首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-year-old Angus x Gelbvieh beef cows, which were nutritionally managed to achieve a BCS of 4 +/- 0.07 (479 +/- 36 kg of BW) or 6 +/- 0.07 (580 +/- 53 kg of BW) at parturition, were used in a 2-yr experiment (n = 36/yr) to determine the effects of maternal BCS at parturition and postpartum lipid supplementation on fatty acid profile of suckling calf plasma and adipose tissue. Beginning 3 d postpartum, cows within each BCS were assigned randomly to 1 of 3 treatments in which cows were all fed hay and either a low-fat (control) supplement or supplements with either high-linoleate cracked safflower seeds (linoleate) or high-oleate cracked safflower seeds (oleate) until d 61 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed supplements were provided to achieve 5% of DMI as fat. Total concentration of fatty acids in plasma did not differ (P = 0.48) due to maternal BCS at parturition. Percentage of 20:5n-3 in plasma tended (P = 0.06) to be greater for calves suckling cows with a BCS of 6 at parturition. No other differences (P = 0.12 to 0.99) were noted in calf plasma fatty acid profile due to maternal BCS at parturition. Likewise, no differences were detected for total fatty acid concentration (P = 0.88) in calf adipose tissue due to maternal BCS at parturition. Weight percentage of 14:1 (P = 0.001) was greatest in adipose tissue of calves suckling cows fed control and oleate; however, the percentages of 14:0, 15:0, 16:0, 16:1, 17:0, and 18:3n-3 were greater (P < 0.001) in adipose tissue from calves suckling cows fed control compared with calves suckling cows fed linoleate or oleate. Percentages of 18:0, 18:1trans-11, 18:2n-6, and cis-9, trans-11 CLA were greater (P < 0.001) in adipose tissue from calves suckling cows fed linoleate compared with calves suckling cows fed control and oleate. Calves suckling cows fed oleate had greater (P < 0.001) percentages of 18:1trans-9, 18:1trans-10, and 18:1cis-9 in adipose tissue than calves suckling cows fed control or linoleate. Calf plasma and adipose tissue fatty acid profiles were reflective of milk fatty acids. Because fatty acids play an important role in metabolic regulatory functions, changes in milk fatty acid profile should be considered when beef cows are fed lipid supplements.  相似文献   

2.
Three-year-old Angus x Gelbvieh beef cows nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of initial BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of initial BW) at parturition were used in a 2-yr experiment (n = 36/yr) to determine the effects of BCS at parturition and postpartum lipid supplementation on cow adipose tissue lipogenesis. Beginning 3 d postpartum, cows within each BCS were randomly assigned to be fed hay and a low-fat control supplement or supplements with either cracked high-linoleate safflower seeds or cracked high-oleate safflower seeds until d 60 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed diets provided 5% DMI as fat. Adipose tissue biopsies were collected near the tail-head region of cows on d 30 and 60 of lactation. Dietary treatment did not affect (P > or = 0.43) adipose tissue lipogenesis. Body condition score at parturition did not affect acetate incorporation into lipid (P = 0.53) or activity of acetyl CoA carboxylase (P = 0.77) or fatty acid synthase (P = 0.18). Lipoprotein lipase activity and palmitate incorporation into triacyl-glycerol tended to be greater (P = 0.06), and palmitate esterification into total acylglycerols was greater (P = 0.01) in cows with a BCS of 4 at parturition. Mean activity of acetyl-CoA carboxylase (P < 0.001), lipoprotein lipase (P = 0.01), and rate of palmitate incorporation into monoacylglycerol (P = 0.02), diacylglycerol (P = 0.001), triacylglycerol (P = 0.003), and total acylglycerols (P = 0.002) were greater at d 30 than d 60, suggesting a greater proclivity for fatty acid biosynthesis and esterification by adipose tissue at d 30 of lactation. Although dietary lipid supplementation did not affect adipose tissue lipogenesis, results suggest that cows with a BCS of 4 at parturition have a greater propensity to deliver exogenously derived fatty acids to the adipocyte surface and incorporate preformed fatty acids into acylglycerols as stored adipocyte lipid. Additionally, cows in early lactation seemed to be able to synthesize and incorporate more fatty acids into stored lipid than cows during peak lactation.  相似文献   

