首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a part of a research project on the antioxidant mechanism of natural phenolics in food components, curcumin, a turmeric antioxidant, was investigated in the presence of ethyl linoleate as one of the polyunsaturated lipids. During the antioxidation process, curcumin reacted with four types of linoleate peroxyl radicals. Six reaction products were observed in the reaction and subsequently isolated. Their structures were determined by physical techniques, revealing that they have novel tricyclic structures, including a peroxyl linkage. On the basis of the formation pathway for their chemical structures, an antioxidant mechanism of curcumin in polyunsaturated lipids was proposed, which consisted of an oxidative coupling reaction at the 3'-position of the curcumin with the lipid and a subsequent intramolecular Diels--Alder reaction.  相似文献   

2.
In the course of studies on the antioxidant mechanism of curcumin, its radical reaction was investigated. Curcumin was reacted with radical species, which were generated from the pyrolysis of 2, 2'-azobis(isobutyronitrile) under an oxygen atmosphere, and the reaction products from curcumin were followed by HPLC. The reaction at 70 degrees C gave several products, three of which were structurally identified to be vanillin, ferulic acid, and a dimer of curcumin after their isolation. The dimer was a newly identified compound bearing a dihydrofuran moiety, and its chemical structure was elucidated using spectroscopic analyses, especially 2D NMR techniques. A mechanism for the dimer production is proposed and its relation to curcumin's antioxidant activity discussed. The time course and gel permeation chromatography studies of the reaction were also investigated, and the results indicate that the dimer is a radical-terminated product in the initial stage.  相似文献   

3.
Curcumin, the most active compound of curcuminoids, has been shown to inhibit formation of advanced glycation end products (AGEs) in streptozotocin-induced diabetic rats. However, little is known on whether curcumin may trap methylglyoxal (MGO), a major reactive dicarbonyl compound, to inhibit AGE formation. We found that one molecule of curcumin effectively trapped one molecule of MGO at a 1:3 ratio at 24 h of incubation under physiological conditions (pH 7.4, 37 °C). Curcumin decreased N(ε)-(carboxymethyl)lysine (CML) expression in human umbilical vein endothelial cells. We further used two curcumin analogues, dimethoxycurcumin (DIMC) and ferulic acid, to investigate the possible MGO-trapping mechanism of curcumin. Results reveal that DIMC, but not ferulic acid, exhibited MGO-trapping capacity, indicating curcumin traps MGO at the electron-dense carbon atom (C10) between the two keto carbon groups. Thus, curcumin may prevent MGO-induced endothelial dysfunction by directly trapping MGO.  相似文献   

4.
To determine the antioxidant mechanism of food phenolics against the oxidation of food components, the reaction of carnosic acid, an antioxidative constituent of the popular herbs sage and rosemary, was investigated in the presence of ethyl linoleate and the radical oxidation initiator 2,2'-azobis(2,4-dimethylvaleronitrile). During this process, carnosic acid was oxidized to an o-quinone and a hydroxy p-quinone, the chemical structures of which were confirmed by physical and chemical techniques. From a quantitative time course analysis of the production of these quinones, an antioxidant mechanism of carnosic acid is proposed, consisting of the oxidative coupling reaction with the peroxyl radical at the 12- or 14-position of carnosic acid and subsequent degradation reactions.  相似文献   

5.
In our studies of the chain-breaking antioxidant mechanism of natural phenols in food components, ferulic acid, a phenolic acid widely distributed in edible plants, especially grain, was investigated. The radical oxidation reaction of a large amount of ethyl linoleate in the presence of the methyl ester of ferulic acid produced four types of peroxides as radical termination products. The isolation and structure determination of the peroxides revealed that they had tricyclic structures which consisted of ethyl linoleate, methyl ferulate, and molecular oxygen. Based on the formation pathway of the products, a radical scavenging reaction occurred at the 3'-position of the ferulate radical with the four types of peroxyl radicals of ethyl linoleate. The produced peroxides subsequently underwent intramolecular Diels-Alder reaction to afford stable tricyclic peroxides.  相似文献   

