首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Fungal and bacterial biomass were determined across a gradient from a forest to grassland in a sub-alpine region in central Taiwan. The respiration-inhibition and ergosterol methods for the evaluation of the microbial biomass were compared. Soil fungal and bacterial biomass both significantly decreased (P<0.05) with the shift of vegetation from forest to grassland. Fungal and bacterial respiration rates (evolved CO2) were, respectively, 89.1 μl CO2 g–1 soil h–1 and 55.1 μl CO2 g–1 soil h–1 in the forest and 36.7 μl CO2 g–1 soil h–1 and 35.7 μl CO2 g–1 soil h–1 in the grassland surface soils (0–10 cm). The fungal ergosterol content in the surface soil decreased from the forest zone (108 μg g–1) to the grassland zone (15.9 μg g–1). A good correlation (R 2=0.90) was exhibited between the soil fungal ergosterol content and soil fungal CO2 production (respiration) for all sampling sites. For the forest and grassland soil profiles, microbial biomass (respiration and ergosterol) declined dramatically with depth, ten- to 100-fold from the surface organic horizon to the deepest mineral horizon. With respect to fungal to bacterial ratios for the surface soil (0–10 cm), the forest zone had a significantly (P<0.05) higher ratio (1.65) than the grassland zone (1.05). However, there was no fungal to bacterial ratio trend from the surface horizon to the deeper mineral horizons of the soil profiles. Received: 30 March 2000  相似文献   

2.
Bacterial and fungal contributions to microbial respiration in three beechwood soils rich in C (two basalt soils and one limestone soil) were investigated by using streptomycin and cycloheximide to inhibit substrate-induced respiration after glucose (8000 g g-1), N, and P addition to soil samples. The inhibitors were added as solutions (2000, 8000, and 16000 g g-1) and the reduction in substrate-induced respiration after separate and combined inhibitor addition was measured in an automated electrolytic microrespirometer. Bacterial and fungal contributions to microbial respiration were calculated using the interval 6–10 h after inhibitor application. The microbial biomas was smaller in the two basalt soils (Oberhang and Mittelhang) than in the limestone soil (Unterhang). In the presence of both inhibitors, microbial respiration was inhibited by a maximum of 45, 45, and 25% in the two basalt soils and the limestone soil, respectively. Inhibition of microbial respiration was at a maximum at streptomycin and cycloheximide concentrations of 16000 g g-1. The inhibitor additivity ratio approached 1.0 even at high inhibitor concentrations, indicating high inhibitor selectivity. Calculated prokaryote: eukaryote ratios indicated lower bacterial contributions to the microbial biomass in the Mettelhang (0.74) and Unterhang (0.73) than in the Oberhang (0.88) soil.  相似文献   

3.
 Microcosms were used to determine the influence of N additions on active bacterial and fungal biomass, atrazine and dichlorophenoxyacetic acid (2,4-D) mineralization at 5, 10 and 15 weeks in soils from blackwater and redwater wetland forest ecosystems in the northern Florida Panhandle. Active bacterial and fungal biomass was determined by staining techniques combined with direct microscopy. Atrazine and 2,4-D mineralization were measured radiometrically. Treatments were: soil type, (blackwater or redwater forested wetland soils) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, active bacterial biomass in redwater soils was lower when N was added. Active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. Active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. Active fungal biomass in redwater soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. After 15 weeks of incubation 2,4-D degradation was higher in redwater wetland soils than in blackwater soils. After 10 and 15 weeks of incubation the addition of 200 or 400 kg N ha–1 decreased both atrazine and 2,4-D degradation in redwater soils. The addition of 400 kg N ha–1 decreased 2,4-D degradation but not atrazine degradation in blackwater soils after 10 and 15 weeks of incubation. High concentrations of N in surface runoff and groundwater resulting from agricultural operations may have resulted in the accumulation of N in many wetland soils. Large amounts of N accumulating in wetlands may decrease mineralization of toxic agricultural pesticides. Received: 26 June 1998  相似文献   