3.
The experimental objectives were to evaluate the influence of supplemental high-linoleate safflower seeds on fatty acid concentrations in plasma, medial basal hypothalamus, uterine tissues, and serum 13,14-dihydro-15-keto PGF(2)alpha metabolite (PGFM) in primiparous beef cows during early lactation. Beginning 1 d postpartum, 18 primiparous, crossbred beef cows (411 +/- 24.3 kg of BW) were fed foxtail millet hay at 1.68% of BW (DM basis) and either a low-fat supplement (control: 63.7% cracked corn; 33.4% safflower seed meal; and 2.9% liquid molasses; DM basis) at 0.35% of BW (n = 9) or a supplement (linoleate) containing 95.3% cracked high-linoleate (79% 18:2n-6) safflower seeds and 4.7% liquid molasses (DM basis) at 0.23% of BW (n = 9). Diets were formulated to be isonitrogenous and isocaloric. The linoleate diet contained 5.4% of DMI as fat vs. 1.2% for control. Beginning 1 d postpartum, cattle were bled every 3 d for collection of serum and plasma. Cattle were slaughtered at 37 +/- 3 d postpartum for collection of the medial basal hypothalamus, myometrium, endometrium, caruncular tissue, intercaruncular tissue, and oviduct. Feeding linoleate increased (P = 0.001) plasma concentrations of 18:2n-6, 18:2cis-9 trans-11 and total unsaturated fatty acids; however, 18:1trans-11 did not differ (P = 0.19) between treatments. Concentrations of 20:5n-3 in the medial basal hypothalamus tended (P = 0.10) to be greater for cattle fed linoleate. Concentrations of fatty acids in the oviduct were greater (P < 0.05) than in other uterine tissues. Cows fed linoleate had greater (P = 0.05) concentrations of 18:3n-3 in the endometrium and less (P = 0.06) 18:2cis-9 trans-11 in the myometrium than cows fed the control. Supplemental fat increased (dietary treatment x day postpartum, P = 0.01) concentrations of PGFM in serum more in linoleate than control cows from d 3 to 9 postpartum. Lipid supplementation early in the postpartum period altered the fatty acid composition of medial basal hypothalamus, uterine tissue, and serum concentrations of PGFM. The most novel observation was that the oviduct appeared to be the most sensitive tissue to additional dietary linoleic acid, which could potentially influence fertility.  相似文献   

4.
Three-year-old Angus x Gelbvieh beef cows nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of BW) at parturition were used in a 2-yr experiment (n = 36/yr) to determine the effects of prepartum energy balance and postpartum lipid supplementation on cow and calf performance. Beginning 3 d postpartum, cows within each BCS were assigned randomly to be fed hay and a low-fat control supplement or supplements with either high-linoleate cracked safflower seeds or high-oleate cracked safflower seeds until d 60 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed supplements were provided to achieve 5% of DMI as fat. Ultrasonic 12th rib fat and LM area were lower (P < 0.001) for cows in BCS 4 compared with BCS 6 cows throughout the study. Cows in BCS 4 at parturition maintained (P = 0.02) condition over the course of the study, whereas cows in BCS 6 lost condition. No differences (P = 0.44 to 0.71) were detected for milk yield, milk energy, milk fat percentage, or milk lactose percentage because of BCS; however, milk protein percentage was less (P = 0.03) for BCS 4 cows. First-service conception rates did not differ (P = 0.22) because of BCS at parturition, but overall pregnancy rate was greater (P = 0.02) in BCS 6 cows. No differences (P = 0.48 to 0.83) were detected in calf birth weight or ADG because of BCS at parturition. Dietary lipid supplementation did not influence (P = 0.23 to 0.96) cow BW change, BCS change, 12th rib fat, LM area, milk yield, milk energy, milk fat percentage, milk lactose percentage, first service conception, overall pregnancy rates, or calf performance. Although cows in BCS of 4 at parturition seemed capable of maintaining BCS during lactation, the overall decrease in pregnancy rate indicates cows should be managed to achieve a BCS >4 before parturition to improve reproductive success.  相似文献   

5.
We conducted a series of experiments to evaluate the effects of conjugated linoleic acids (CLA) on lipid metabolism and energy homeostasis in lactating dairy cows. In all experiments, multiparous Holstein cows in mid to late lactation were abomasally infused with CLA for 5 d. The initial study established that trans-10, cis-12 CLA markedly reduced milk fat yield whereas cis-9, trans-11 CLA, the predominant CLA isomer in milk fat, had no effect. Across the three investigations, infusions of the pure trans-10, cis-12 CLA isomer (3.5 to 14.0 g/d) resulted in a 25 to 50% decrease in milk fat yield and this was energetically equivalent to 6 to 11% of net energy intake. Effects were specific for milk fat as there were little or no changes in feed intake and the yield of milk or milk protein. In Exp. 1, infusing trans-10, cis-12 CLA had no effect on circulating plasma concentrations of glucose, insulin, or leptin. Basal NEFA concentrations were also unaffected, but lipolytic response to an epinephrine challenge was reduced (33%) when cows received trans-10, cis-12 CLA; this minor change in lipolytic response would be consistent with the slightly more positive net energy balance when cows received trans-10, cis-12 CLA. In Exp. 2, infusing differing amounts of trans-10, cis-12 CLA had only minor effects on basal NEFA concentrations, but again cows receiving trans-10, cis-12 CLA tended to have reduced (24%) lipolytic response to trans-10, cis-12 CLA compared to the control period. In Exp. 3, infusing trans-10, cis-12 CLA had no effect on basal glucose concentrations or glucose response to an insulin challenge. The fractional rate of glucose clearance in response to insulin was also not altered by treatment. In summary, the effects of trans-10, cis-12 CLA in lactating dairy cows appear to be specific for the mammary gland, resulting in reduced milk fat synthesis; adipose tissue response to a homeostatic signal regulating lipolysis (epinephrine), whole-body response to a homeostatic signal regulating glucose homeostasis (insulin), and plasma variables associated with lipid metabolism and energy homeostasis were relatively unaffected by treatment with trans-10, cis-12 CLA.  相似文献   

