首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Earthworms can have positive effects upon crop growth in the tropics. If soils are to be managed sustainably, then more attention should be paid to the effects of cultivation and cropping practices upon earthworms. When forest vegetation is cleared, slashed, burned and land is tilled and cultivated, earthworm abundance, diversity and activity are reduced. Conversely, retaining trees in agroecosystems may maintain earthworm populations during the cropping phase.Here, we assessed the impact on earthworm species diversity and densities of crop cultivation in the understorey of timber plantations thinned to two tree densities and compared these with uncropped, undisturbed timber plantation controls. The plots were reassessed after two and a half years of fallow to see whether populations had recovered. The experiment was in central Cameroon.Seventeen earthworm species were recorded from Eudrilidae subfamilies Eudrilinae and Pareudrilinae, Ocnerodrilidae and Acanthodrilidae, most of which were endemics. This included two new species from two new genera from the sub-family Pareudrilinae, one new species from one new genus of Ocnerodrilidae, two new species of Dichogaster and one new species of Legonodrilus. Ten species were epigeic, six were endogeic and one was anecic.Generally, earthworm densities were lower in cropped plots than in the undisturbed plantation control. The most abundant species was a Legonodrilus sp. nov. with average densities of 49 individuals m−2 in the crop phase and 80 ind. m−2 in the fallow phase. By the fallow phase, densities in the low tree density (120 ind. m−2) were higher than in the high density (40 ind. m−2). The densities of the epigeic Acanthodrilidae were significantly reduced to 7 ind. m−2 in the cropped plots compared with 42 ind. m−2 in the control plots. The effects of cropping were thus species-specific and more work is required to identify which of these endemics are the ecosystem engineers in the system.  相似文献   

2.
The Sanjiang Plain, the second largest marsh in China, has experienced intensive cultivation over the past 50 years. Most of the marshlands were converted to soybean and rice fields. However, little is known about the effects of tillage on the soil fauna. 9 treatments, including original marshland soil, rice and soybean cultivation with and without fertilizer and herbicide applications, were imitated with 135 buckets under greenhouse conditions. The soil characteristics and Collembola in these treatments were investigated for one plant growth season.The soil environment was deteriorated (as indicated by the decreased soil oxidizable organic matter, total nitrogen and soil water content and increased soil compaction) by soybean and rice cultivation treatments. The densities and species richness of Collembola significantly decreased in the rice cultivation treatments but not in the soybean cultivation treatments. For the soybean cultivation treatments, density and species richness of the soil Collembola significantly increased in the fertilizer, herbicide and fertilizer + herbicide application treatments. It probably caused by increasing root and shoot biomass in these treatments.It is concluded that the tillage treatments in a wetland soil had both qualitative and quantitative adverse effects on the soil collembolans, and these effects might further alter the soil ecological processes.  相似文献   

3.
《Applied soil ecology》2007,35(2-3):219-229
Rising atmospheric CO2 concentrations are expected to have marked impacts on the carbon (C) turnover in agro-ecosystems through increased plant photosynthetic rates, leading to an enhanced biomass, and wider plant C/N ratios. Through increased carbon allocation below-ground, as well as through changed litter quality, CO2 enrichment will indirectly affect soil faunal communities. In the present study we investigated how elevated atmospheric CO2 and two different levels of N fertilization may affect abundance and diversity of collembolans, as important catalysts in decomposition processes, within an agro-ecosystem under winter wheat cultivation. The investigations were carried out in 2002 within a field experiment using the “Free Air CO2 Enrichment” technique (FACE) at the Federal Agricultural Research Centre (Braunschweig, Germany). Stable C-isotopic analysis of collembolans, soil, and crops gave insight into C translocation. During our investigations δ13C values of all components analysed were significantly more negative under FACE compared to ambient air conditions. Stable C-isotopic signatures of collembolans were similar to those of soil under ambient air, but in between those of soil and roots under elevated CO2 conditions. Our results revealed significant effects of both treatments (CO2 enrichment and N fertilization) on density and species diversity of collembolans. Overall, collembolans were stimulated under elevated CO2 conditions, showing an increased abundance of more than 50% (11 240 ind m−2) as well as a higher biodiversity (Shannon Weaver index = 2.5; evenness = 0.75) compared to ambient air conditions (7520 ind m−2; Shannon Weaver index = 2.2; evenness = 0.72). With regard to N supply, a decrease of about 20–30% under CO2 enrichment and 45–55% under ambient air conditions in collembolan abundance with no alteration in diversity was recorded under reduced N fertilization. The observed impacts were species-specific.  相似文献   

