首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对当前农业植保施药落后、农药使用量大、有效利用率低、现代施药装备缺乏等关键问题,设计出一种可变雾滴直径农业喷雾机喷雾装置(发明专利申请号:200810108124.6),并设计出3WD-12(24)型采用可变雾滴直径农业喷雾机喷雾装置的农业喷雾机械。试验结果表明,雾滴直径在13~90μm之间变化,喷雾的药液流量可在440~660 mL.m in-1之间调节,比常规的喷雾机节约了1/3以上用药量;实现植保机具一机多用,既能喷雾又能喷烟,且可实现对搭架式葡萄和果园等进行立体喷雾或喷烟,配套可变地隙拖拉机植保作业;根据喷雾作业对象及生长状态的不同而改变喷雾方式,从而可以达到高效施药、保护环境的目的。  相似文献   

2.
变量喷施技术及其雾化特性评价方法综述   总被引:7,自引:2,他引:5  
综述了变量喷施技术的研究背景和研究现状,表明,必须继续深入研究变量喷施技术及其雾化特性,以提高农药利用效力、减小环境污染。概括并提出了一套适用性较广的研究变量喷雾雾化特性的研究思路和评价方法,即在建立变量喷雾控制装置后,先设计确定标准工况和随流量变化的各测量工况,在各工况下测量喷雾流量、雾量分布、喷雾角、雾滴粒径和雾滴速度,用统计方法拟合各雾化特性参数随流量的变化规律,从流量调节范围、雾量分布、喷雾角、雾滴粒径、雾滴速度、喷雾比能和喷雾动能中值直径等方面综合评价此种变量喷雾装置的喷雾特征和适用场合。  相似文献   

3.
建立了双闭环直流调速系统,通过调节系统的喷头电机的转速,对雾滴直径大小进行调节;并采用了模糊控制对其中的转速环进行控制,实现了施药过程中自动调整喷雾参数.用Matlab进行了仿真,经过室内台架实验证实,整个系统满足变量施药的要求.  相似文献   

4.
建立了双闭环直流调速系统,通过调节系统的喷头电机的转速,对雾滴直径大小进行调节;并采用了模糊控制对其中的转速环进行控制,实现了施药过程中自动调整喷雾参数。用Matlab进行了仿真,经过室内台架实验证实,整个系统满足变量施药的要求。  相似文献   

5.
摘要:采用纸卡法在室内对TEPEC-B1型高压静电喷雾器进行了雾滴大小,喷雾距离,喷雾密度和喷雾量的测试,同时与常规喷雾器进行了比较。测试结果表明:TEPEC-B1型高压静电喷雾器荷电喷雾的雾滴密度显著高于非荷电喷雾,在靶标背面的雾滴密度明显增大。荷电喷雾的雾滴粒径只有常规喷雾雾滴粒径的1/3~1/4,且粒径谱较常规喷雾器窄,雾滴均匀度较高。TEPEC-B1型高压静电喷雾器通过不同档位调节可以控制喷雾量和喷雾距离,适于保护地不同类型蔬菜的病虫害防治。  相似文献   

6.
《农家顾问》2001,(7):37
3WD-4电动喷雾机 该机喷雾量可调,雾化效果好,射程远,操作简便灵活,工作可靠,效率高.适用于城郊蔬菜大棚及苗圃的病虫害防治,也适用于城乡卫生防疫及养殖场舍的消毒防疫.喷雾量每分钟0~220毫升,雾滴大小20~70微米,射程5米,用220伏650瓦电机,药箱容量4升,外形尺寸27厘米×23厘米×37厘米,净重3.55千克.  相似文献   

7.
为提高多旋翼植保无人机的植保效果,设计一种用于多旋翼植保无人机的静电喷雾系统。该静电喷雾系统包括静电喷头、喷雾流量控制模块。基于感应式荷电原理设计了感应式静电离心喷头,基于PID算法设计喷雾流量控制模块,基于网状目标法设计荷质比测量装置。结果表明,该多旋翼植保无人机静电喷雾系统中静电喷头可使雾滴荷电,喷雾流量控制模块能够稳定地控制喷雾流量,荷质比测量装置能够稳定测量雾滴荷质比,随着荷电电压增加,雾滴荷质比逐渐增加,当荷电电压为8 kV时,荷质比达到最大值,为0.59 mC/kg。  相似文献   