6.
The oxidation of low-density lipoprotein (LDL) is believed to be the initiating factor for the development and progression of atherosclerosis. The active ingredients of spices such as chili and turmeric (capsaicin and curcumin, respectively) have been shown to reduce the susceptibility of LDL to oxidation. One of the techniques used to study the oxidation of LDL is to isolate LDL and subject it to metal-induced (copper or iron) oxidation. However, whole serum may represent a closer situation to in vivo conditions than using isolated LDL. We investigated the effects of different concentrations (0.1-3 microM) of capsaicin, dihydrocapsaicin, and curcumin on copper-induced oxidation of serum lipoproteins. The lag time (before initiation of oxidation) and rate of oxidation (slope of propagation phase) were calculated. The lag time increased, and the rate of oxidation decreased with increasing concentrations of the tested antioxidants (p < 0.05). A 50% increase in lag time (from control) was observed at concentrations between 0.5 and 0.7 microM for capsaicin, dihydrocapsaicin, and curcumin. This study shows that oxidation of serum lipids is reduced by capsaicinoids and curcumin in a concentration-dependent manner.  相似文献   

7.
The supramolecular interaction of curcumin and beta-cyclodextrin (beta-CD) has been studied by spectrophotometry. The mechanism of the inclusion was studied and discussed based on the variations of pK(a), absorption intensity, and infrared spectrograms. The results show that beta-CD reacts with curcumin to form a 2:1 host-guest complex with an apparent formation constant of 5.53 x 10(5) mol(-2) x L2. Based on the enhancement of the absorbance of curcumin produced through complex formation, a spectrophotometric method for the determination of curcumin in bulk aqueous solution in the presence of beta-CD was developed. The linear relationship between the absorbance and curcumin concentration was obtained in the range of 0-15 microg/mL, with a correlation coefficient (r) of 0.9991. The detection limit was 0.076 microg/mL. The proposed method was used to determine the curcumin in curry and mustard with satisfactory results.  相似文献   

8.
This study investigated the neuroprotective effects of the curcuminoids against lead-induced neurotoxicity. The results show that lead significantly increases lipid peroxidation and reduces the viability of primary hippocampal neurons in culture. This lead-induced toxicity was significantly curtailed by the co-incubation of the neurons with the curcuminoids. In a whole animal experiment, rats were trained in a water maze and thereafter dosed with lead and/or curcumin (CURC), demethoxycurcumin (DMC), or bisdemethoxycurcumin (BDMC) for 5 days. Animals treated with curcumin and demethoxycurcumin but not bisdemethoxycurcumin had more glutathione and less oxidized proteins in the hippocampus than those treated with lead alone. These animals also had faster escape latencies when compared to the Pb-treated animals indicating that CURC- and DMC-treated animals retain the spatial reference memory. The findings of this study indicate that curcumin, a well-established dietary antioxidant, is capable of playing a major role against heavy metal-induced neurotoxicity and has neuroprotective properties.  相似文献   

9.
Curcumin is a bioactive compound with poor oral bioavailability. Low water solubility and rapid metabolism are two known limiting factors, but the absorption mechanism of solubilized curcumin remains unclear. This study investigated the permeation mechanism of solubilized curcumin using an in vitro Caco-2 cell monolayer model. It was shown that curcumin permeated across the monolayers fairly rapidly [P(app)(A-B) = (7.1 ± 0.7) × 10(-6) cm/s] and the permeation mechanism was found as passive diffusion [P(app)(B-A)/P(app)(A-B) = 1.4]. Furthermore, the permeation rates of curcumin complexed with bovine serum albumin and in the bile salts-fatty acids mixed micelles were also determined as P(app)(mixed micelle) > P(app)(DMSO) > P(app)(protein complex). These results suggested that solubilization agents play an important role in the permeation of solubilized curcumin, and stronger binding between the solubilization agents and curcumin may decrease the permeation rate. The results further suggest that lipid-based formulations, which solubilize curcumin in mixed micelles after lipid digestion, are promising vehicles for curcumin oral delivery.  相似文献   