6.
Two experiments were conducted to determine the effect of maternal lipid supplementation on the immune response to antigenic challenge in suckling calves. In Exp. 1, beginning 1 d postpartum, 18 primiparous crossbred beef cows were fed Foxtail millet hay and a low-fat (control) supplement or a supplement containing cracked, high-linoleate safflower seed in individual feeding stanchions until d 40 of lactation. The diets were formulated to provide similar quantities of N and TDN, and the linoleate diet was formulated to contain 5% of DMI as fat. Calves were injected s.c. with 15 mg of antigen (ovalbumin) at d 21 and again at d 35 of age. To measure the total serum antibody production in response to the antigen, blood samples were collected from the calves every 7 d via jugular venipuncture from d 14 to 42. Calves from linoleate-supplemented cows had a decrease (P = 0.04) in total antibody production in response to ovalbumin and appeared to have a delayed response to antigen challenge. Total antibody production increased (P < 0.001) after secondary exposure to ovalbumin. In Exp. 2, 36 Angus x Gelbvieh beef cows that were nutritionally managed to achieve a BCS of 4 or 6 at parturition were used to determine the effects of prepartum energy balance and postpartum lipid supplementation on the passive transfer of immunoglobulins and the immune response to antigenic challenge in their calves. Beginning at 3 d postpartum and continuing until d 60 of lactation, cows were fed hay and a low-fat control supplement or supplements consisting of either cracked, high-linoleate or high-oleate safflower seeds. Safflower seed supplements were formulated to provide 5% of DMI as fat. Calves were injected s.c. with 15 mg of ovalbumin at 21 d of age and again at 48 d of age. The antibody responses were determined in serum; cell-mediated immunity was assessed by intradermal antigen injection at 60 d of age. A trend was noted (P = 0.10) for calves suckling control-supplemented cows to have a greater response to antigen compared with calves from linoleate- and oleate-supplemented cows; however, no difference was observed among treatments (P = 0.86) in cell-mediated immune response. Postpartum oilseed supplementation in beef cows appears to decrease antibody production in response to antigenic challenge in suckling calves. However, BCS at parturition did not influence passive transfer of immunoglobulins in neonatal calves.  相似文献   

7.
8.
To determine the effects of BCS at parturition and postpartum lipid supplementation on blood metabolite and hormone concentrations, 3-yr-old Angus x Gelbvieh beef cows, which were nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of BW) at parturition, were used in a 2-yr experiment (n = 36/yr). Beginning at 3 d postpartum, cows within each BCS were assigned randomly to be fed hay and a low-fat control supplement or lipid supplements with either cracked high-linoleate or high-oleate safflower seeds until d 61 of lactation. The diets were formulated to be isonitrogenous and isocaloric, and the safflower seed supplements were formulated to achieve 5% DMI as fat. On d 31 and 61 of lactation, blood samples were collected preprandially and then hourly postprandially (at 0, 1, 2, 3, and 4 h). Serum insulin (P = 0.27) and glucose (P = 0.64) were not affected by BCS at parturition. The mean concentrations of plasma NEFA (P = 0.08) and beta-hydroxybutyrate (P = 0.08) tended to be greater, and serum IGF-I was greater (P < 0.001) in BCS 6 than BCS 4 cows. Conversely, serum GH was greater (P = 0.003) for BCS 4 cows, indicating that regulation of IGF by GH may have been uncoupled in BCS 4 cows. The postpartum diet did not affect NEFA (P = 0.94), glucose (P = 0.15), IGF-I (P = 0.33), or GH (P = 0.62) concentrations. Oleate-supplemented cows had greater (P = 0.03) serum insulin concentrations, whereas control cows had greater (P = 0.01) plasma beta-hydroxybutyrate concentrations. Concentrations of NEFA (P = 0.05) and glucose (P < 0.001) were greater, and beta-hydroxybutyrate tended (P = 0.07), to be greater at d 3, whereas serum IGF-I was greater (P = 0.003) at d 6 of lactation. Similar concentrations of NEFA, glucose, GH, and IGF-I indicate that the nutritional status of beef cows during early lactation was not influenced by lipid supplementation. However, perturbations of the somatotropic axis in BCS 4 cows indicate that the influence of energy balance and BCS of the cow at parturition on postpartum performance should be considered when making managerial decisions.  相似文献   