4.
 Microcosms were used to determine the influence of N additions on active bacterial and active fungal biomass, cellulose degradation and lignin degradation at 5, 10 and 15 weeks in soils from blackwater and redwater wetlands in the northern Florida panhandle. Blackwater streams contain a high dissolved organic C concentration which imparts a dark color to the water and contain low concentrations of nutrients. Redwater streams contain high concentrations of suspended clays and inorganic nutrients, such as N and P, compared to blackwater streams. Active bacterial and fungal biomass was determined by direct microscopy; cellulose and lignin degradation were measured radiometrically. The experimental design was a randomized block. Treatments were: soil type (blackwater or redwater forested wetlands) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, the active bacterial biomass in redwater soils was lower than in blackwater soils; the active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in redwater wetland soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. Cellulose and lignin degradation was higher in redwater than in blackwater soils. After 10 and 15 weeks of incubation, the addition of 200 or 400 kg N as NH4NO3 ha–1 decreased cellulose and lignin degradation in both wetland soils to similar levels. This study indicated that the addition of N may slow organic matter degradation and nutrient mineralization, thereby creating deficiencies of other plant-essential nutrients in wetland forest soils. Received: 7 April 1999  相似文献   

5.
 In a first experiment, the effect of land use on the uptake rate of atmospheric CH4 was studied in laboratory incubations of intact soil cores. A soil under deciduous forest showed the highest CH4 oxidation. Its overall CH4 uptake during the measuring period (202 days) was 1.03 kg CH4 ha–1. Natural grassland showed the second highest CH4 oxidizing capacity (0.71 kg CH4 ha–1). The overall amount of CH4 uptake by fertilized pasture was 0.33 kg CH4 ha–1. CH4 oxidation in arable soils with different fertilizer treatments varied between 0.34 and 0.37 kg CH4 ha–1. Undisturbed soils had a higher CH4 uptake capacity than agricultural soils. The moisture content of the soil was found to be an important parameter explaining temporal variations of CH4 oxidation. Different methods of fertilization which had been commenced 10 years previously were not yet reflected in the total CH4 uptake rate of the arable soil. In a second experiment, a number of frequently used pesticides were screened for their possible effect on CH4 oxidation. In a sandy arable soil lenacil, mikado and oxadixyl caused significantly reduced CH4 oxidation compared to the control. Under the same conditions, but in a clayey arable soil, mikado, atrazine and dimethenamid caused a reduction of the CH4 uptake. In a landfill cover soil, with a 100-fold higher CH4 oxidation rate, no inhibition of CH4 oxidation was observed, not even when the application rate of pesticides was tenfold higher than usual. Received: 1 December 1998  相似文献   

6.
In the humus horizon of soddy-podzolic soils of postagrogenic cenoses and primary forests, the contributions of the fungi and bacteria were determined by the selective inhibition of the substrate-induced respiration (SIR) by antibiotics; the basal (microbial) respiration and the net-produced nitrous oxide (N2O) were also determined. The procedure of the SIR separation using antibiotics (cycloheximide and streptomycin) into the fungal and bacterial components was optimized. It was shown that the fungi: bacteria ratio was 1.58, 2.04, 1.55, 1.39, 2.09, and 1.86 for the cropland, fallow, and different-aged forests (20, 45, 90, and 450 years), respectively. The fungal and bacterial production of CO2 in the primary forest soil was higher than in the cropland by 6.3 and 11.4 times, respectively. The production of N2O in the soils of the primary and secondary (90-year-old) forests (3 and 7 ng N-N2O/g soil per hour, respectively) was 2–13 times lower than in the postagrogenic cenoses, where low values were also found for the microbial biomass carbon (Cmic), its components (the Cmic-bacteria and Cmic-fungi), and the portion of Cmic in the organic carbon of the soil. A conclusion was drawn about the misbalance of the microbial processes in the overgrown cropland accompanied by the increased production of N2O by the soil during its enrichment with an organic substrate (glucose).  相似文献   