8.
针对植保无人机作业过程中存在的药液漂失量大、沉积不均匀、冠层穿透力不足等问题,通过静电喷雾技术和融合飞防助剂等方式,提高雾滴的雾化及沉积质量,验证植保作业的雾滴沉积效果.通过设计一种防漂性能良好的锥形风场式防漂移装置,通过仿真及试验方法优化装置内流道角度,进而减少风速沿程损失,通过大疆T20多旋翼无人机搭载静电喷雾系统...  相似文献   

9.
为探索无人机喷雾参数对雾滴在香梨花期冠层沉积分布的影响,以密植库尔勒香梨为试材,选用四旋翼电动植保无人机为喷施器械,采用三因素(飞行高度、亩喷液量、飞行速度)三水平正交试验方法,以授粉液雾滴沉积密度、均匀性及雾滴覆盖率为评价指标,进行了无人机喷雾参数对雾滴在香梨花期冠层沉积分布的影响试验。结果表明,雾滴沉积密度和均匀性以处理6的飞行参数较优(飞行高度1.5 m、亩喷液量4.0 L/亩、飞行速度3.0 m/s),从雾滴沉积密度极差分析结果可以看出,影响雾滴沉积密度的主要因素依次是亩喷液量、飞行高度、飞行速度。  相似文献   

10.
试验证明以零号柴油作为白僵菌油剂应用的稀释剂,需随配随用,放置72h后孢子萌发率为0;用金马牌油雾机喷雾后,油剂中孢子全部失活;而以3WCD-5型电动超低容量喷雾机配套使用时,孢子活力不受影响,喷出雾滴平均直径在30μm左右,若雾滴密度以12个/cm^2为有效密度,在风速为3m/s下,有效喷幅可达7m。  相似文献   

11.
目的 研究农药不同黏度对喷头雾化特性的影响,为农业喷雾施药技术提供理论参考。方法 配制不同质量分数的甘油溶液替代农药试剂进行研究,将喷头喷雾区域网格化,使用粒子动态分析仪测量喷雾区域不同位置处的雾滴参数,利用SPSS分析轴心方向和径向雾滴粒径的分布规律。结果 在喷头喷雾区域轴心方向上,雾滴算术平均直径、雾滴体积平均直径及雾滴索尔特平均直径呈现出先变小然后逐渐变大的规律,外界空气阻力的扰动作用使喷射出的液体表面形成一定模式的表面波,随着距离增大波幅变大,波峰被撕裂下来,破碎成小雾滴,而后在重力的作用下雾滴间发生碰撞聚合,雾滴粒径逐渐变大;喷头喷雾区域径向上,雾滴近似于对称分布,雾滴粒径呈现出中间小两边大的特点,随着径向距离增大雾滴粒径逐渐增大;通过SPSS分析得出,轴心方向上,轴心距离、液体黏度与雾滴粒径的相关系数分别为0.531、0.795;在喷雾区域径向上,径向距离、液体黏度与雾滴粒径的相关系数分别为0.932、0.328。结论 在一定程度上,黏度较大的液体具有一定的防止漂移效果;液体黏度改变对轴心方向上雾滴粒径影响效果显著;在喷头径向上,距离的改变对雾滴粒径大小影响显著。  相似文献   

12.
对白僵菌悬浮剂超低容量喷雾的药液流速、雾滴大小及密度进行测定。结果显示:离喷口4~8m处,雾滴分散较均匀,扩散比0.70~0.82,雾滴密度44~80个/cm2;1~3级药量开关均满足喷雾时行走的速度。  相似文献   

