首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Leaf blight is a common disease affecting Sansevieria trifasciata in many countries, including Malaysia. In the present study, Fusarium isolates were consistently recovered from the diseased leaves collected from various locations throughout the country. Based on morphology and multigene phylogenetic analysis using mitochondrial small subunit (mtSSU), intergenic spacer region (IGS) and translation elongation factor 1-α (TEF1-α) gene sequences, seven Fusarium species were identified, with F. oxysporum being the most prevalent (67.6%) among 34 isolates. Pathogenicity tests resulted in the discovery of pathogenic isolates that belonged to F. oxysporum, F. proliferatum, and F. pseudocircinatum, whereas all isolates of F. brachygibbosum, F. concentricum, F. mangiferae, and F. solani were nonpathogenic. The results suggest that several Fusarium species are accountable for causing disease on S. trifasciata in Malaysia.  相似文献   

2.
In recent years in Finland, Fusarium infections in onions have increased, both in the field and in storage, and Fusarium species have taken the place of Botrytis as the worst pathogens causing post‐harvest rot of onion. To study Fusarium occurrence, samples were taken from onion sets, harvested onions and also from other plants grown in the onion fields. Isolates of five Fusarium species found in the survey were tested for pathogenicity on onion. Fusarium oxysporum was frequently found in onions and other plants, and, of the isolates tested, 31% caused disease symptoms and 15% caused growth stunting in onion seedlings. Fusarium proliferatum, a species previously not reported in Finland, was also identified. Over 50% of the diseased onion crop samples were infected with F. proliferatum, and all the F. proliferatum isolates tested were pathogenic to onion. Thus, compared to F. oxysporum, F. proliferatum seems to be more aggressive on onion. Also some of the F. redolens isolates were highly virulent, killing onion seedlings. Comparison of the translation elongation factor 1α gene sequences revealed that the majority of the aggressive isolates of F. oxysporum f. sp. cepae group together and are distinct from the other isolates. Incidence and relative proportions of the different Fusarium species differed between the sets and the mature bulbs. More research is required to determine to what extent Fusarium infections spoiling onions originate from infected onion sets rather than the field soil.  相似文献   

3.
Root and stem rot (RSR) is a very detrimental disease of vanilla worldwide. Fusarium oxysporum is frequently associated with the disease but other Fusarium species are also reported. In this international study, 52 vanilla plots were surveyed in three of the most important vanilla producing countries (Madagascar, Reunion Island and French Polynesia) in order to determine the aetiology of RSR disease. Subsets from the 377 single‐spored Fusarium isolates recovered from rotten roots and stems in the surveys were characterized by molecular genotyping (EF1α and IGS gene sequences) and pathogenicity assays on Vanilla planifolia and V. ×tahitensis, the two commercially grown vanilla species. Fusarium oxysporum was shown to be the principal species responsible for the disease, representing 79% of the isolates recovered from the RSR tissues, 40% of which induced severe symptoms on inoculated plantlets. Fusarium oxysporum isolates were highly polyphyletic regardless of geographic origin or pathogenicity. Fusarium solani, found in 15% of the samples and inducing only mild symptoms on plantlets, was considered a secondary pathogen of vanilla. Three additional Fusarium species were occasionally isolated in the study (F. proliferatum, F. concentricum and F. mangiferae) but were nonpathogenic. Histopathological preparations observed in wide field and multiphoton microscopy showed that F. oxysporum penetrated the root hair region of roots, then invaded the cortical cells where it induced necrosis in both V. planifolia and V. ×tahitensis. The hyphae never invaded the root vascular system up to 9 days post‐inoculation. As a whole, the data demonstrated that RSR of vanilla is present worldwide and that its causal agent should be named F. oxysporum f. sp. radicis‐vanillae.  相似文献   

4.
Fusarium yellows, caused by the soil‐borne fungus Fusarium oxysporum f. sp. betae (Fob), can lead to significant yield losses in sugar beet. This fungus is variable in pathogenicity, morphology, host range and symptom production, and is not a well characterized pathogen on sugar beet. From 1998 to 2003, 86 isolates of F. oxysporum and 20 other Fusarium species from sugar beet, along with four F. oxysporum isolates from dry bean and five from spinach, were obtained from diseased plants and characterized for pathogenicity to sugar beet. A group of sugar beet Fusarium isolates from different geographic areas (including nonpathogenic and pathogenic F. oxysporum, F. solani, F. proliferatum and F. avenaceum), F. oxysporum from dry bean and spinach, and Fusarium DNA from Europe were chosen for phylogenetic analysis. Sequence data from β‐ tubulin, EF1α and ITS DNA were used to examine whether Fusarium diversity is related to geographic origin and pathogenicity. Parsimony and Bayesian MCMC analyses of individual and combined datasets revealed no clades based on geographic origin and a single clade consisting exclusively of pathogens. The presence of FOB and nonpathogenic isolates in clades predominately made up of Fusarium species from sugar beet and other hosts indicates that F. oxysporum f. sp. betae is not monophyletic.  相似文献   