9.
Thirty-six Angus x Hereford heifers (365 +/- 60 kg) were used to determine the effects of supplemental dietary lipid sources on fatty acid composition of i.m., perianal (p.a.), and s.c. lipid depots. Lipid was supplied to diets as either corn oil or a rumen-protected conjugated linoleic acid (CLA) salt for two specific treatment periods of either the final 32 or 60 d on feed. Following an initial 56-d feeding period, heifers were fed one of three dietary treatments (DM basis): 1) basal diet containing 88% concentrate and 12% grass hay (CON), 2) basal diet plus 4% corn oil (OIL), or 3) basal diet plus 2% rumen-protected CLA salt (RPCLA) containing 31% CLA. The trans-10, cis-12 CLA concentration was greatest (P < 0.05) for heifers fed RPCLA and OIL diets and least (P < 0.05) for CON, regardless of time on dietary treatment. Heifers fed supplemental RPCLA had greater (P < 0.05) total CLA content than either CON- or OIL-fed heifers. Adipose tissue concentration of trans-11 vaccenic acid (TVA) was less (P < 0.05) for CON than OIL or RPCLA, which did not differ (P > 0.05). Percentages of C18:1 trans-10 were least (P < 0.05) in i.m. lipid compared with p.a. and s.c., which did not differ (P > 0.05). Following 60 d of lipid supplementation, heifers fed OIL and RPCLA had lower (P < 0.05) concentrations of oleic acid and total monounsaturated fatty acids (MUFA) compared with CON. The ratio of cis-9, trans-11 CLA:TVA was higher (P < 0.05) for heifers fed 60 vs. 32 d, but did not differ (P > 0.05) between adipose depots. Feeding OIL increased (P < 0.05) adipose concentration of C18:2 fatty acid, whereas feeding RPCLA increased (P < 0.05) total CLA isomers by 22%. Intramuscular lipid contained the lowest (P < 0.05) percentage of cis-9, trans-11 CLA, total CLA, C18:1 cis-9, C18:1 trans-10, and TVA. Total CLA and cis-9, trans-11 CLA isomers were increased (P < 0.05) in p.a. and s.c. adipose depots, whereas i.m. adipose tissue contained increased (P < 0.05) amounts of total PUFA. Results from this study indicate that short-term lipid supplementation to feedlot cattle can increase adipose tissue CLA concentrations, but only marginally (8.3 to 17.5%). Moreover, observed decreases in oleic acid and total MUFA concentrations of adipose tissues from heifers fed rumen-protected CLA or corn oil suggest that lipid supplementation may decrease delta9 desaturase activity in adipose tissues, which in turn would lower the conversion of TVA to cis-9, trans-11 CLA isomer.  相似文献   

10.
Our objective was to determine effects of dietary high-oleate (Oleate; 76% 18:1) or high-linoleate (Linoleate; 78% 18:2) safflower seeds on fatty acids in muscle and adipose tissue of feedlot lambs. White-faced ewe lambs (n = 36) were fed a beet pulp, oat hay, and soybean meal basal diet (Control), blocked by BW, and allotted randomly to dietary treatments. Cracked safflower seeds were used in isocaloric and isonitrogenous replacement of beet pulp, oat hay, and soybean meal so that Oleate and Linoleate diets contained 5.0% additional fat. Fatty acids were determined in semitendinosus, longissimus dorsi (longissimus), and adipose tissue from the tail head (tailhead adipose tissue), adjacent to the 12th rib (s.c. adipose tissue), and kidney and pelvic fat (KPH adipose tissue) depots. Fatty acid data were analyzed within muscle and adipose tissue as a split-block design. Single degree of freedom orthogonal contrasts were used to compare treatment effects. Average daily gain, feed efficiency, and carcass characteristics did not differ (P = 0.15 to 0.96) across dietary treatments. Adipose tissue saturated fatty acids were greater (P = 0.04) for Controls but were not different (P = 0.36) in muscle. Trans-vaccenic acid (18:1(trans-11)) increased (P < 0.0001) with safflower supplementation and was greater (P < 0.0001) in Linoleate than in Oleate for both tissue types. Linoleate lamb had greater (P < 0.0001) PUFA than Oleate lamb in muscle and adipose tissue. Conjugated linoleic acids (CLA; cis-9, trans-11 and trans-10, cis-12) were greater (P < 0.0001) in muscle and adipose tissue of lambs fed safflower seeds. Lambs fed Linoleate had greater (P < 0.0001) CLA in adipose tissue and muscle than lambs fed Oleate. Saturated fatty acids were greater (P < 0.0001) in s.c. adipose tissue than in tailhead adipose tissue. Mono- and polyunsaturated fatty acids were greater (P < 0.0001) in tailhead adipose tissue than in s.c. adipose tissue. Weight percentages of 18:1(trans-11) ranked tailhead adipose tissue = KPH adipose tissue > s.c. adipose tissue and semitendinosus > longissimus, whereas CLA ranked tailhead adipose tissue > s.c. adipose tissue > KPH adipose tissue and semitendinosus > longissimus. Feeding mono- and polyunsaturated fatty acids increased tissue 18:1(trans-11) and CLA, which is a favorable change in regard to current human dietary guidelines.  相似文献   