13.
为了研究静电喷雾雾滴飘移规律,减少喷杆静电喷雾雾滴飘移潜力,以水敏纸雾滴飘移测试框架为采集方法,进行雾滴飘移田间试验,定量分析了2种烟株高度(0.2、0.4 m)与3种喷雾速度(0.4、0.6、0.8 m/s)条件下,3种侧风区间(0.1~0.4、0.5~0.8、0.9~1.2 m/s)对静电喷雾雾滴飘移潜力与烟用喷雾罩减少雾滴飘移效果的影响.结果表明:侧风风速1.0 m/s、喷雾速度0.4 m/s条件下,烟株高度为0.2 m时与0.4 m时相比,雾滴飘移潜力增幅最大为97%;烟株高度0.2 m时,侧风风速与雾滴飘移潜力极显著相关(P<0.01);侧风风速与雾滴飘移潜力的二次函数拟合决定系数大于0.93;风速0.6~1.0 m/s条件下,烟用喷雾罩减飘效果显著,雾滴飘移潜力减少率为72%~88%;喷雾速度0.4 m/s时,喷雾罩减飘效果最好.  相似文献   

14.
基于生物最佳粒径理论,以离心雾化技术为核心,在撞击式低速离心雾化器、夹管式流量阀等关键基础部件创新及优化设计的基础上,研发一种通过雾化器转速变化即可精准控制雾滴粒径,满足设施农作物病虫害防治要求的3WKL-100型远程可控雾滴喷雾机。结果显示,离心雾化器的转速越高,产生的雾滴粒径越小,转速为2 400 r/min时,雾滴粒径为101μm,接近于弥雾机的雾滴细度;转速为2 700 r/min时,雾滴粒径为65μm,远低于超低容量喷雾雾滴粒径≤100μm的要求;转速为3 000 r/min时,雾滴粒径减至41μm;随着离心雾化器转速的提高,雾滴谱趋窄,当转速在2 400~3 000 r/min范围内时,雾化质量较为理想。田间试验结果表明,该机具喷雾量低,平均施药量为127.5 L/hm2,但可提高药液在靶标作物上的覆盖率和分布均匀性,从而可在提高病虫害防治效果的同时,减少农药使用量。  相似文献   

15.
雾滴均匀性是衡量喷雾效果的重要指标之一,探索管道恒压喷雾中压力和孔径对空心圆锥雾喷头雾滴均匀性的影响具有重要意义。通过喷雾性能综合试验平台,利用激光粒度仪,测量管道恒压喷雾中3种孔径空心圆锥雾喷头在8种压力下的5种雾滴均匀性参数数据,获得雾滴累积分布,分析雾滴的分布和均匀性。结果表明,在本试验压力范围(0.70~1.40 MPa)下,雾滴粒径较一致,雾滴较均匀;当压力大于0.80 MPa时雾滴均匀性很好;压力越大、孔径越小,雾滴越均匀;D20 μm的雾滴(均小于0.538%)和D≥100 μm的雾滴(均小于0.325%)可忽略不计,主要为D60 μm的雾滴(90.132%~99.234%),扩散比为0.893~0.916;5种均匀性参数均随压力呈二次多项式变化规律,R2均在0.984以上;5种均匀性参数与孔径和压力均有良好的二元线性关系(R2分别为0.952、0.952、0.937、0.850和0.831)。结果验证了管道恒压喷雾装置有助于提高雾滴均匀性,对管道恒压喷雾中喷头的选型、喷雾压力的设置及喷雾效果的优化有重要参考意义。  相似文献   

16.
小型植保无人机喷雾参数对橘树冠层雾滴沉积分布的影响   总被引:6,自引:0,他引:6  
【目的】探索小型植保无人机对果树喷施作业的雾滴沉积分布效果及应用前景,研究小型植保无人机喷雾参数对橘树冠层雾滴沉积分布的影响。【方法】采用三因素(飞行高度、飞行速度、喷施流量)的正交试验,应用小型六旋翼植保无人机进行喷雾试验。【结果】根据雾滴沉积密度和雾滴沉积均匀性结果,较佳的作业参数是喷头流量1.0 L·min~(-1)、作业高度2.5 m、作业速度4 m·s~(-1),影响雾滴沉积密度的主次顺序依次为作业速度、作业高度、喷头流量;根据雾滴沉积穿透性结果,作业高度均为2.0 m的试验号2(作业速度4 m·s~(-1),喷头流量0.6 L·min~(-1))和试验号8(作业速度1 m·s~(-1),喷头流量1.0 L·min~(-1))中雾滴沉积穿透性分别为22.21%和22.41%,其雾滴覆盖密度大且穿透性较好;影响雾滴沉积穿透性的因素主次顺序为作业高度、作业速度、喷头流量。【结论】针对植保无人机旋翼风场的影响和橘树独特的树形结构,对植保无人机的作业参数进行了优选,以保证航空喷施作业雾滴在橘树冠层的有效沉积分布。本试验研究可为小型无人机对果树的合理喷施、提高喷施效率提供参考和指导。  相似文献   