5.
6.
The pathogen Fusarium oxysporum f. sp. cepae inducing the Fusarium basal rot mainly spreads in warmer cultivation regions due to its adaptibility to high temperature. Meanwhile the pathogen occurs in Germany as well, especially in years with relatively high average temperature during the growing season. Phytopathological investigations of 300 symptomless onion bulbs showed a contamination rate of approximately 10% with regard to Fusarium spp, with F.?oxysporum proving to be the predominant species. Onion sets planted in these fields were latently infected with F.?oxysporum at rates of 19?C98%. Unexpectedly, the contaminated sets did not indispensably lead to a high occurrence of plants exhibiting characteristic symptoms of Fusarium basal rot such as wet and dry rot. Presumably, the development of symptoms is particularly affected by given climatic conditions. The results of pathogenicity tests of isolated Fusarium spp. isolates under controlled conditions support this assumption. The inoculation of the substrate with selected Fusarium spp. isolates resulted in a reduction of emergence by up to 70% under controlled conditions, which are suboptimal with regard to the cultivation of onions. The emergence of plants was not affected by Fusarium spp. under optimal cultivation of onions. However, under optimal cultivation conditions a reduction of plant growth occurred in a subsequent growth stage. Beside F.?oxysporum, F.?proliferatum could be detected in onion bulbs as well as seeds. The proportion of contaminated seeds accounted to 62%. Both species F.?oxysporum and F.?proliferatum proved to be pathogenic in onion although their isolates varied much in their virulence.  相似文献   

7.
The diversity of Fusarium populations in asparagus (Asparagus officinalis L.) decline fields in Japan was estimated by PCR-SSCP (single-stranded conformational polymorphism) analysis of the ITS2 regions of the nuclear rRNA genes. This method was used to rapidly and objectively identify pathogens associated with roots of plants showing symptoms of asparagus decline collected from fields in five regions across Japan. Over 651 fusarial isolates were obtained, and were easily differentiated into three principal species. Fusarium oxysporum f. sp. asparagi was most frequently isolated from the domestic five regions (68%), whereas Fusarium proliferatum (28.6%) was less frequent. Fusarium solani was found much rarely (2.5%). The frequency of isolation of Fusarium proliferatum increased gradually from the north to the south of Japan, though considerable differences were found between fields in each region, as well as regional differences among the Fusarium populations. Most of the fusarial isolates were highly pathogenic in vitro. These results reveal that Fusarium oxysporum f. sp. asparagi and Fusarium proliferatum are important biotic factors which lead to asparagus decline in Japan.  相似文献   

8.
Thirty-two isolates of Fusarium species were obtained from wilted Welsh onion (Allium fistulosum) grown on nine farms from six regions in Japan and identified as F. oxysporum (18 isolates), F. verticillioides (7 isolates), and F. solani (7 isolates). The pathogenicity of 32 isolates was tested on five commercial cultivars of Welsh onion and two cultivars of bulb onion in a seedling assay in a greenhouse. The Fusarium isolates varied in the degree of disease severity on the cultivars. Five F. oxysporum isolates (08, 15, 17, 22, and 30) had a higher virulence on the cultivars than the other isolates. The host range of these five isolates was limited to Allium species. Molecular characterization of Fusarium isolates was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the internal transcribed spacer (ITS) regions of ribosomal DNA. The 32 isolates were grouped into eight types (four types for F. oxysporum, one for F. verticillioides, and three for F. solani). Restriction patterns of the ITS region were not related to pathogenicity. However, the haplotypes obtained with five enzymes (RsaI, HinfI, HaeIII, ScrFI, and MspI) and the phylogenetic analysis permitted the discernment of the three Fusarium species. The PCR-RFLP analysis should provide a rapid, simple method for differentiating Fusaruim species isolated from wilted Welsh onion in Japan.  相似文献   