7.
 Soils are a major source of atmospheric NO and N2O. Since the soil properties that regulate the production and consumption of NO and N2O are still largely unknown, we studied N trace gas turnover by nitrification and denitrification in 20 soils as a function of various soil variables. Since fertilizer treatment, temperature and moisture are already known to affect N trace gas turnover, we avoided the masking effect of these soil variables by conducting the experiments in non-fertilized soils at constant temperature and moisture. In all soils nitrification was the dominant process of NO production, and in 50% of the soils nitrification was also the dominant process of N2O production. Factor analysis extracted three factors which together explained 71% of the variance and identified three different soil groups. Group I contained acidic soils, which showed only low rates of microbial respiration and low contents of total and inorganic nitrogen. Group II mainly contained acidic forest soils, which showed relatively high respiration rates and high contents of total N and NH4 +. Group III mainly contained neutral agricultural soils with high potential rates of nitrification. The soils of group I produced the lowest amounts of NO and N2O. The results of linear multiple regression conducted separately for each soil group explained between 44–100% of the variance. The soil variables that regulated consumption of NO, total production of NO and N2O, and production of NO and N2O by either nitrification or denitrification differed among the different soil groups. The soil pH, the contents of NH4 +, NO2 and NO3 , the texture, and the rates of microbial respiration and nitrification were among the important variables. Received: 28 October 1999  相似文献   

8.
 Soil microbial biomass and the emission of CO2 from the soil surface were measured in yellow soils (Ultisols) of the karst areas of southwest China. The soils are relatively weathered, leached and impoverished, and have a low input of plant residues. The measurements were made for a 1-year period and show a reciprocal relationship between microbial biomass and surface CO2 efflux. The highest (42.6±2.8 mg CO2-C m–2 h–1) and lowest (15.6±0.6 mg CO2-C m–2 h–1) CO2 effluxes are found in the summer and winter, respectively. The cumulative CO2 efflux is 0.24 kg CO2-C m–2 year–1. There is also a marked seasonal variation in the amount of soil microbial biomass carbon, but with the highest (644±71 μg C g–1 soil) and lowest (270±24 μg C g–1 soil) values occurring in the winter and summer, respectively. The cumulative loss of soil microbial biomass carbon in the top 10 cm of the soil was 608 μg C g–1 year–1 soil over 17 sampling times. The mean residence time of microbial biomass is estimated at 105 days, suggesting that the carbon in soil microbial biomass may act as a source of the CO2 released from soils. Received: 13 July 1999  相似文献   

9.
 The restoration of soil microbial activities is a basic step in the reclamation of burnt soils. For this reason, the ability of municipal solid waste compost to accelerate the re-establishment of bacterial and fungal populations, as well as to re-establish physical properties in a burnt soil, was evaluated in a field experiment. Four treatments were performed by adding different doses of compost (0, 0.5, 1 and 2 kg compost m–2 soil) to a burnt Calcic Rodoxeralf soil, and the changes in microbial populations, salt content, aggregate stability and bulk density were evaluated for 1 year. Initially, the addition of compost had a negative effect on soil microbial populations, but 3 months after compost addition, the number of viable fungal propagules increased in all the amended soils. This positive effect lasted until the end of the experiment. From 30 days onwards, all the amended soils showed a greater total number of bacterial cell forming units than the unamended burnt soil. Organic amendment increased the percentage of 2- to 4-mm aggregates, although the effect on the stability of the 0.2- to 2-mm aggregates and on bulk density was less noticeable. Received: 24 November 1999  相似文献   

10.
 Phosphorus application decreased the sporulation frequency and number of sporocarps per plant in all the three Azolla species and 21 A. pinnata strains evaluated in this study. The number of megasporocarps tended to be more depressed than the number of microsporocarps. Nevertheless, the sporulation of A. caroliniana was less sensitive to P than that of A. pinnata and A. microphylla. Its sporulation frequency in the mineral medium did not decrease at 2.5 μg P ml–1 and remained unaffected between 5 and 20 μg P ml–1. The sporulation frequency and sporocarp number in this species in the soil culture also were not significantly affected by an increase in the dose of P from 10.7 to 21.4 or 21.4 to 32.1 mg pot–1. Large variations in the degree of inhibition of sporulation due to the application of P (21.4 mg pot–1) also occurred among the A. pinnata strains tested. Received: 20 October 1999  相似文献   