4.
Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, ?2.3 °C) and Anchorage Island (67°S, ?3.8 °C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island.The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 ± 2 × 103 ind. m?2) to Signy (3.3 ± 8.0 × 104 ind. m?2) and Anchorage Island (3.1 ± 0.82 × 105 ind. m?2). The abundance of Acari did not show a latitudinal trend.Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata.Overall, our data suggest that the consequences of an experimental temperature increase of 1–2 °C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.  相似文献   

5.
Field trials were conducted in 2008 and 2009 to evaluate the potential of using sunn hemp (SH), Crotalaria juncea, and marigold (MG), Tagetes patula, in a strip till cover cropping system (STCC) followed by clipping SH and MG to provide surface mulch (SM). The overall objective was to examine if the STCC + SM could improve the structure of the soil food web compared to bare ground (BG) system where weeds were maintained at minimum level prior to planting. Cucumber (Cucumis sativus) and winter gourd (Benincasa hispida) were planted as cash crops in 2008 and 2009, respectively. Both the SH and MG in STCC + SM system suppressed herbivorous nematodes through the end of 2008 and up to mid-term crop cycle in 2009. The abundance of bacterivorous and fungivorous nematodes were consistently greater in SH plots during both trials. The structure index was significantly greater in SH treatment plots in 2009, indicating a more structured soil food web than BG treatment. SH and MG plots resulted in higher (P < 0.05) abundances of collembolans and predatory mites, respectively. Although crop yields were similar among treatments in 2008, winter gourd yield was significantly higher in SH during 2009. Possible mechanisms of why using the SH STCC + SM system resulted in improved soil food web structure in a relatively short time frame is discussed.  相似文献   

6.
The frequency of drought is anticipated to increase in wetland ecosystems as global warming intensifies. However, information on microbial communities involved in greenhouse gas emissions and their responses to drought remains sparse. We compared the gene abundance of eubacterial 16S rRNA, nitrite reductase (nirS) and methyl coenzyme M reductase (mcrA), and the diversity and composition of eubacteria, methanogens and denitrifiers among bog, fen and riparian wetlands. The gene abundance, diversity and composition significantly differed among wetlands (p < 0.01) with the exception of the diversity of methanogens. The gene abundance was ranked in the order of the bog = fen > riparian wetland, whereas the diversity was in the riparian wetland  fen > bog. In addition, we conducted a short-term drought experiment and compared microbial communities between control (water-logged) and drought (?15 cm) treatments. Drought led to significant decline in the gene abundance in the bog (16S rRNA, nirS, mcrA) (p < 0.01) and fen (16S rRNA, nirS) (p < 0.05), but not in the riparian wetland. There were no differences in the diversity and composition of denitrifiers and methanogens at all sites following drought. Our results imply that denitrifiers and methanogens inhabiting bogs and fens would suffer from short-term droughts, but remain unchanged in riparian wetlands.  相似文献   