10.
Nephrotoxicity is a major complication and a dose limiting factor for cisplatin therapy. Recent evidence suggests that inflammation and oxidative stress may contribute to the pathogenesis of cisplatin-induced acute renal failure. Curcumin is claimed to be a potent anti-inflammatory and antioxidant agent. The present study was performed to explore the effect of curcumin against cisplatin-induced experimental nephrotoxicity. Curcumin in the dosages of 15, 30, and 60 mg kg(-1) was administered 2 days before and 3 days after cisplatin administration. Renal injury was assessed by measuring serum creatinine, blood urea nitrogen, creatinine, urea clearance, and serum nitrite levels. Renal oxidative stress was assessed by determining renal malondialdehyde levels, reduced glutathione levels and enzymatic activities of superoxide dismutase and catalase. Systemic inflammation was assessed by tumor necrosis factor-alpha (TNF-alpha) levels. A single dose of cisplatin resulted in marked inflammation (486% rise in TNF-alpha level) and oxidative stress and significantly deranged renal functions as well as renal morphology. The serum TNF-alpha level was markedly reduced in curcumin-treated rats. Curcumin treatment significantly and dose-dependently restored renal function, reduced lipid peroxidation, and enhanced the levels of reduced glutathione and activities of superoxide dismutase and catalase. The present study demonstrates that curcumin has a protective effect on cisplatin-induced experimental nephrotoxicity, and this effect is attributed to its direct anti-inflammatory and strong antioxidant profile. Hence, curcumin has a strong potential to be used as a therapeutic adjuvant in cisplatin nephrotoxicity.  相似文献   

11.
Curcumin-loaded alginate beads, which contain different food emulsifiers, have been prepared using CaCl? as the cross-linking agent. The controlled release of the curcumin from the beads was investigated at room temperature. For calcium alginate/Span-80/Tween-80 (A/S/T) formulations, almost all of the curcumin loaded in the beads was released into the medium within about 20 h, and the release rates could be regulated by changing the concentration of both Tween-80 and Span-80. However, for the systems of calcium alginate/Q-12A/F-18A (A/Q/F), about 60% of the curcumin loaded in the beads was released at the end of experiments. The studies of scanning electron microscopy indicated that the microstructure of the walls of beads could significantly vary with the concentration or type of emulsifiers. The Fourier transform infrared spectral measurements confirmed that the interactions between calcium alginate and polyglycerol fatty acid esters were stronger than that between calcium alginate and Tween-80/Span-80. The results of swelling studies demonstrated that the initial rates of water uptake for A/Q/F beads were higher than that for A/S/T beads. Moreover, the data of release rates were fitted by an empirical equation, which showed that the release mechanism of curcumin from the alginate gels varied with the composition of emulsifiers for the A/S/T systems. This work provides an important insight into the effect of food emulsifiers on the release rates of the curcumin from calcium alginate beads and will be helpful for the application of the systems in controlled release of other hydrophobic drug.  相似文献   

12.
Curcuminoids are substances of great interest because of their important pharmacological activities, particularly anti-inflammatory, anticarcinogenic, and anti-Alzheimer's activities. In this study, we report the first procedure and effect of processing for the high, efficient, and useful purification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric powder. Purification involves high-speed countercurrent chromatographic (HSCCC) separation of these curcuminoids using a simple two-phase solvent system composed of n-hexane/chloroform/methanol/water (5/10/7.5/2.5, v/v). The HSCCC-fractionated effluent peaks indicated that the peak resolutions were 1.7 between curcumin and demethoxycurcumin and 2.1 between demethoxycurcumin and bisdemethoxycurcumin for 25 mg of loaded turmeric powder. These purified substances were analyzed by liquid chromatography-tandem mass spectrometry with scan and daughter scan negative modes, and the wide absorbance from 200 to 500 nm was monitored by photodiode array detection. The separation yielded 1.1 mg of curcumin, 0.6 mg of demethoxycurcumin, and 0.9 mg of bisdemethoxycurcumin (>98% purity). Moreover, the antioxidant effect of curcuminoids was measured by a 1,1-diphenyl-2-picrylhydrazil assay. The order of antioxidant activity was purified curcumin > purified demethoxycurcumin > purified bisdemethoxycurcumin > turmeric powder. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin can be used for various evaluations of their pharmacological activities.  相似文献   