11.
Laboratory incubation study showed that iron pyrites retarded nitrification of urea-derived ammonium (NH4 +), the effect being greatest at the highest level (10000 mg kg–1 soil). Nitrification inhibition with 10000 mg pyrite kg–1 soil, at the end of 30 days, was 40.3% compared to 55.9% for dicyandiamide (DCD). The inhibitory effect with lower rates of pyrite (100–500 mg kg–1) lasted only up to 9 days. Urea+pyrite treatment was also found to have higher exchangeable NH4 +-N compared to urea alone. DCD-amended soils had the highest NH4 +-N content throughout. Pyrite-treated soils had about 7–86% lower ammonia volatilization losses than urea alone. Total NH3 loss was the most with urea+DCD (7.9% of applied N), about 9% more than with urea alone. Received: 11 November 1995  相似文献   

12.
 The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (>60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area. Received: 18 November 1997  相似文献   

13.
Fungal N2O production results from a respiratory denitrification that reduces NO3/NO2 in response to the oxidation of an electron donor, often organic C. Despite similar heterotrophic nature, fungal denitrifiers may differ from bacterial ones in exploiting diverse resources. We hypothesized that complex C compounds and substances could favor the growth of fungi over bacteria, and thereby leading to fungal dominance for soil N2O emissions. Effects of substrate quality on fungal and bacterial N2O production were, therefore, examined in a 44-d incubation after soils were amended with four different substrates, i.e., glucose, cellulose, winter pea, and switchgrass at 2 mg C g−1 soil. During periodic measurements of soil N2O fluxes at 80% soil water-filled pore space and with the supply of KNO3, substrate treatments were further subjected to four antibiotic treatments, i.e., no antibiotics or soil addition of streptomycin, cycloheximide or both so that fungal and bacterial N2O production could be separated. Up to d 8 when antibiotic inhibition on substrate-induced microbial activity and/or growth was still detectable, bacterial N2O production was generally greater in glucose- than in cellulose-amended soils and also in winter pea- than in switchgrass-amended soils. In contrast, fungal N2O production was more enhanced in soils amended with cellulose than with glucose. Therefore, fungal-to-bacterial contribution ratios were greater in complex than in simple C substrates. These ratios were positively correlated with fungal-to-bacterial activity ratios, i.e., CO2 production ratios, suggesting that substrate-associated fungal or bacterial preferential activity and/or growth might be the cause. Considering substrate depletion over time and thereby becoming limited for microbial N2O production, measurements of soil N2O fluxes were also carried out with additional supply of glucose, irrespective of different substrate treatments. This measurement condition might lead to potentially high rates of fungal and bacterial N2O production. As expected, bacterial N2O production was greater with added glucose than with added cellulose on d 4 and d 8. However, this pattern was broken on d 28, with bacterial N2O production lower with added glucose than with added cellulose. In contrast, plant residue impacts on soil N2O fluxes were consistent over 44-d, with greater bacterial contribution, lower fungal contribution, and thus lower fungal-to-bacterial contribution ratios in winter pea- than in switchgrass-amended soils. Real-time PCR analysis also demonstrated that the ratios of 16S rDNA to ITS and the copy numbers of bacterial denitrifying genes were greater in winter pea- than in switchgrass-amended soils. Despite some inconsistency found on the impacts of cellulose versus glucose on fungal and bacterial leading roles for N2O production, the results generally supported the working hypothesis that complex substrates promoted fungal dominance for soil N2O emissions.  相似文献   