7.
Energy crops are of growing importance in agriculture worldwide. This field study aimed to investigate earthworm communities of different intensively cultivated soils during a 2-year period, with special emphasis on annual and perennial energy crops like rapeseed, maize, and Miscanthus. These were compared with cereals, grassland, and fallow sites. Distribution patterns of earthworm abundance, species, and ecological categories were analysed by constrained ordination procedures (redundancy analysis; CANOCO) using a set of environmental variables as predictors, such as CN value of harvest residues, SOC and Nt content, soil pH, soil texture, and land-use intensity. The latter was determined by principal component analysis using average soil coverage and intensity of tillage, weed control, and fertilisation as input variables. It was clearly found that land-use intensity was the dominant regressor for earthworm abundance and total number of species. The diversity of earthworm communities was especially enhanced and showed a more balanced species composition in extensively managed soils under grassland, fallow, and Miscanthus. For the total number of species, Miscanthus (5.1 ± 0.9) took a medium position and neither differed significantly from intensively managed rapeseed (4.0 ± 0.9), cereals (3.7 ± 1.1), and maize sites (3.0 ± 1.4), nor from grassland (6.8 ± 1.5) and fallow (6.4 ± 1.0) sites. Total earthworm abundance ranged between 355 (±132) and 62 (±49) individuals m−2 in fallow and maize sites, respectively.Interestingly, Miscanthus had quite positive effects on earthworm communities although the CN value of harvest residues was very high. It is recommended that Miscanthus may facilitate a diverse earthworm community even in intensive agricultural landscapes.  相似文献   

8.
It is well known that earthworm populations tend to increase under no-tillage (NT) practices, but abundances tend to be highly variable. In the present study, data from the literature together with those on earthworm populations sampled in six watersheds in SW Paraná State, Brazil, were used to build a classification of the biological soil quality of NT systems based on earthworm density and species richness. Earthworms were collected in 34 farms with NT aging from 3 to 27 yr, in February 2010, using an adaptation of the TSBF (Tropical Soil Biology and Fertility) Program method (hand sorting of five 20 cm × 20 cm holes to 20 cm depth). Six forest sites were also sampled in order to compare abundances and species richness with the NT systems. Species richness in the 34 NT sites and in the 6 forests ranged from 1 to 6 species. Most earthworms encountered were exotics belonging to the genus Dichogaster (D. saliens, D. gracilis, D. bolaui and D. affinis) and native Ocnerodrilidae (mainly Belladrilus sp.), all of small individual size. In a few sites, individuals of the Glossoscolecidae (P. corethrurus, Glossoscolex sp., Fimoscolex sp.) and Megascolecidae (Amynthas gracilis) families were also encountered, in low densities. Urobenus brasiliensis (Glossoscolecidae) were found only in the forest fragments. In the NT farms, earthworm abundance ranged from 5 to 605 ind m−2 and in the forest sites, from 10 to 285 ind m−2. The ranking of the NT soil biological quality, based on earthworm abundance and species richness was: poor, with <25 individuals per m−2 and 1 sp.; moderate, with ≥25–100 individuals per m−2 and 2–3 sp.; good, with >100–200 individuals per m−2 and 4–5 sp.; excellent, with >200 individuals per m−2 and >6 sp. About 60% of the 34 farms fell into the poor to moderate categories based on this classification, so further improvements to the NT farm's management system are needed to enhance earthworm populations. Nevertheless, further validation of this ranking system is necessary to allow for its wider-spread use.  相似文献   