11.
12.
Two experiments were conducted to determine the effectiveness of a rumen-protected CLA (pCLA) supplement and the impact of feeding this pCLA on carcass characteristics and tissue fatty acid composition of lambs. In Exp. 1, a CLA-80 preparation (80% pure CLA; contained similar proportions of cis-9, trans-11, and trans-10, cis-12 CLA), protected against rumen degradation, was fed to sheep, and the proportion of CLA reaching the duodenum was determined. A 3 x 3 Latin square design was used with 3 diets (1.4 kg of concentrate-based control diet, the same control diet plus 22 g of CLA-80, or the same control diet plus 110 g of pCLA/d), 3 feeding periods, and 3 rumen and duodenally cannulated sheep (Mule x Charolais males, 10 mo of age, BW 55.3 +/- 1.8 kg). After 7 d of feeding, sheep were ruminally infused with chromium EDTA and Yb acetate for 7 d, after which samples of duodenal digesta were collected every 6 h for 48 h to determine the quantity of CLA reaching the small intestine each day. The amounts of CLA cis-9, trans-11 and trans-10, cis-12, and combined isomers, flowing through the duodenum each day were greater (P = 0.01) in sheep fed pCLA. Approximately 65% of the pCLA avoided rumen biohydrogenation, with the ratio of the 2 main isomers remaining similar. In Exp. 2, 36 Mule x Charolais ewe lambs (approximately 13-wk old, average initial BW 29.3 kg) were fed 3 levels of the pCLA or Megalac, which were fed to provide an equivalent energy content at each pCLA level. Lambs were randomly assigned to 1 of 7 treatment groups, which were fed for 10 wk to achieve a growth rate of 180 g/d. Treatments included the basal diet and the basal diet plus 25, 50, or 100 g of pCLA/kg of diet or the equivalent amount of Megalac. In liver (P < 0.001) and all adipose tissue depots studied, the proportions of both CLA isomers increased (P = 0.02) with the amount of pCLA fed but were not altered with increasing of Megalac. Although there was no effect of treatment on cis-9, trans-11 CLA content, accumulation (P < 0.001) in the LM with increasing of pCLA supplementation was observed for the trans-10, cis-12 isomer. Although tissues had been enriched with CLA, there was no evidence of a reduction in adipose tissue or an increase in muscle mass in these sheep. However, an effect of pCLA on tissue fatty acid composition was consistent with an inhibition of stearoyl-CoA desaturase.  相似文献   

13.
The concentration of CLA in adipose tissue can be increased in ruminants by feeding pasture and extruded soybeans. The objective of this study was to evaluate maternal supplementation of raw (RS) or extruded (ES) soybeans on the concentrations of CLA in milk fat of cows and s.c. adipose tissue of suckling calves. Thirty-two spring-calving cows (BW 624 +/- 76 kg; BCS 3.5 +/- 0.4; mean +/- SD) and calves (BW 127 +/- 15 kg) were separated into 2 groups. Cows were distributed to have 8 calves of each sex in both groups. When animals were turned out to pasture, dams received 2 kg/d of either RS or ES. Dietary treatments had no effect on average milk intake (P = 0.22) and pasture forage intake (P = 0.13) for calves over the course of the grazing season. As a result, no effect of treatments was observed on ADG (P = 0.26). At weaning, milk fat content of CLA reached 15.4 and 24.2 mg/g of total fatty acids for cows fed RS and ES, respectively (P = 0.02). The CLA concentrations in adipose tissue were 16.9 and 25.0 mg/g of total fatty acids for calves suckling dams fed RS and ES, respectively (P < 0.001). Overall, results demonstrated supplementing grazing cows with ES increased CLA content in milk and adipose tissue of suckling calves.  相似文献   