13.
Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3, 5-dione], the main constituent of the rhizomes of the plant Curcume longa L. (turmeric), is a powerful antioxidant in both enzymatic and nonenzymatic systems. The interactions of curcumin with egg and soy phosphatidylcholine were followed by fluorescence spectroscopy. Curcumin had very weak fluorescence in aqueous system, which was enhanced in apolar environments. Curcumin emitted at 490 nm after being excited at 451 nm in phosphatidylcholine micelles. The equilibrium constants for the interaction of curcumin with egg and soy phosphatidylcholine were (3.26 +/- 0.2) x 10(5) and (2.64 +/- 0.2) x 10(5) M(-1), respectively. From the Scatchard plot of the fluorometric data, it was inferred that one molecule of curcumin could bind six molecules of phosphatidylcholine. The equilibrium constant for the phosphatidylcholine-curcumin interaction decreased with temperature, indicating the amphiphilic nature of curcumin. The DeltaG, DeltaH, and DeltaS values obtained for the interaction of egg phosphatidylcholine-curcumin were -7.8 +/- 0.3 kcal/mol, -9.6 +/- 0.4 kcal/mol, and -6.8 +/- 0.2 cal/mol/K, respectively. The fluorescence anisotropy measurements of curcumin with phosphatidylcholine suggested that the anisotropy of the curcumin molecule did not change in phosphatidylcholine. The interaction of divalent metal ions with phosphatidylcholine-curcumin in comparison with phosphatidylcholine-1-anilino-8-naphathalenesulfonic acid complex suggested the strong binding of curcumin to metal ions.  相似文献   

14.
The spectroscopic properties of liposomal curcumin in pH 7.0 sodium phosphate buffer were studied at various curcumin concentrations and temperatures. At 25 °C, liposomal curcumin exhibited much higher values than free curcumin in absorption maximum, fluorescence maximum, and fluorescence anisotropy. When curcumin concentration was increased from 2 to 20 μM, the values of fluorescence anisotropy of liposomal curcumin decreased gradually, consistent with the reduction of phase transition temperature of liposome. This observation revealed that liposomal curcumin can disrupt the packing of phospholipid bilayer and give a loose and disordered structure. On the other hand, as the temperature was increased from 25 to 80 °C, the relative intensity of maximum absorption of liposomal curcumin showed a more pronounced decrease above the phase transition temperature than lower temperatures, suggesting a weaker curcumin protection from the liquid crystalline phase of phospholipid bilayer than the rigid gel phase. However, it was observed that the fluorescence anisotropy of liposomal curcumin had higher values as the temperature increased. This phenomenon was explained as the result of location change of curcumin toward the core of phospholipid bilayer, although the structure of the phospholipid bilayer tended to be looser at higher temperatures.  相似文献   

15.
Two oxidation systems were examined for the oxidation of three groups of phenolic antioxidants; five cinnamic acids, two benzoic acids, and two phenols characteristic of olive fruits. Periodate oxidation, which is reported to produce products similar to polyphenol oxidase, was contrasted with the reactivity of the Fenton system, an inorganic source of hydroxyl radicals. Reaction products were identified as various quinones, dimers, and aldehydes, but the nature of the products differed between the two oxidation systems. Structure-activity effects were also observed for the different phenols. All cinnamic acids in this study reacted with the Fenton reagent to produce benzaldehydes as the main products, with the exception of 5-caffeoylquinic acid. In contrast, periodate oxidation gave no reaction with some of the cinnamic acids. Quinone formation was observed for the two compounds, caffeic acid and 5-caffeoylquinic acid, possessing o-hydroxy groups. Caffeic acid was unusual in that dimer formation was the main initial product of reaction. Benzoic acids were readily oxidized by both systems, but no identifiable products were isolated. Oleuropein was oxidized by both oxidants used in this study, resulting in quinones in each system, whereas little or no oxidation of tyrosol was observed. This highlights the importance of conjugation between the alkene double bond and the hydroxy group. The results question the validity of many existing methods of testing antioxidant activity.  相似文献   

16.
The antioxidative mechanism of action of betalains is of significant interest because these pigments are recently emerging as highly bio-active natural compounds with potential benefits to human health. Betanidin, the basic betacyanin, comprises the 5,6-dihydroxyl moiety, which results in its high antioxidant activity. Oxidation of betanidin by voltammetric techniques and chro matographic identification of the oxidation products with spectrophotometric and mass spectrometric detection (LC-DAD-MS/MS) were performed. Two main oxidation peaks for betanidin are observable at pH 3-5. These peaks become merged at higher pH, suggesting a different mechanism of oxidation at higher and lower pH values. The low oxidation potential of betanidin confirms its very strong reduction properties. The presence of two prominent oxidized products, 2-decarboxy-2,3-dehydrobetanidin and 2,17-bidecarboxy-2,3-dehydrobetanidin, indicates their generation through two reaction routes with two different quinonoid intermediates: dopachrome derivative and quinone methide. Both lead to the decarboxylative dehydrogenation of betanidin. Subsequent oxidation and rearrangement of the conjugated chromophoric system results in formation of 14,15-dehydrogenated derivatives.  相似文献   