17.
【目的】针对传统植保无人机在定量喷施作业时由于飞行速度的变化造成施药不均匀以及传统控制算法无法满足无人机变量喷雾系统所需的实时性和稳定性等问题,设计一种基于神经网络PID的自适应无人机变量喷雾系统。【方法】采用风压变送器测出无人机的飞行速度,根据速度采用脉宽调制(PWM)方法进行自适应变量喷雾,同步用流量传感器测出实际喷雾流量,融合BP神经网络PID控制算法调节喷雾流量。由MATLAB构建BP神经网络PID控制算法,并与PID、模糊PID和神经元PID对比及分析;田间试验过程中,对比分析无人机定量喷雾与随飞行速度改变的变量喷雾效果,采用水敏纸获取雾滴沉积量分布,分别从整体区域、飞行方向和喷杆方向评价沉积量分布的均匀性。【结果】算法仿真对比试验结果表明,与PID、模糊PID和神经元PID相比,BP神经网络PID阶跃响应上升时间分别少28.57%、84.73%和31.03%,正弦跟踪平均误差分别小63.01%、87.03%和0.58%,方波跟踪平均误差分别小74.00%、79.53%和6.80%,鲁棒性强,无静差,超调量为1.20%;喷雾对比试验结果表明,本系统能够根据飞行速度自适应调节喷雾流量,实际流量与目标流量的平均偏差为8.43%,水敏纸扫描结果表明总体区域雾滴沉积量的变异系数对比定量喷雾平均降低26.25%,喷杆方向平均降低18.79%。【结论】该研究结果可为农业航空变量喷雾技术的应用提供理论基础。  相似文献   

18.
首先从静电喷雾的静电产生、雾滴雾化以及雾滴吸附等基础理论出发,论述了雾滴雾化性能评价指标和方法,并概括性对比分析了3种不同静电充电方式及各自的优缺点,得出在相同情况下感应式充电效果更佳的一般性结论;其次,通过对国内外大型喷雾器械的应用与现状的论述,为我国静电喷雾机械设备的研究和发展明确了方向;最后论述了静电电压、喷雾液压、喷雾速度和环境风速这4个关键因素对静电喷雾雾滴沉积分布的影响,并提出静电喷雾技术在烟草农药施药上的应用研究展望与建议。  相似文献   

19.
运用液体肥料施用装置试验台对喷头流量影响因素作了三因素二次回归正交旋转试验,通过对试验数据的处理和分析,得出了液体肥料的浓度、电机转速及喷头口直径大小对喷头流量的影响规律及主次关系,即三者对喷头流量的影响由大到小为电机转速、喷头口直径、液体肥料的浓度。  相似文献   

20.
为评价所设计的双风送静电果园喷雾机室外性能,测试喷雾机在Y形梨树园内的雾量分布。以纸卡为样本、丽春红溶液为示踪剂,测试区域采样与断面采样对试验结果影响及不同作业速度下的田间雾量分布,分析静电喷雾效果。结果表明,区域采样策略和断面采样对冠层平均雾滴覆盖密度的结果影响不大,但断面采样策略比区域采样策略所得的雾滴覆盖密度具有更大的变异系数;作业速度是影响静电喷雾效果的一个重要因素,Ⅱ、Ⅳ档速度下静电喷雾的反面雾滴覆盖率分别提高40%、17%,但对正面的雾滴覆盖密度基本没有影响,甚至略低于非静电喷雾;静电喷雾有助于抑制雾滴飘移,试验结果显示在5.0~12.5 m的采样区域内,静电喷雾的的飘移量比非静电喷雾减少18%;该喷雾机在同类型果园应用中,防虫时可以采用Ⅲ档及以下作业速度,防病选用Ⅱ档及以下速度可以满足防治要求,但Ⅰ档作业时地面沉积量明显高于其他作业速度,不建议使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号