14.
Three experiments were conducted to evaluate supplementation of dried distillers grains with solubles (DGS) to spring-calving beef cows (n = 120; 541 kg of initial BW; 5.1 initial BCS) consuming low-quality forage during late gestation and early lactation. Supplemental treatments included (DM basis) 1) 0.77 kg/d DGS (DGSL); 2) 1.54 kg/d DGS (DGSI); 3) 2.31 kg/d DGS (DGSH); 4) 1.54 kg/d of a blend of 49% wheat middlings and 51% cottonseed meal (POS); and 5) 0.23 kg/d of a cottonseed hull-based pellet (NEG). Feeding rate and CP intake were similar for DGSI and POS. In Exp. 1, cows were individually fed 3 d/wk until calving and 4 d/wk during lactation; total supplementation period was 119 d, encompassing 106 d of gestation and 13 d of lactation. Tall-grass prairie hay (5.6% CP, 50% TDN, 73% NDF; DM basis) was fed for ad libitum intake throughout the supplementation period. Change in cow BW and BCS during gestation was similar for DGSI and POS (-5.0 kg, P = 0.61 and -0.13, P = 0.25, respectively) and linearly increased with increasing DGS level (P < 0.01). Likewise, during the 119-d supplementation period, BW and BCS change were similar for DGSI and POS (-72 kg, P = 0.22 and -0.60, P = 0.10) and increased linearly with respect to increasing DGS (P < 0.01). The percentage of cows exhibiting luteal activity at the beginning of breeding season (56%, P = 0.31), AI conception rate (57%, P = 0.62), or pregnancy rate at weaning (88%, P = 0.74) were not influenced by supplementation. In Exp. 2, 30 cows from a separate herd were used to evaluate the effect of DGS on hay intake and digestion. Supplementation improved all digestibility measures compared with NEG. Hay intake was not influenced by DGS (P > 0.10); digestibility of NDF, ADF, CP, and fat linearly increased with increasing DGS. In Exp. 3, milk production and composition were determined for cows (n = 16/treatment) of similar days postpartum from Exp. 1. Daily milk production was not influenced by supplementation (6.3 kg/d, P = 0.25). Milk fat (2.1%) and lactose (5.0%) were not different (P > 0.10). Milk protein linearly increased as DGS increased (P < 0.05) and was greater for DGSI compared with POS. Similar cow performance was achieved when cows were fed DGS at the same rate and level of CP as a traditional cottonseed meal-based supplement. Increasing amounts of DGS did not negatively influence forage intake or diet digestibility.  相似文献   

15.
Energy intake prepartum is critically important to health,milk performance,and profitability of dairy cows.The objective of this study was to determine the effect of reduced energy density of close-up diets on dry matter intake(DMI),lactation performance and energy balance(EB) in multiparous Holstein cows which were housed in a free-stall bam and fed for ad libitum intake.Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet[HD,n = 13;6.8 MJ of net energy for lactation(NE_L)/kg;14.0%crude protein(CP)],or a middle energy density diet(MD,n = 13;6.2 MJ NE_L/kg;14.0%CP),or a low energy density diet(LD,n = 13;5.4 MJ NE_L/kg;14.0%CP) from d 21 before expected day of calving.After parturition,all cows were fed the same lactation diet to d 70 in milk(DIM).The DMI and NE_L intake prepartum were decreased by the reduced energy density diets(P 0.05).The LD group consumed 1.3 kg/d(DM) more diet compared with HD group in the last 24 h before calving.The milk yield and the postpartum DMI were increased by the reduced energy density diet prepartum(P 0.05).The changes in BCS and BW prepartum and postpartum were not affected by prepartum diets.HD group had higher milk fat content and lower lactose content compared with LD group during the first 3 wk of lactation(P 0.05).The energy consumption for HD,MD and LD groups were 149.8%,126.2%and 101.1%of their calculated energy requirements prepartum(P 0.05),and 72.7%,73.1%and 75.2%during the first 4 wk postpartum,respectively.In conclusion,the low energy density prepartum diet was effective in controlling NE_L intake prepartum,and was beneficial in increasing DMI and milk yield,and alleviating negative EB postpartum.  相似文献   