9.
《Applied soil ecology》2007,35(1):57-67
Soils of many potential soybean fields in Africa are characterized by low levels of biological nitrogen fixation (BNF) activities and often cannot support high soybean yields without addition of inorganic N fertilizers or external application of soybean rhizobia. The most probable number (MPN) technique was used to determine the bradyrhizobial populations that nodulate TGx soybean genotypes (a cross between nonpromiscuous North American soybean genotypes and promiscuous Asian soybean genotypes), cowpea or North American soybean cv. Clark IV, in soils from 65 sites in 9 African countries. The symbiotic effectiveness of isolates from these soils was compared to that of Bradyrhizobium japonicum strain USDA110. The bradyrhizobial population sizes ranged from 0 to 104 cells g−1 soil. Bradyrhizobium sp. (TGx) populations were detected in 72% and B. japonicum (Clark) in 37% of the soil samples. Bradyrhizobium sp. (TGx) populations were generally low, and significantly less than that of the cowpea bradyrhizobial populations in 57% of the samples. Population sizes of less than 10 cells g−1 soil were common as these were detected in at least 43% of the soil samples. B. japonicum (Clark) occurred in higher population densities in research sites compared to farmers’ fields. Bradyrhizobium sp. (TGx) populations were highly correlated with biotic but not abiotic factors. The frequent incidence of low Bradyrhizobium sp. (TGx) populations is unlikely to support optimum BNF enough for high soybean yields while the presence of B. japonicum (Clark) in research fields has the potential to compromise the selection pressure anticipated from the indigenous Bradyrhizobium spp. (Vigna) populations. Bradyrhizobium isolates could be placed in four symbiotic phenotype groups based on their effectiveness on a TGx soybean genotype and the North American cultivar Clark IV. Symbiotic phenotype group II isolates were as effective as B. japonicum strain USDA110 on both soybean genotypes while isolates of group IV were effective on the TGx soybean genotype but not on the Clark IV. The group IV isolates represent a unique subgroup of indigenous bradyrhizobia that can sustain high soybean yields when available in sufficient population densities.  相似文献   

10.
《Applied soil ecology》2011,47(3):355-371
Secondary succession of nematodes was studied in 1–48-year-old abandoned fields on cambisols in South Bohemia, Czech Republic, and compared with cultivated field and sub-climax oak forests. Bacterivores were the predominant group in the cultivated field whereas in forests root-fungal feeders (mainly Filenchus) were almost as abundant as bacterivores. The total abundance of nematodes in the cultivated field averaged 868 × 103 ind m−2. During the first three years of succession the abundance practically did not change (775 × 103 ind m−2), the fauna was still similar to that in cultivated field but the biomass increased mainly due to Aporcelaimellus. Then the abundance increased up to 3731 × 103 ind m−2 in 7–8-year-old abandoned fields, plant parasites (Helicotylenchus) dominated and the fungal-based decomposition channel was activated. Later the abundance stabilised at between 1086 and 1478 × 103 ind m−2 in 13–25-year-old successional meadow stages with high population densities of omnivores and predators. The total abundance of nematodes was low in the 12–13-year-old willow shrub stage (594 × 103 ind m−2), increased in the 35–48-year-old birch shrub stage (1760 × 103 ind m−2) and the nematode fauna developed towards a forest community. The diversity and maturity of nematode communities generally increased with the age of abandoned fields but the highest values were in meadow stages (81–113 species, 57–68 genera, MI 2.73–3.30). The development of meadow arrested succession towards forests or diverted succession towards a waterlogged ecosystem. The succession of nematodes was influenced by the method of field abandonment (bare soil vs. legume cover, mowing) that affected the formation of either a shrub or meadow stage, and by the soil water status. The composition of the nematode fauna indicated that the soil food web could recover faster from agricultural disturbance under successive meadows than under shrubs.  相似文献   

11.
Current theory expects that fungi, on the one hand, are spatially ubiquitous but, on the other, are more susceptible than bacteria to disturbance such as land use change due to dispersal limitations. This study examined the relative importance of location and land use effects in determining soil fungal community composition in south-eastern Australia. We use terminal restriction fragment length polymorphism (T-RFLP; primer pair ITS1-F–ITS4) and multivariate statistical methods (NMDS ordinations, ANOSIM tests) to compare relative similarities of soil fungal communities from nine sites encompassing three locations (ca 50–200 km apart) and four land uses (native eucalypt forest, Pinus radiata plantation, Eucalyptus globulus plantation, and unimproved pasture). Location effects were generally weak (e.g. ANOSIM test statistic R  0.49) and were, in part, attributed to minor differences in soil texture. By contrast, we found clear and consistent evidence of land use effects on soil fungal community composition (R  0.95). That is, soils from sites of the same land use grouped together in NMDS ordinations of fungal composition despite geographic separations of up to ca 175 km (native eucalypt forests) and 215 km (P. radiata plantations). In addition, different land uses from the same location were clearly separate in NMDS ordinations, despite, in one case, being just 180 m apart and having similar land use histories (i.e. P. radiata versus E. globulus plantation both established on pasture in the previous decade). Given negligible management of all sites beyond the early establishment phase, we attribute much of the land use effects to changes in dominant plant species based on consistent evidence elsewhere of strong specificity in pine and eucalypt mycorrhizal associations. In addition, weak to moderate correlations between soil fungal community composition and soil chemical variables (e.g. Spearman rank correlation coefficients for individual variables of 0.08–0.32), indicated a minor contributing role of vegetation-mediated changes in litter and soil chemistry. Our data provide evidence of considerable plasticity in soil fungal community composition over time spans as short as 6–11 years. This suggests that – at least within geographic zones characterised by more-or-less contiguous forest cover – soil fungal community composition depends most on availability of suitable habitat because dispersal propagules are readily available for colonisation after land use change.  相似文献   