17.
The tyrosine-containing peptide Gly-Tyr-Gly (GYG) was oxidatively cross-linked by horseradish peroxidase in the presence of hydrogen peroxide. As products, covalently coupled di- to pentamers of the peptide were identified by LC-MS. Oxidative cross-linking of ferulic acid with horseradish peroxidase and hydrogen peroxide resulted in the formation of dehydrodimers. Kinetic studies of conversion rates of either the peptide or ferulic acid revealed conditions that allow formation of heteroadducts of GYG and ferulic acid. To a GYG-containing incubation mixture was added ferulic acid in small aliquots, therewith keeping the molar ratio of the substrates favorable for hetero-cross-linking. This resulted in a predominant product consisting of two ferulic acid molecules dehydrogenatively linked to a single peptide and, furthermore, two ferulic acids linked to peptide oligomers, ranging from dimers to pentamers. Also, mono- and dimers of the peptide were linked to one molecule of ferulic acid. A mechanism explaining the formation of all these products is proposed.  相似文献   

18.
Curcumin is a natural bioactive compound with many health-promoting benefits. Its low oral bioavailability limits its application in functional foods. In the present study, novel organogel-based nanoemulsions have been developed for oral delivery of curcumin and improvement of its bioavailability. Recently developed curcumin organogel was used as the oil phase in the curcumin nanoemulsion formulation. Tween 20 was selected as the emulsifier on the basis of maximum in vitro bioaccessibility of curcumin in the nanoemulsion. In vitro lipolysis profile revealed that the digestion of nanoemulsion was significantly faster and more complete than the organogel. Permeation experiments on Caco-2 cell monolayers suggested that digestion-diffusion was the major absorption mechanism for curcumin in the nanoemulsion. Furthermore, in vivo pharmacokinetics analysis on mice confirmed that the oral bioavailability of curcumin in the nanoemulsion was increased by 9-fold compared with unformulated curcumin. This novel formulation approach may also be used for oral delivery of other poorly soluble nutraceuticals with high loading capacity, which has significant impact in functional foods, dietary supplements and pharmaceutical industries.  相似文献   

19.
Commercially available curcumin, a bright orange-yellow color pigment of turmeric, consists of a mixture of three curcuminoids, namely, curcumin, demethoxycurcumin, and bisdemethoxycurcumin. These were isolated by column chromatography and identified by spectroscopic studies. The purity of the curcuminoids was analyzed by an improved HPLC method. HPLC separation was performed on a C(18) column using three solvents, methanol, 2% AcOH, and acetonitrile, with detection at 425 nm. Four different commercially available varieties of turmeric, namely, Salem, Erode, Balasore, and local market samples, were analyzed to detect the percentage of these three curcuminoids. The percentages of curcumin, demethoxycurcumin, and bisdemethoxycurcumin as estimated using their calibration curves were found to be 1.06 +/- 0.061 to 5.65 +/- 0.040, 0.83 +/- 0.047 to 3.36 +/- 0.040, and 0.42 +/- 0.036 to 2.16 +/- 0.06, respectively, in four different samples. The total percentages of curcuminoids are 2.34 +/- 0.171 to 9.18 +/- 0.232%.  相似文献   

20.
The antioxidant activity of capsaicin, as compared to BHT and melatonin, was determined by the direct measurement of lipid hydroperoxides formed upon linoleic acid autoxidation initiated by AIBN. The formation of four isomeric lipid hydroperoxides was detected after reverse-phase HPLC separation. Data from three detectors, UV absorption, glassy carbon electrode electrochemical detection, and postcolumn chemiluminescence using luminol, were compared. Capsaicin was more effective than melatonin in suppressing the formation of lipid hydroperoxides but not as effective as BHT. The formation of capsaicin and BHT dimers was observed during oxidation, and the dimers were characterized using APCI MS(n).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号