying hen farm had three isolates of B. intermedia that all belonged to the same ET. Hence on each of these farms a predominant strain of a pathogenic species was present. On the other farms isolates of the same species were more diverse and belonged to different ETs. These results show that the epidemiology of intestinal spirochaetal infections in broiler breeder and laying hen flocks can vary considerably between farms, although the reasons for these differences were not established.  相似文献   

9.
Brachyspira infections are significant causes of enterocolitis in pigs. In order to differentiate pathogenic species (Brachyspira (Br.) hyodysenteriae, Brachyspira pilosicoli) from less pathogenic or non-pathogenic species (Brachyspira intermedia, Brachyspira innocens, Brachyspira murdochii) in paraffin-embedded tissue samples a polymerase chain reaction (PCR) protocol allowing identification of Brachyspira at species level in archival material was developed. This approach was complemented by sequencing of the PCR amplification products. All seven cases presented with clinical and morphological Brachyspira-associated enterocolitis. Br. hyodysenteriae was not identified in any of the cases, while Br. pilosicoli was identified in a single case in conjunction with Br. murdochii. One case each was found positive for Br. innocens and Br. intermedia. Interestingly, the majority of cases presented as single or double infections with Br. murdochii. In some of the pigs other pathogens, like porcine circovirus-2 or Lawsonia intracellularis were present. These observations point at the possibility that under certain conditions even Brachyspira species of low pathogenicity can multiplicate extensively and lead to Brachyspira-associated enterocolitis.  相似文献   

10.
A survey is given on the occurrence and distribution of different Brachyspira species in pigs, in the northwest of Germany. In total 2975 specimen (feces, fecal swabs, colon) were taken and sent for laboratory analysis during the years 1997 to 1999. 1218 Brachyspira (B.) strains were found by cultural analysis. 1757 samples (59%) were negative. The cultural and biochemical differentiation revealed 720 (59.1%) strains B. hyodysenteriae (77.5% were indole negative), 22 (1.8%) B. pilosicoli, 29 (2.4%) B. intermedia, 167 (3.7%) B. innocens and 114 (9.4%) B. murdochii. 166 (13.6%) strains could not be identified. These strains could either not be compared with any of the described species by the methods used or it was impossible to achieve a pure culture from these isolates. The results demonstrate the wide spread of B. hyodysenteriae in pig herds in the northwest of Germany with a very high prevalence of indole negative strains. The most frequent strain was B. hyodysenteriae. B. pilosicoli which causes spirochaetal diarrhoea was rarely isolated and seems not to play an important role in Germany. Experience from routine cultures for Brachyspira give evidence that it is more useful to examine faeces from single pigs instead of pooled samples from a herd. It is recommended to use special transport media for the transport of the specimen.  相似文献   

11.
Two of four weak beta-hemolytic isolates of intestinal spirochetes isolated from pigs in Japan possessed a unique base alignment of TTTTTT on the 16S ribosomal DNA of Brachyspira pilosicoli and were identified as B. pilosicoli. The other two isolates were not identified by this technique. The identified isolates were 4.2 to 11 microm in length and 0.2 to 0.3 microm in diameter, 4 periplasmic flagella at each end were observed dominantly. The isolates were hippurate positive but indole negative. This is the first report on the isolation of B. pilosicoli from pigs in Japan.  相似文献   

12.
Sixty-nine intestinal spirochetes isolated from pigs and poultry in eastern Australia were selected to evaluate the effectiveness of a species-specific PCR-based restriction fragment length polymorphism (RFLP) analysis of the Brachyspira nox gene. For comparative purposes, all isolates were subjected to species-specific PCRs for the pathogenic species Brachyspira hyodysenteriae and Brachyspira pilosicoli, and selected isolates were examined further by sequence analysis of the nox and 16S ribosomal RNA genes. Modifications to the original nox-RFLP method included direct inoculation of bacterial cells into the amplification mixture and purification of the PCR product, which further optimized the nox-RFLP for use in a veterinary diagnostic laboratory, producing sufficient product for both species identification and future comparisons. Although some novel profiles that prevented definitive identification were observed, the nox-RFLP method successfully classified 45 of 51 (88%) porcine and 15 of 18 (83%) avian isolates into 5 of the 6 recognized species of Brachyspira. This protocol represents a significant improvement over conventional methods currently used in veterinary diagnostic laboratories for rapid specific identification of Brachyspira spp. isolated from both pigs and poultry.  相似文献   