9.
Fusarium is one of the most destructive fungal genera whose members cause many diseases on plants, animals, and humans. Moreover, many Fusarium species secrete mycotoxins (e.g. trichothecenes and fumonisins) that are toxic to humans and animals. Fusarium isolates from date palm trees showing disease symptoms, e.g. chlorosis, necrosis and whitening, were collected from seven regions across Saudi Arabia. After single-sporing, the fungal strains were morphologically characterized. To confirm the identity of morphologically characterized Fusarium strains, three nuclear loci, two partial genes of translation elongation factor 1 α (tef1α) and β-tubulin (tub2), and the rDNA-ITS region, were amplified and sequenced. Of the 70 Fusarium strains, 70 % were identified as F. proliferatum that were recovered from six regions across Saudi Arabia. Fusarium solani (13 %), as well as one strain each of the following species: F. brachygibbosum, F. oxysporum, and F. verticillioides were also recovered. In addition, five Fusarium-like strains were recognized as Sarocladium kiliense by DNA-based data. The preliminary in vitro pathogenicity results showed that F. proliferatum had the highest colonization abilities on date palm leaflets, followed by F. solani. Although F. oxysporum f. sp. albedinis is the most serious date palm pathogen, F. proliferatum and F. solani are becoming serious pathogens and efforts should be made to restrict and control them. In addition, the potential toxin risks of strains belonging to F. proliferatum should be evaluated.  相似文献   

10.
The aim of this research was to study levels of resistance to Fusarium basal rot in onion cultivars and related Allium species, by using genetically different Fusarium isolates. In order to select genetically different isolates for disease testing, a collection of 61 Fusarium isolates, 43 of them from onion (Allium cepa), was analysed using amplified fragment length polymorphism (AFLP) markers. Onion isolates were collected in The Netherlands (15 isolates) and Uruguay (9 isolates), and received from other countries and fungal collections (19 isolates). From these isolates, 29 were identified as F. oxysporum, 10 as F. proliferatum, whereas the remaining four isolates belonged to F. avenaceum and F. culmorum. The taxonomic status of the species was confirmed by morphological examination, by DNA sequencing of the elongation factor 1-α gene, and by the use of species-specific primers for Fusarium oxysporum, F. proliferatum, and F. culmorum. Within F. oxysporum, isolates clustered in two clades suggesting different origins of F. oxysporum forms pathogenic to onion. These clades were present in each sampled region. Onion and six related Allium species were screened for resistance to Fusarium basal rot using one F. oxysporum isolate from each clade, and one F. proliferatum isolate. High levels of resistance to each isolate were found in Allium fistulosum and A. schoenoprasum accessions, whereas A. pskemense, A. roylei and A. galanthum showed intermediate levels of resistance. Among five A. cepa cultivars, ‘Rossa Savonese’ was also intermediately resistant. Regarding the current feasibility for introgression, A. fistulosum, A. roylei and A. galanthum were identified as potential sources for the transfer of resistance to Fusarium into onion.  相似文献   

11.
The mechanism by which Fusarium diseases of cymbidium plants are suppressed by a weakly virulent strain HPF-1 of Fusarium sp. was studied. Strain HPF-1 produced microscopic, necrotic local lesions on cymbidium leaves, causing minor damage to palisade tissues at the infection sites. This weakly virulent strain remained near the site of infection and did not develop further. It systemically and nonselectively suppressed some diseases of cymbidium such as yellow spot of leaves caused by Fusarium proliferatum and F. fractiflexum, bulb and root rot caused by F. oxysporum, and dry rot of bulbs and roots caused by F. solani. Because endogenous salicylic acid levels increased in cymbidium leaves inoculated with strain HPF-1, the mechanism of disease suppression is thought to be systemic acquired resistance.  相似文献   

12.
A decline of unknown aetiology has become a major problem for commercial orchid production in Hawaii, one of the primary orchid‐producing states in the USA. The major symptoms of decline include root degradation, foliar blight, pseudobulb rot and sheath rot. It was unclear whether all these symptoms are caused by the same or different pathogens, but preliminary research indicated that Fusarium species may be involved. In this study, the incidence of Fusarium species was examined across 186 plants, from 29 orchid genera and intergeneric hybrids across three islands in the state of Hawaii. The main five species associated with diseased orchids were F. proliferatum (38% of samples), F. solani (16%), F. oxysporum (16%) and two previously undescribed species (8% for both species combined). The two undescribed species were similar in appearance to F. subglutinans, and were designated FS‐A and FS‐B. Pathogenicity tests established that both F. proliferatum and FS‐B caused foliar spots, foliar blight and pseudostem rot on Dendrobium orchids, and that F. proliferatum isolates from diseased tissue of several genera could also induce symptoms on Dendrobium orchids. Although orchids have increasing importance in floriculture, relatively little is known about orchid pathogens, and previous studies focused primarily on Cymbidium and Phalaenopsis. This study provides new information concerning Dendrobium orchid pathogens and suggests a much wider host range than previously recognized for the five Fusarium species recovered from tissue with symptoms. These findings can contribute to better management of Fusarium diseases, which represent a significant challenge to orchid production in Hawaii.  相似文献   