12.
Generalist predators play a key role in agriculturally and environmentally sustainable systems of pest control. A detailed knowledge on their ecology, however, is needed to improve management practices to maximize their service of pest control. The present study examines the habitat use and activity patterns of larval and adult Cantharis beetles that are abundant predators in arable land. Laboratory experiments revealed that sixth instar larvae of Cantharis fusca and Cantharis livida significantly preferred high relative humidity levels of 85–90% to lower ones. This can explain their preference for meadows over fields due to the more favorable microclimatic conditions in the former habitats. Surface activity of sixth instar Cantharis larvae during autumn, winter and early spring occurred at soil temperatures above 0 °C. However, no correlation between surface activity and soil temperature, air temperature or relative humidity was found above 0 °C. Catches of sixth instar Cantharis larvae within fenced pitfall traps were higher in a meadow (Mean ± S.D.; 13.8 ± 7.63 individuals m−2) than in a field (4.60 ± 2.89 individuals m−2). Mark-recapture density estimations for sixth instar larvae indicated mean densities of 25.9 ± 5.63 (field) and 42.8 ± 16.0 individuals m−2 (meadow). The same pattern was found for adult emergence rates in the field (0.17 ± 0.39 adults m−2) and meadow (1.83 ± 1.17 adults m−2) as well as for adult densities in the vegetation (field 4.89 ± 3.62 adults 60 m−2; meadow 12.5 ± 11.2 adults 60 m−2). It is concluded that especially in winter elements that provide plant cover should be incorporated in arable fields to enhance larval cantharid population densities and to attract them from their prime grassland habitats into arable sites.  相似文献   

13.
A real-time PCR assay was developed to quantify in soil the fungus Hirsutella minnesotensis, an important parasite of secondary-stage juvenile (J2) of the soybean cyst nematode. A primer pair 5′-GGGAGGCCCGGTGGA-3′ and 5′-TGATCCGAGGTCAACTTCTGAA-3′ and a TaqMan probe 5′-CGTCCGCCGTAAAACGCCCAAC-3′ were designed based on the sequence of the ITS region of the rRNA gene. The primers were highly species-specific. The PCR reaction system was very sensitive and able to detect as few as 4 conidia g?1 soil. Regression analysis showed similar slopes and efficiency on DNA from pure culture (y = ?3.587x + 41.017, R2 = 0.9971, E = 0.9055) and from Log conidia g?1 soil (y = ?3.855x + 37.669, R2 = 0.9139, E = 0.8172), indicating that the real-time PCR protocol can reliably quantify H. minnesotensis in the soil. The real-time PCR assay was applied to 20 soil samples from soybean fields, and compared with a parasitism assay. The real-time PCR assay detected H. minnesotensis in six of the soils, whereas the parasitism assay detected H. minnesotensis in the same six soils and three additional soils. The real-time PCR assay was weakly correlated (R2 = 0.49) with the percentage of parasitized J2 in the six soils, indicating that different types of soil may interfere the efficiency of the real-time PCR assay, possibly due to the effect of soil types on efficacy of DNA extraction. The parasitism assay appeared to be more sensitive than real-time PCR in detecting presence of H. minnesotensis, but real-time PCR was much faster and less costly and provided a direct assessment of fungal biomass. Using the two assays in combination can obtain more complete information about the fungus in soil than either assay alone. Hirsutella parasitism was widespread and detected in 13 of the 20 field soils, indicating that these fungi may contribute to suppressiveness of soybean cyst nematode in nature and likely have high biological control potential for the nematode.  相似文献   