13.
Lawsonia (L.) intracellularis, Brachyspira (B.) hyodysenteriae and B. pilosicoli are important pathogens in domestic pig production world-wide, responsible for porcine intestinal adenomatosis, swine dysentery, and porcine intestinal spirochetosis, respectively. Conventional PCR is the major diagnostic tool in the detection of the three pathogens, but the sole detection of bacterial DNA might lead to misinterpretations of results with respect to their clinical relevance, especially with mixed infections. Thus, the present study targeted the detection and quantification of the three pathogens in samples from herds with a case history of diarrhoea. Herds and samples were selected by the practitioners on a voluntary basis. Results were based on 1176 individual samples from 95 herds from Southern Germany. The pathogens were detected simultaneously by multiplex real-time PCR. The overall prevalence for L. intracellularis, B. hyodysenteriae and B. pilosicoli was 12.6%, 8.4% and 3.2% in faecal samples and 48.4%, 24.2% and 31.6% in herds, respectively. Sixty one percent, 82.6%, and 73.4% of herds positive for L. intracellularis, B. hyodysenteriae, and B. pilosicoli, respectively, had mixed infections. Median log values of DNA equivalents/g of faeces for L. intracellularis, B. hyodysenteriae and B. pilosicoli were 3.3, 5.9 and 3.2, with maxima of 8.3, 8.0 and 6.3, respectively. Within herd prevalence of B. hyodysenteriae and B. pilosicoli as well as the load of B. hyodysenteriae were significantly associated with the severity of diarrhoea.  相似文献   

14.
Diarrhoea in growing and finishing pigs is usually caused by infectious agents and laboratory diagnosis is a prerequisite for efficient therapy. Cultivation of Brachyspira hyodysenteriae or Brachyspira pilosicoli and detection of Lawsonia intracellularis by means of immunofluorescence tests (IFT) are time-consuming and in some cases lack sensitivity. A multiplex-PCR was designed to detect simultaneously these three pathogens in faeces and tissue samples, allowing the differential diagnosis of dysentery, intestinal spirochaetosis and proliferative enteropathy. Detection limits for B. hyodysenteriae, B. pilosicoli and L. intracellularis were 10(4), 10(2) and 10(3) copies respectively. Agreement between multiplex-PCR and nested-PCR or cultivation was considered substantial to almost perfect. Agreement between multiplex-PCR and IFT in detecting L. intracellularis was only moderate, which was probably related to false-positive results given by IFT. The multiplex-PCR described herein is a valuable tool for the rapid and simultaneous detection of three different pathogens in porcine samples causing enteric diseases.  相似文献   

