首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Mars Global Surveyor spacecraft, in a highly elliptical polar orbit, obtained vector magnetic field measurements above the surface of Mars (altitudes >100 kilometers). Crustal magnetization, mainly confined to the most ancient, heavily cratered martian highlands, is frequently organized in east-west-trending linear features, the longest extending over 2000 kilometers. Crustal remanent magnetization exceeds that of terrestrial crust by more than an order of magnitude. Groups of quasi-parallel linear features of alternating magnetic polarity were found. They are reminiscent of similar magnetic features associated with sea floor spreading and crustal genesis on Earth but with a much larger spatial scale. They may be a relic of an era of plate tectonics on Mars.  相似文献   

2.
Auroras are caused by accelerated charged particles precipitating along magnetic field lines into a planetary atmosphere, the auroral brightness being roughly proportional to the precipitating particle energy flux. The Analyzer of Space Plasma and Energetic Atoms experiment on the Mars Express spacecraft has made a detailed study of acceleration processes on the nightside of Mars. We observed accelerated electrons and ions in the deep nightside high-altitude region of Mars that map geographically to interface/cleft regions associated with martian crustal magnetization regions. By integrating electron and ion acceleration energy down to the upper atmosphere, we saw energy fluxes in the range of 1 to 50 milliwatts per square meter per second. These conditions are similar to those producing bright discrete auroras above Earth. Discrete auroras at Mars are therefore expected to be associated with plasma acceleration in diverging magnetic flux tubes above crustal magnetization regions, the auroras being distributed geographically in a complex pattern by the many multipole magnetic field lines extending into space.  相似文献   

3.
A low temperature transfer of ALH84001 from Mars to Earth   总被引:1,自引:0,他引:1  
The ejection of material from Mars is thought to be caused by large impacts that would heat much of the ejecta to high temperatures. Images of the magnetic field of martian meteorite ALH84001 reveal a spatially heterogeneous pattern of magnetization associated with fractures and rock fragments. Heating the meteorite to 40 degrees C reduces the intensity of some magnetic features, indicating that the interior of the rock has not been above this temperature since before its ejection from the surface of Mars. Because this temperature cannot sterilize most bacteria or eukarya, these data support the hypothesis that meteorites could transfer life between planets in the solar system.  相似文献   

4.
Both poles of Mars are hidden beneath caps of layered ice. We calculated the density of the south polar layered deposits by combining the gravity field obtained from initial results of radio tracking of the Mars Reconnaissance Orbiter with existing surface topography from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft and basal topography from the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express spacecraft. The results indicate a best-fit density of 1220 kilograms per cubic meter, which is consistent with water ice that has approximately 15% admixed dust. The results demonstrate that the deposits are probably composed of relatively clean water ice and also refine the martian surface-water inventory.  相似文献   

5.
Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.  相似文献   

6.
Analysis of data on the spectral reflectivity curves for both bright and dark areas of Mars disclosed several features not considered in previous models of the martian surface. The shape of the mean spectral geometric albedo curve between 0.3 and about 1.3 microns for Mars is defined to within a few percent. Spectral reflectivity curves based on relative reflectivity data were calculated for both a bright and a dark region between 0.4 and 1.1 microns. The curve for the dark region shows a broad, deep ( approximately 13 percent) absorption feature centered near 1 micron. The curve for the dark area crosses that of the bright area between 0.4 and 0.5 micron during some martian seasons.  相似文献   

7.
The magnetometer and electron reflectometer investigation (MAG/ER) on the Mars Global Surveyor spacecraft has obtained magnetic field and plasma observations throughout the near-Mars environment, from beyond the influence of Mars to just above the surface (at an altitude of approximately 100 kilometers). The solar wind interaction with Mars is in many ways similar to that at Venus and at an active comet, that is, primarily an ionospheric-atmospheric interaction. No significant planetary magnetic field of global scale has been detected to date (<2 x 10(21) Gauss-cubic centimeter), but here the discovery of multiple magnetic anomalies of small spatial scale in the crust of Mars is reported.  相似文献   

8.
We performed high-resolution computer simulations of impacts into homogeneous and layered martian terrain analogs to try to account for the ages and characteristics of the martian meteorite collection found on Earth. We found that craters as small as approximately 3 kilometers can eject approximately 10(7) decimeter-sized fragments from Mars, which is enough to expect those fragments to appear in the terrestrial collection. This minimum crater diameter is at least four times smaller than previous estimates and depends on the physical composition of the target material. Terrain covered by a weak layer such as an impact-generated regolith requires larger, therefore rarer, impacts to eject meteorites. Because older terrain is more likely to be mantled with such material, we estimate that the martian meteorites will be biased toward younger ages, which is consistent with the meteorite collection.  相似文献   