14.
We investigated the abundance and genetic heterogeneity of bacterial nitrite reductase genes (nir) and soil structural properties in created and natural freshwater wetlands in the Virginia piedmont. Soil attributes included soil organic matter (SOM), total organic carbon (TOC), total nitrogen (TN), pH, gravimetric soil moisture (GSM), and bulk density (Db). A subset of soil attributes were analyzed across the sites, using euclidean cluster analysis, resulting in three soil condition (SC) groups of increasing wetland soil development (i.e., SC1 < SC2 < SC3; less to more developed or matured) as measured by accumulation of TOC, TN, the increase of GSM, and the decrease of Db. There were no difference found in the bacterial community diversity between the groups (p = 0.4). NirK gene copies detected ranged between 3.6 × 104 and 3.4 × 107 copies g−1 soil and were significantly higher in the most developed soil group, SC3, than in the least developed soil group, SC1. However, the gene copies were lowest in SC2 that had a significantly higher soil pH (~6.6) than the other two SC groups (~5.3). The same pattern was found in denitrifying enzyme activity (DEA) on a companion study where DEA was found negatively correlated with soil pH. Gene fragments were amplified and products were screened by terminal restriction fragment length polymorphism (T-RFLP) analysis. Among 146 different T-RFs identified, fourteen were dominant and together made up more than 65% of all detected fragments. While SC groups did not relate to whole nirK communities, most soil properties that identified SC groups did significantly correlate to dominant members of the community.  相似文献   

15.
The impact of long-term application of fertilizers in soybean fields on soil nematode community structure was studied. The long-term application model of fertilizers lasted 13 years in a soybean–wheat–corn rotation, and included three treatments: no fertilizer (NF), chemical fertilizer (urea and ammonium phosphate, CF), and pig manure combined with chemical fertilizer (MCF). The soil nematode community structures and ecological indices were determined from soil samples taken at five soybean growth stages from May to October in the soybean phase of the rotation. Fertilizer application had significant effects on abundance of plant parasites, bacterivores and fungivores (P < 0.05), but had no significant effects on total nematodes and omnivores-predators. Abundance of plant parasites was higher in NF than in MCF and CF, and abundance of bacterivores was highest in MCF. Fertilizer application significantly affected Plant-parasitic Nematode Maturity Index (PPI) and Nematode Channel Ratio (NCR) ecological indices (P < 0.05). Shannon–Weaver Index (H′) and Species Richness (SR) indices were higher in MCF than in either NF or CF. The abundances of total nematode and plant parasites showed increasing trend with soybean growth in all three treatments. This is probably due to soil environment being more suitable for soil nematode survival with more food available for plant parasites as the soybean grows. Soybean growth stage significantly affected the H′, Free Living Nematode Maturity Index (MI) and PPI. Bacterivores significantly correlated with soil nutrient status suggesting that they could be used as a potential indicator of soil fertility.  相似文献   