14.
 Soil respiration was measured by closed chamber and gradient methods in soils under forest, sown meadow and crops. Annual total soil respiration determined with the closed chamber method ranged from 180 to 642 g CO2-C m–2 year–1 and from 145 to 382 g CO2-C m–2 year–1 determined with the CO2 profile method. Soil respiration increased in the order: cropland<sown meadow<forest. The C balance calculated as the difference between net primary production (sink) and respiration of heterotrophs (source) suggested an equilibrium between the input and output of C in the cropland, and sequestration of 135 and 387 g CO2-C m–2 year–1 in the forest and meadow, respectively. Received: 1 December 1997  相似文献   

15.
 The influence of fertilizer N applied through nitrate and ammoniacal sources on the availability of nitrate, supply of C, and gaseous N losses via denitrification (using acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) was investigated in a growth chamber simulating upland [60% water-filled pore space (WFPS)], nearly saturated (90% WFPS), and flooded (120% WFPS) conditions. The rate of denitrification was very low in the upland soil conditions, irrespective of fertilizer N treatments. Increasing water content to nearly saturated and flooded conditions resulted in four- to sixfold higher rates of denitrification within 2 days, suggesting that the denitrifying activity commences quickly. Results of this study reveal that (1) under restricted aeration, these soils could support high rates of denitrification (∼6 mg N kg–1 day–1) for short periods when nitrate is present; (2) application of fertilizer N as nitrate enhances N losses via denitrification (∼10 mg N kg–1 day–1) – however, the supply of available C determines the intensity and duration of denitrification; (3) when fertilizer N is applied as an ammoniacal form, nitrification proceeds slowly and nitrate availability limits denitrification in flooded soil; (4) the nearly saturated soil, being partially aerobic, supported greater nitrification of applied ammoniacal fertilizer N than flooded soil resulting in higher relative rates of denitrification; and (5) under aerobic soil conditions, 26 mg mineral N kg–1 accumulated in control soil over a 16-day period, demonstrating a modest capacity of such semiarid subtropical soils, low in organic matter, to supply N to growing plants. Received: 7 June 1999  相似文献   

16.
The water-stability of soil and coprolite aggregates in soddy-podzolic soils and the participation of fungi in the formation of water-stable aggregates from earthworm (Aporrectodea caliginosa) coprolites were assessed. The water stability of the soil and coprolite aggregates in the soils increased in the following sequence: potato field—mown meadow—mixed forest. The fungal mycelium reserves increased in the same sequence. The water stability of the coprolite aggregates of Aporrectodea caliginosa inhabiting these soils is 2–2.5 times higher than that of the soil aggregates of the same size (3–5 mm). The inhibition of the growth of fungi by cycloheximide decreased the water stability of the coprolite aggregates, on the average, by 15–20%.  相似文献   

17.
The selective inhibition technique by specific antibiotics (streptomycin, cycloheximide) applied to substrate-induced respiration (SIR) measurement was used to test the relative contribution of fungi to bacteria (F/B ratio) to the overall microflora-induced activity in soils of European Russia. Investigated soils covered a wide climatic transect and different ecosystem types including managed vs. natural ecosystems. Before direct comparison among sites, the antibiotic inhibition technique was optimized for soil characteristics. Once the optimal concentration was set, the combined effect of the two antibiotics resulted in average 60% inhibition of SIR. The analyzed sites (in total 47) including various biomes (tundra, middle taiga, southern taiga, subtaiga, dark coniferous forests outside the boreal region, steppe, mountain forests and arable sites), were characterized by a wide range of soil pHw (3.95–7.95), soil organic carbon (0.69–24.08%), soil microbial biomass carbon (149–5028 µg C g?1 soil) and soil basal respiration (0.24–8.28 µg CO2-C g?1 soil h?1). In all the analyzed sites, a predominance of fungal over bacteria activity was observed with F/B ratios always higher than one (4.9 on average). Natural sites were characterized by higher F/B ratios (on average 5.6) compared to agricultural ones (on average 3.5).  相似文献   