16.
Primiparous Angus x Gelbvieh (n = 36) rotationally crossed beef cows (initial BW = 487.9 +/- 10.5 kg, body condition score = 5.5 +/- 0.02) were utilized to determine effects of supplemental safflower seeds high in linoleic (76% 18:2) or oleic (72% 18:1) acid on cow BW change, body condition score, milk production and composition, calf weight gain, cow serum metabolites, and metabolic hormones. On d 3 postpartum, cows were randomly assigned to one of three isonitrogenous dietary supplements with equal total quantity of TDN: corn-soybean control supplement (n = 12); high-linoleate safflower seeds (n = 12); or high-oleate safflower seeds (n = 12). Safflower-seed supplements were formulated to provide 5% DMI as fat. Supplements were individually fed from d 3 postpartum through 90 d postpartum. Cows had ad libitum access to native grass hay (7.8% CP), trace-mineralized salt, and water. Date of parturition was evenly distributed across treatments with all cows calving within 14 +/- 0.8 d. There were no differences (P = 0.65) in total OM intake among treatments. Although cow BW change did not differ (P = 0.33) by treatment, supplementation influenced cow body condition score (P = 0.02) with linoleate-supple-mented cows in higher (P = 0.005) condition overall than oleate-supplemented cows (5.1 +/- 0.06 vs 4.9 +/- 0.06). Twenty-four-hour milk production did not differ (P = 0.68) among treatments. Percentage milk fat was not different at d 30; however, at d 60 and d 90 percentage milk fat was greater (P ( 0.05) in control and oleate-supplemented cows than in linoleate-supplemented cows. Calf BW gains (P = 0.27) and adjusted 205-d weights (P = 0.48) were not affected by supplement treatment. Supplementation did not influence serum concentrations of glucose (P = 0.38), NEFA (P = 0.61), GH (P = 0.29), IGF-I (P = 0.81), insulin (P = 0.26), or IGF-I binding proteins (P > or = 0.11). Days to conception did not differ (P = 0.40) among treatments. Although overall productivity of the primiparous cows and their calves was not altered by safflower-seed supplementation, differential effects were noted between supplements. Oleate supplementation increased percentage milk fat at d 60, and cow body condition score was lower than in linoleate-supplemented cows. Linoleate-supplemented cows had greater body condition scores by 90 d postpartum than either corn-soybean- or oleatesupplemented cows.  相似文献   

17.
Effects of inhibiting prolactin secretion and of calf removal at 3 d postpartum on the lipogenic capacity of s.c. adipose tissue were investigated in postpartum beef cows. The rate of fatty acid synthesis (SYN) from [1-14C]acetate and the activity of fatty acid synthetase (FAS) were assessed on adipose tissue obtained by biopsy at 1, 2, 4, 8 and 10 wk postpartum. Administration of bromocriptine (BR; a drug that suppresses prolactin secretion in rats) between d 7 and 42 postpartum decreased average serum prolactin concentrations nearly 90%, but BR had no effect on lipogenic rates at any week compared to control (CO) cows. Rates of SYN (nmol acetate.min-1.g-1 tissue) increased linearly in CO and BR cows from a nadir of 3.1 at wk 1 to 19.3 by wk 8. Within CO and BR, cows with the greater energy intake relative to requirements for lactation (energy balance) had the faster rates of recovery of SYN. Cows whose calves were weaned early (3 d) showed rapid early increases in SYN, reaching an average maximum rate of 46.2 by wk 2. Activity of FAS generally followed a pattern similar to that of SYN for all groups. Results indicate that prolactin is not responsible for low rates of postpartum lipogenesis in s.c. adipose tissue and that energy intake influences the rate of recovery.  相似文献   

18.
The objective of this study was to determine the effects of supplementing fish oil (FO) in the drinking water of dairy cows on production performance and milk fatty acid composition. Sixteen multiparous Holstein dairy cows (741 +/- 84 kg of BW; 60 +/- 2.3 d in milk, mean +/- SD) housed in a tie-stall facility were used in the study. The study was conducted as a completely randomized design with repeated measurements. The cows were blocked by days in milk and allocated to 1 of 2 treatments: 10 g of menhaden FO/kg of DM top-dressed on the total mixed ration (FOT), and 2 g of menhaden FO/L delivered in the drinking water (FOW). The trial lasted for 5 wk: a 1-wk pretreatment adjustment period and 4 wk of treatment. The animals were fed and milked twice daily (feeding at 0830 and 1300; milking at 0500 and 1500) and had unlimited access to water. Dry matter intake (21.3 kg/d for FOT vs. 22.7 +/- 0.74 kg/d for FOW), milk yield (38.2 kg/d for FOT vs. 39.5 +/- 1.9 kg/d for FOW), and water intake (101 L/d for FOT vs. 107 +/- 4.4 L/d for FOW) were not affected by treatment. The mode of delivery of FO had no effect on milk fat percentage, but milk fat percentage declined linearly with time. The fatty acid contents of 7:0; 8:0; 9:0; 10:0; 12:0 in the milk of FOT cows were lower than for FOW cows, whereas 18:1 trans-12; 18:1 trans-13 and 14; 18:1 trans-16; and trans-9, trans-11 plus trans-10, trans-12 CLA were greater for FOT than for FOW. The contents of 24:1 in the milk of FOW cows were 48% greater than for FOT cows, although the concentrations were low in both groups. There was a tendency for the contents of 14:0 and 22:5n-6 to be greater in FOW cows than FOT cows and for the contents of iso-18:0 to be lower for FOW cows than for FOT cows. Although it appears that the amount of FO added in the study did not bypass the rumen as hypothesized, these results suggest that drinking water can be an alternative for supplementing FO to dairy cows without decreasing feed or water intake relative to cows fed FO in the diet.  相似文献   