16.
《Applied soil ecology》2006,32(3):186-198
Comparisons of organic and inorganic fertilizer effects on nematode communities depend on the specific organic fertilizer used. Field experiments were conducted during 2001 and 2002 in a squash (Cucurbita pepo) agroecosystem to determine if applying sunn hemp (Crotalaria juncea) hay as an organic fertilizer improved nematode communities involved in soil nutrient cycling compared to an equivalent N rate (100 kg N/ha) of ammonium nitrate. Fertilizer source had minimal effect on nematode communities in 2001 when treatments were applied after a winter cover crop of oats (Avena sativa), but differences (P  0.05) between the fertilizer sources occurred in 2002 when no winter cover cropping preceded squash. Fertilization with sunn hemp hay increased abundance of the bacterivore guilds Ba1 and Ba2, and increased fungivores at the end of the experiment. Compared to ammonium nitrate, fertilization with sunn hemp hay resulted in a community with lower maturity index, higher enrichment index, and lower channel index, consistent with a disturbed and nutrient-enriched soil food web undergoing bacterial decomposition. Sunn hemp hay occasionally stimulated omnivorous nematodes, but suppressed plant-parasitic nematodes relative to ammonium nitrate fertilizer. Increasing the sunn hemp hay rate to 200 kg N/ha increased the abundance of bacterivores, fungivores, and predatory nematodes, and total nematode abundance compared to hay at 100 kg N/ha. Fertilization with ammonium nitrate increased the percentage of herbivores, but reduced percentage and abundance of omnivores. In conclusion, sunn hemp fertilizer maintained greater numbers of nematodes involved in nutrient cycling as compared to ammonium nitrate.  相似文献   

17.
《Applied soil ecology》2010,46(3):187-192
The influences of winter climate on terrestrial ecosystem processes have been the subject of growing attention, which is necessary to make the predictions about ecological responses to global warming in the future. However, little information can be found about the impacts of a large range of soil temperature fluctuation (e.g. −10 to 5 °C) over winter on the soil nitrogen (N) dynamics in the field. In the present study, we employed an intact soil core in situ incubation technique, and measured soil N mineralization and nitrification rates under three plant communities, i.e. a grassland, a shrub and a plantation, during the non-growing season (October 2004–April 2005) in Inner Mongolia, China. Our results demonstrate the significant effects of different plant communities on soil net N mineralization and the great temporal variations of soil N dynamics during the incubation period. The mean soil net N mineralization rates were 0.93, 0.77 and −1.28 mg N m−2 d−1, respectively, in the grassland, shrub and plantation. The mean soil NH4+-N in the three plant communities declined by 40%, but the mean soil NO3-N increased by 190% by the end of the incubation compared with their initial concentrations at the beginning of incubation. The differences in plant communities significantly affected their soil N mineralization rates, accumulations and turnover rates, which followed the order: grassland > shrub > plantation. During the winter time, the studied soils experienced the three phases consisting of mild freezing (−7 to −2 °C soil), deep freezing (approximately −10 °C soil) and freeze–thaw (−2 to 5 °C soil). The results suggest that temporal variations of soil N mineralization are positively affected by the soil temperature and the soil nitrification is dominant in the N transformation process during the non-growing season. Our study indicates that the soil N mineralization over winter can make a substantial contribution to the mineral N pool that plants are able to utilize in the upcoming spring, but may also pose a great risk of mineral N leaching loss if great rainfalls occur during spring and early summer.  相似文献   

18.
The response of the soil food web structure to soil quality changes during long-term anthropogenic disturbance due to farming practices has not been well studied. We evaluated the effects of three tillage systems: moldboard plow/rotary harrow (MP), rotary cultivator (RC), and no-tillage (NT), three winter cover-crop types (fallow, FL; rye, RY; and hairy vetch, HV), and two nitrogen fertilization rates (0 and 100 kg N ha−1 for upland rice, and 0 and 20 kg N ha−1 for soybean production) on changes in nematode community structure. Sixty-nine taxa were counted, total nematode abundance (ALL), bacterial feeders (BAC), predators (PRD), omnivores (OMN), and obligatory root feeders (ORF) were more abundant in NT than in MP and RC, but fungal feeders and facultative root feeders (FFR) were more abundant in RC than in NT and MP. Cover crop also influenced nematode community structure; rye and hairy vetch were always higher in ALL, BAC, FFR, ORF, and OMN than fallow. Seasonal changes in nematode community structure were also significant; in particular, as soil carbon increased, nematode abundance also increased. The relationship between nematode indices and soil carbon was significant only in NT, but not in MP and RC. In NT, with increasing soil carbon, enrichment index and structure index (SI) were positive and significant and channel index was negative. Bulk density was significantly negatively correlated with FFR and ORF. Seasonal difference in nematode community between summer and autumn was larger in an upland rice rotation than in a soybean rotation. Over the nine-year experiment, SI increased not only in NT but also in MP and RC, suggesting that repeated similar tillage inversions in agroecosystems may develop nematode community structures adapted to specific soil environmental conditions. Because NT showed the highest values of both SI and soil carbon, the increase of soil carbon in NT is expected to have a great impact on developing a more diverse nematode community structure.  相似文献   