15.
A cross-sectional study was conducted on a commercial egg-producing farm with a history of wet litter. A total of 600 fresh caecal faecal samples were obtained from under cages of laying hens in three sheds each containing flocks of approximately 5400 hens. Samples were cultured for intestinal spirochaetes, and growth on the primary isolation plate was observed under a phase contrast microscope and subjected to PCRs specific for the intestinal spirochaetes Brachyspira intermedia and Brachyspira pilosicoli. Spirochaete isolates obtained in pure culture were assessed for their ability to cause haemolysis on blood agar and to produce indole, and were typed using pulsed field gel electrophoresis (PFGE). A 1250 base pair portion of the 16S rRNA gene of three B. intermedia and five unidentified isolates was sequenced, and the sequences compared with those of other Brachyspira species. Overall, 121 (20.2%) of the faecal samples contained spirochaetes as determined by growth on the plate and microscopy. Using PCR on the primary growth from these positive samples, 43 (7.2% overall) were shown to contain B. intermedia, 8 (1.3%) to contain B. pilosicoli, and 70 (11.7%) were PCR negative. Only 24 isolates of B. intermedia and five isolates of unknown species were obtained in pure culture. Comparative analysis of the 16S rRNA gene sequence identified the non-B. intermedia isolates as belonging to the proposed species "Brachyspira pulli". PFGE analysis of the B. intermedia strains identified them as having four major banding patterns. Individual patterns were found in hens from different flocks, suggesting cross-transmission of strains between flocks. No environmental sources of infection were identified. The youngest flock had a significantly lower level of colonisation with B. intermedia than the flock of intermediate age (P = 0.004), suggesting that following initial infection of individual young hens on this farm there was amplification and transmission of infection amongst members of the flock.  相似文献   

16.
Feral pigs are recognized as being a potential reservoir of pathogenic microorganisms that can infect domestic pigs and other species. The aim of this study was to investigate whether feral pigs in Western Australia were colonized by the pathogenic enteric bacteria Lawsonia intracellularis, Brachyspira hyodysenteriae and/or Brachyspira pilosicoli. A total of 222 feral pigs from three study-populations were sampled. DNA was extracted from faeces or colonic contents and subjected to a previously described multiplex PCR for the three pathogenic bacterial species. A subset of 61 samples was cultured for Brachyspira species. A total of 42 (18.9%) of the 222 samples were PCR positive for L. intracellularis, 18 (8.1%) for B. hyodysenteriae and 1 (0.45%) for B. pilosicoli. Four samples were positive for both L. intracellularis and B. hyodysenteriae. Samples positive for the latter two pathogens were found in pigs from all three study-sites. A strongly haemolytic B. hyodysenteriae isolate was recovered from one of the 61 cultured samples. Comparison of a 1250-base pair region of the 16S rRNA gene amplified from DNA extracted from the isolate and five of the B. hyodysenteriae PCR positive faecal samples helped confirm these as being from B. hyodysenteriae. This is the first time that B. hyodysenteriae has been detected in feral pigs. As these animals range over considerable distances, they present a potential source of B. hyodysenteriae for any domesticated pigs with which they may come into contact.  相似文献   

17.
A hippurate-negative biovariant of Brachyspira pilosicoli (B. pilosicolihipp-) is occasionally isolated in diarrhoeic pigs in Finland, often concomitantly with hippurate-positive B. pilosicoli or Lawsonia intracellularis. We studied pathogenicity of B. pilosicolihipp- with special attention paid to avoiding co-infection with other enteric pathogens. Pigs were weaned and moved to barrier facilities at the age of 11 days. At 46 days, 8 pigs were inoculated with B. pilosicolihipp- strain Br1622, 8 pigs were inoculated with B. pilosicoli type strain P43/6/78 and 7 pigs were sham-inoculated. No signs of spirochaetal diarrhoea were detected; only one pig, inoculated with P43/6/78, had soft faeces from day 9 to 10 post inoculation. The pigs were necropsied between days 7 and 23 after inoculation. Live pigs were culture-negative for Brachyspira spp., but B. pilosicolihipp- was reisolated from necropsy samples of two pigs. The lesions on large colons were minor and did not significantly differ between the three trial groups. In silver-stained sections, invasive spirochaetes were detected in colonic mucosae of several pigs in all groups. Fluorescent in situ hybridisation for genus Brachyspira, B. pilosicoli and strain Br1622 was negative. However, in situ detection for members of the genus Leptospira was positive for spirochaete-like bacteria in the colonic epithelium of several pigs in both infected groups as well as in the control group. L. intracellularis, Salmonella spp., Yersinia spp. and intestinal parasites were not detected. The failure of B. pilosicoli strains to cause diarrhoea is discussed with respect to infectivity of the challenge strains, absence of certain intestinal pathogens and feed and management factors.  相似文献   