9.
The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on board the Mars Express spacecraft found that solar wind plasma and accelerated ionospheric ions may be observed all the way down to the Mars Express pericenter of 270 kilometers above the dayside planetary surface. This is very deep in the ionosphere, implying direct exposure of the martian topside atmosphere to solar wind plasma forcing. The low-altitude penetration of solar wind plasma and the energization of ionospheric plasma may be due to solar wind irregularities or perturbations, to magnetic anomalies at Mars, or both.  相似文献   

10.
The 115-gigahertz microwave line of carbon monoxide has been detected in the spectrum of Mars. The measurement is sensitive to carbon monoxide between the surface and an altitude of approximately 50 kilometers in the martian atmosphere. This extends the altitude region to well above that previously sensed.  相似文献   

11.
Photochemical reactions in the martian exosphere produce fast atoms of oxygen, carbon, and nitrogen and provide large escape fluxes of these elements. They appear to play a crucial role in the evolution of the martian atmosphere. The relative outgassing rates of H(2)O and CO(2) on Mars are comparable with terrestrial values, although absolute rates for Mars are lower by a factor of 10(3). Nitrogen is a trace constituent, less than 1 percent, of the present martian atmosphere.  相似文献   

12.
The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.  相似文献   

13.
The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.  相似文献   

14.
Ion microprobe studies of hydrous amphibole, biotite, and apatite in shergottite-nakhlite-chassignite (SNC) meteorites, probable igneous rocks from Mars, indicate high deuterium/hydrogen (D/H) ratios relative to terrestrial values. The amphiboles contain roughly one-tentn as much water as expected, suggesting that SNC magmas were less hydrous than previously proposed. The high but variable D/H values of these minerals are best explained by postcrystallization D enrichment of initially D-poor phases by martian crustal fluids with near atmospheric D/H (about five times the terrestrial value). These igneous phases do not directly reflect the D/H ratios of martian "magmatic" water but provide evidence for a D-enriched martian crustal water reservoir.  相似文献   

15.
The purpose of the physical properties experiment is to determine the characteristics of the martian "soil" based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of "soil" properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.  相似文献   

16.
Wadhwa M 《Science (New York, N.Y.)》2001,291(5508):1527-1530
The oxidation state of basaltic martian meteorites is determined from the partitioning of europium (Eu) in their pyroxenes. The estimated redox conditions for these samples correlate with their initial neodymium and strontium isotopic compositions. This is interpreted to imply varying degrees of interaction between the basaltic parent melts, derived from a source in the martian mantle, and a crustal component. Thus, the mantle source of these martian basalts may have a redox state close to that of the iron-wüstite buffer, whereas the martian crust may be more oxidized (with a redox state higher than or equal to that of the quartz-fayalite-magnetite buffer). A difference in redox state of more than 3 log units between mantle and crustal reservoirs on Mars could result from oxidation of the crust by a process such as aqueous alteration, together with a subsequent lack of recycling of this oxidized crust through the reduced upper mantle.  相似文献   

17.
The equatorial sinuous channels on Mars detected by Mariner 9 point to a past epoch of higher pressures and abundant liquid water. Advective instability of the martian atmosphere permits two stable climates-one close to present conditions, the other at a pressure of the order of 1 bar depending on the quantity of buried volatiles. Variations in the obliquity of Mars, the luminosity of the sun, and the albedo of the polar caps each appear capable of driving the instability between a current ice age and more clement conditions. Obliquity driving alone implies that epochs of much higher and of much lower pressure must have characterized martian history. Climatic change on Mars may have important meteorological, geological, and biological implications.  相似文献   

18.
Greeley R 《Science (New York, N.Y.)》1987,236(4809):1653-1654
The amount of water released on Mars in association with volcanism is estimated to equal a layer 46 meters deep over the entire planet. Most of this water was released in the first 2 billion years of martian history. The estimate is based on mapping the volcanic materials and by inferring the volatile content of the lavas. Water from other sources, such as plutonic activity and cometary contributions, is not included in the estimate.  相似文献   

19.
The results of two of the three biology experiments carried out on the Viking Mars landers have been simulated. The mixture of organic compounds labeled with carbon-14 used on Mars released carbon dioxide containing carbon-14 when reacted with a simulated martian surface and atmosphere exposed to ultraviolet light (labeled release experiment). Oxygen was released when metal peroxides or superoxides were treated with water (gas exchange experiment). The simulations suggest that the results of these two Viking experiments can be explained on the basis of reactions of the martian surface and atmosphere.  相似文献   

20.
The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号