19.
This study focuses on the characterization of four bacterial isolates from heavy metal-polluted rhizosphere in order to examine their plant growth promoting (PGP) activity. The PGP activity on the canola (Brassica napus) of the strains which showed cadmium resistance and multiple PGP traits was assessed in the presence and in the absence of Cd2+. The strains, Pseudomonas tolaasii ACC23, Pseudomonas fluorescens ACC9, Alcaligenes sp. ZN4 and Mycobacterium sp. ACC14 showed 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. They also synthesized ACCD enzyme in vitro when 0.4 mM Cd2+ was added to the growth medium. The presence of the metal, however, reduced the ACCD activity in Alcaligenes sp. ZN4 and Mycobacterium sp. ACC14, while it did not affect the ACCD activity of P. tolaasii ACC23 and P. fluorescens ACC9. ACC9 and ACC23 produced indole acetic acid (IAA) and siderophores, while ACC14 produced only IAA. IAA and siderophores were produced more actively under Cd-stress.Root elongation assays conducted on B. napus under gnotobiotic conditions demonstrated increases (from 34% up to 97%) in root elongation of inoculated canola seedlings compared to the control plants. Subsequently, the effect of inoculation with these strains on growth and uptake of Cd2+ in roots and shoots of canola was studied in pot experiments using Cd-free and Cd-treated (15 μg Cd2+ g?1 dw) soil. Inoculation with P. tolaasii ACC23, P. fluorescens ACC9 and Mycobacterium sp. ACC14 promoted the growth of plants at concentrations of 0 and 15 μg Cd2+ g?1 soil. The maximum growth was observed in the plants inoculated with P. tolaasii ACC23. The strains did not influence the specific accumulation of cadmium in the root and shoot systems, but all increased the plant biomass and consequently the total cadmium accumulation.The present observations showed that the bacterial strains used in this study protect the plants against the inhibitory effects of cadmium, probably due to the production of IAA, siderophores and ACCD activity.  相似文献   

20.
Metal(loid) accumulation and arbuscular mycorrhizal (AM) status of the dominant plant species, Cynodon dactylon, growing at four multi-metal(loid)s-contaminated sites and an uncontaminated site of China were investigated. Up to 94.7 As mg kg?1, 417 Pb mg kg?1, 498 Zn mg kg?1, 5.8 Cd mg kg?1 and 27.7 Cu mg kg?1 in shoots of C. dactylon were recorded. The plant was colonized consistently by AM fungi (33.0–65.5%) at both uncontaminated site and metal-contaminated sites. Based on morphological characteristics, fourteen species of AM fungi were identified in the rhizosphere of C. dactylon, with one belonging to the genus of Acaulospora and the other thirteen belonging to the genus of Glomus. Glomus etunicatum was the most common species associated with C. dactylon growing at metal-contaminated sites. Spore abundance in the rhizosphere of C. dactylon growing at the metal-contaminated soils (22–82 spores per 25 g soil) was significantly lower than that of the uncontaminated soils (371 spores per 25 g soil). However, AM fungal species diversity in the metal-contaminated soils was significantly higher than that in the uncontaminated soils. This is the first report of AM status in the rhizosphere of C. dactylon, the dominant plant survival in metal-contaminated soils. The investigation also suggests that phytorestoration of metal-contaminated sites might be facilitated using the appropriate plant with the aid of tolerant AM fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号