18.
There is no ring test for quality assessment available in Europe for diagnostics and antimicrobial susceptibility testing of the fastidious, anaerobic bacteria of the genus Brachyspira. Therefore, an international ring test for Brachyspira spp. was performed once a year during 2002-2004. Two sets of coded samples were prepared and distributed on each occasion. One set comprised six swabs dipped in pig faeces spiked with Brachyspira spp. intended for diagnostics. The other set comprised two pure strains intended only for susceptibility testing. All methods used were in-house methods. The species used were Brachyspira hyodysenteriae, Brachyspira pilosicoli, Brachyspira innocens, Brachyspira murdochii and Brachyspira intermedia. In most cases, the correct Brachyspira spp. were detected. However, the results showed that Brachyspira spp. could be difficult to identify, especially if two Brachyspira spp. were mixed or if the concentration of Brachyspira in faeces was low. Additionally, some laboratories reported Brachyspira growth in control samples that were not seeded with any spirochaetes. The lowest detection level was 10(2) bacteria/ml faeces for both B. hyodysenteriae and B. pilosicoli. The susceptibility tests performed showed that disc diffusion was not recommendable for Brachyspira spp. Extended antimicrobial dilution series gave most congruent results. The diversity of the results highlights the importance of ring tests for a high quality of diagnostics and antimicrobial susceptibility tests for Brachyspira spp. This is the first ring test described for Brachyspira spp.  相似文献   

19.
The aim of the present study was to survey the prevalences of the enteric pathogens Brachyspira hyodysenteriae, Brachyspira pilosicoli and Lawsonia intracellularis in Swedish growing pigs and in the Swedish wild boar population and to relate these findings to clinical signs. The study included 105 randomly selected herds, constituting approximately one third of Swedish herds with a herd size of >100 sows. The herds were located all over the country. In these herds, growth promoters were not used and pigs sampled were not subjected to any medication. From each herd, samples were taken from 10 growing pigs aged 8-12 weeks, corresponding to approximately 2.5% of all growing pigs present in the herd at the sampling occasion. If possible, the samples were taken from pigs with diarrhoea. Forty-eight faecal samples and 71 rectal swabs were also taken from free-living wild boars (31 piglets, 19 growers and 21 adult animals) at shooting. The samples were analysed by culture and biochemical tests for the presence of Brachyspira spp. and by nested PCR for the presence of L. intracellularis. Brachyspira hyodysenteriae was not demonstrated in any sample. Brachyspira intermedia was detected in 22 samples originating from 15 herds, Brachyspira innocens/Brachyspira murdochii was detected in 370 samples from 82 herds and B. pilosicoli was detected in 134 samples originating from 34 herds. In 21 herds and in 534 samples, no Brachyspira spp. were detected. Lawsonia intracellularis was demonstrated in 285 samples from 50 herds. Further, 418 samples from conventional herds were negative with respect to L. intracellularis and in 345 samples the PCR had been inhibited. All samples from the wild boars were negative for Brachyspira spp., 12 of 48 samples were negative for L. intracellularis, and in 36 wild boar samples, the PCR was inhibited.  相似文献   

20.
We observed a significant difference in the organic acid profile of diarrheal feces between pigs infected with and free from pathogenic spirochetes. Diarrhea and loose feces were collected from growing pigs, held at 15 different commercial farms. A total of 106 samples were measured for organic acid concentration by HPLC and were checked for the presence of B. hyodysenteriae and B. pilosicoli by PCR. B. hyodysenteriae was detected in 3 samples collected from one farm. B. pilosicoli was detected in 5 samples collected from another farm. Lower concentrations of iso-butyrate and iso-valerate were likely associated with development of pathogenic spirochete infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号