18.
 Accumulation of Zn and its effects on the growth, reproduction and life cycle of the earthworm Drawida willsi were determined. D. willsi did not reveal any significant changes in their mass at any of the concentrations of Zn (50, 200 and 400 mg kg–1) compared to in untreated soils. The Zn concentrations in the exposed earthworms were significantly increased, but they were able to regulate their body content of Zn within a range of 116–125 mg kg–1 (dry wt) in 200–400 mg kg–1 Zn-treated soil. Reproduction was significantly reduced when the Zn concentration in soil exceeded 200 mg kg–1. The drop in reproduction at elevated concentrations of Zn apparently resulted in a delay in completion of the life cycle and a decline in the total population. Received: 9 September 1998  相似文献   

19.
 Microbial populations, biomass, soil respiration and enzyme activities were determined in slightly acid organic soils of major mountainous humid subtropical terrestrial ecosystems, along a soil fertility gradient, in order to evaluate the influence of soil properties on microbial populations, activity and biomass and to understand the dynamics of the microbial biomass in degraded ecosystems and mature forest. Although the population of fungi was highest in the undisturbed forest (Sacred Grove), soil respiration was lowest in the 7-year-old regrowth and in natural grassland (approximately 373 μg g–1 h–1). Dehydrogenase and urease activities were high in "jhum" fallow, and among the forest stands they were highest in the 7-year-old regrowth. Microbial biomass C (MBC) depended mainly on the organic C status of the soil. The MBC values were generally higher in mature forest than in natural grassland, 1-year-old jhum fallow and the 4-year-old alder plantation. The MBC values obtained by the chloroform-fumigation-incubation technique (330–1656 μg g–1) did not vary significantly from those obtained by the chloroform-fumigation-extraction technique (408–1684 μg g–1), however, the values correlated positively (P<0.001). The enzyme activities, soil respiration, bacterial and fungal populations and microbial biomass was greatly influenced by several soil properties, particularly the levels of nutrients. The soil nutrient status, microbial populations, soil respiration and dehydrogenase activity were greater in Sacred Grove, while urease activity was greater in grassland. Received: 14 October 1998  相似文献   

20.
 The composition of soil microbiota in four heated (350  °C, 1 h) soils (one Ortic Podsol over sandstone and three Humic Cambisol over granite, schist or limestone) inoculated (1.5 μg chlorophyll a g–1 soil or 3.0 μg chlorophyll a g–1 soil) with cyanobacteria (Oscillatoria PCC9014, Nostoc PCC9025, Nostoc PCC9104, Scytonema CCC9801, and a mixture of the four) was studied by cultural methods. The aims of the work were to investigate the potential value of cyanobacteria as biofertilizers for accelerating soil recolonization after fire as well as promoting microbiotic crust formation and to determine the microbial composition of such a crust. The inoculated cyanobacteria proliferated by 5 logarithmic units in the heated soils which were colonized very quickly and, after 2 months of incubation, the cyanobacterial filaments and associated fungal hyphae made up a matrix in which surface soil particles were gathered into crusts of up to 1.0 cm in thickness. These crusts were composed, on average, of 2.5×1010 cyanobacteria, 2.8×106 algae, 6.1×1010 heterotrophic bacteria (of which 1.2×108 were acidophilic, 1.3×106 were Bacillus spp. and 1.5×108 were actinomycetes) and 77.8 m fungal mycelium (1.4×106 were fungal propagules) g–1 crust. Counts of most microbial groups were positively correlated to cyanobacterial numbers. The efficacy of treatment depended on both the class of inoculum and the type of soil. The best inoculum was the mixture of the four strains and, whatever the inoculum used, the soil over lime showed the most developed crust followed by the soils over schist, granite and sandstone; however, the latter was comparatively the most favoured by the amendment. In the medium term there were no significant differences between the two inocula rates used. Biofertilization increased counts of cyanobacteria by 8 logarithmic units while heterotrophic bacteria, actinomycetes, algae and fungal propagules rose by >4 logarithmic units, acidophilic bacteria and Bacillus spp. by around 3 logarithmic units and fungal mycelia showed an 80-fold increase. The results showed that inoculation of burned soils with particle-binding diazotrophic cyanobacteria may be a means of both improving crust formation and restoring microbial populations. Received: 8 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号