19.
Effects of supplemental degradable (DIP) and undegradable (UIP) intake protein on forage intake, BW change, body condition score (BCS), postpartum interval to first estrus, conception rate, milk production and composition, serum metabolites and metabolic hormones, and calf gain were determined using 36 primiparous Gelbvieh x Angus rotationally crossed beef cows. On d 3 postpartum, cows (average initial BW = 495 +/- 10 kg and BCS = 5.5 +/- 0.1) were randomly assigned to one of three dietary supplements (12 cows/treatment). Date of parturition was evenly distributed across treatment (average span of calving date among treatments = 2.4 +/- 2.5 d). Individually fed (d 3 through 120 postpartum) dietary supplements were 0.82 kg of corn and 0.23 kg of soybean meal per day (DIP), the DIP + 0.12 kg of blood meal and 0.13 kg of corn gluten meal per day (DIP + UIP), and 0.82 kg of corn, 0.07 kg of blood meal, and 0.08 kg of corn gluten meal per day in an isonitrogenous replacement of soybean meal (UIP IsoN). Cows had ad libitum access to native grass hay (8.5% CP) and trace-mineralized salt. Total OM intake was greater (P = 0.06) for DIP + UIP than UIP IsoN cows. At 30 d postpartum, DIP + UIP cows produced more milk than UIP IsoN, with DIP being intermediate; however, at 60 d postpartum, DIP + UIP and DIP cows were not different, but both had greater milk production than UIP IsoN (treatment x day interaction; P = 0.08). A treatment x day interaction (P = 0.06) for BCS resulted from DIP + UIP cows having the greatest BCS at 60, 90, and 120 d d postpartum and DIP having greater BCS than UIP IsoN cows only on d 60 postpartum. Serum insulin concentrations were highest (treatment x day interaction; P = 0.09) for DIP + UIP cows at 30 d postpartum but did not differ among treatment thereafter. Serum insulin-like growth factor-binding protein (IGFBP)-2 (34 kDa) and -3 (40 and 44 kDa) were greatest (P < 0.0003) for DIP cows. Serum urea-N concentrations were greater (P < 0.01) in DIP + UIP cows than in either DIP or UIP IsoN cows. However, postpartum interval to first estrus, conception rate, and calf weaning weights were unaffected (P = 0.35, 0.42, and 0.64, respectively) by treatment. Although UIP in addition to or in replacement of DIP affected milk production and blood metabolites, the productivity of these primiparous beef cows was not altered. Thus, the type of supplemental protein does not seem to influence productivity of primiparous beef cows in production systems with conditions similar to our experimental conditions.  相似文献   

20.
Boer and Boer crossbred meat-type does were used in two experiments to determine whether goat milk serum contains leptin and to investigate possible correlations of milk and serum leptin in does and subsequent growth of their offspring. Blood and milk samples were collected within 2 h of kidding (d 0) from 20 (Exp. 1; spring) or 22 does (Exp. 2; the following fall). Blood milk samples were then collected again on d 0.5, 1, 3, 5, 7, 14, 21, 28, 35, 42, 49, and 56 (Exp. 1) or d 0.5, 1, 2, 3, 4, 5, 6, 7, 14, and 21 (Exp. 2). Body weights of kids were recorded on d 0, and BW of kids and does were recorded weekly beginning on d 7 (kids) or 21 (does), with BCS also recorded for does beginning on d 28 for Exp. 1 and on d 0.5, 1, 2, 3, 4, 5, 6, 7, 14, and 21 for Exp. 2. Leptin was detected in colostral milk and was influenced by days postpartum, decreasing (P < 0.001) over time with an average of 4.4 +/- 0.3 ng/mL (Exp. 1) and 18.1 +/- 1.0 ng/mL (Exp. 2) on d 0 compared with 1.0 +/- 0.3 ng/mL on d 56 (Exp. 1) and 2.9 +/- 0.2 ng/mL on d 21 (Exp. 2). Day postpartum and milk serum leptin were negatively correlated (P < 0.001) for Exp. 1 (r = -0.27) and Exp. 2 (r = -0.46). For Exp. 1 only, blood serum leptin tended (P = 0.09) to be influenced by day, with a weak positive correlation (r = 0.15; P < 0.02). Weak positive correlations (P < 0.01) were found between blood serum leptin and doe BCS (r = 0.42 in Exp. 1, and r = 0.13 in Exp. 2) and doe BW (r = 0.44 in Exp. 1, and r = 0.26 in Exp. 2), with the absence of a stronger relationship likely due in part to the short time period measured and the lack of significant changes in BCS and BW during that time. In conclusion, leptin was present in milk and blood serum of does, and blood serum leptin was weakly correlated with doe BW and BCS, but it was not related to kid BW. Therefore, further studies are needed to clarify the relationships involving milk and serum leptin in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号