13.
A selective agar medium based on macerated date fruits was developed for the isolation, enumeration and morphological identification of Fusarium proliferatum from soil and from infected tissues of various plants (including: onion bulbs, corn ears and stems, and various weed tissues). The selective date medium enhances the formation of polyphialide and longer chains of conidia for better separation from other related Fusarium species which also grow and proliferate on this medium. Furthermore, the date medium enables microscopic distinction among other closely related Fusarium species, e.g. F. oxysporum and F. verticillioides. Fruits of the date cultivars Medjoul and Deglet Noor provided the most useful results as compared with other cultivars tested. The date medium can serve as a selective medium for direct isolation and enumeration of F. proliferatum, as it suppresses the development of other soil fungi and plant pathogens such as Macrophomina phaseolina, Sclerotium rolfsii and Rhizoctonia solani, as well as bacteria.  相似文献   

14.
Yellowing disease is one of the most important diseases of black pepper (Piper nigrum L.). To characterize the pathogen(s) responsible for yellowing disease of black pepper in Malaysia, 53 isolates of Fusarium were collected from the roots of diseased black pepper plants and from rhizosphere soils from major growing areas in Sarawak and Johor. A total of 34 isolates of F. solani and 19 isolates of F. proliferatum were obtained and identified based on morphological characteristics and molecular techniques. DNA sequencing of the internal transcribed spacers (ITS1 and ITS2) and 5.8S ribosomal DNA regions was conducted to identify Fusarium species. Nucleotide sequence analysis of the ITS regions revealed that this molecular technique enabled identification of Fusarium at the species level as F. solani and F. proliferatum. In a pathogenicity test on 3-month-old black pepper plants, F. solani was pathogenic, but F. proliferatum was not. On the basis of morphology, DNA sequences and pathogenicity of the fungal isolates from the diseased plants, we showed that yellowing disease on black pepper is caused by F. solani  相似文献   

15.
Four-hundred-sixty-eightFusarium andFusarium-like isolates were obtained from crowns and subcrown internodes of winter wheat grown in Erzurum, Turkey. Of these isolates, 34.8% wereFusarium acuminatum, 32.3% wereF. equiseti, 16.9% wereF. oxysporum, 15.0% wereMicrodochium nivale (formerlyFusarium nivale), 0.6% wereF. tabacinum and 0.4% wereF. solani. In pathogenicity tests on wheat, the highest disease severity was caused by isolates ofM. nivale, whereas isolates ofF. acuminatum, F. equiseti, F. oxysporum andF. solani were slightly virulent; isolates ofF. tabacinum were nonpathogenic. This is the first report ofM. nivale andF. tabacinum from wheat in Turkey. http://www.phytoparasitica.org posting Jan. 29, 2003.  相似文献   

16.
Fusarium fujikuroi is a species of the Gibberella fujikuroi species complex (GFSC) and the causal agent of bakanae disease on rice. Even if F. fujikuroi is the most abundant Fusarium species found on rice, other species can also be isolated from rice, such as F. proliferatum. Multiple alignment of translation elongation factor (TEF) gene sequences of different Fusarium spp., showed a deletion of six nucleotides in F. fujikuroi sequence and a two nucleotide polymorphism in the same region of F. proliferatum sequence. These elements of variability were used to develop a conventional and Real-Time PCR assay for diagnosis. The species specific primer pairs (Fuji1F/TEF1R and Proli1F/TEF1R) gave a product of 179 and 188?bp for F. fujikuroi and F. proliferatum respectively. Primer specificity was confirmed by analyzing the DNA of the most representative species of the GFSC and 298 strains of Fusarium spp. isolated from rice plants and seeds in Italy. The specific primers were also successfully used to detect fungal presence directly from infected rice tissues and seeds, providing a rapid tool for the early detection of pathogen contamination.  相似文献   

17.
The Fusarium species complex of maize kernels and stem pieces as well as mycotoxin contamination of commercial grain maize hybrids for animal feed were evaluated in Switzerland. Throughout 2 years, natural Fusarium infection varied significantly between the years and the locations and it ranged from 0.4% to 49.7% for kernels and from 24.2% to 83.8% for stem pieces. Using the agar plate method, 16 different Fusarium species were isolated from kernels and 15 from stem pieces. The Fusarium species composition, prevalence and impact differed between the north and the south and between kernel and stem piece samples. The dominant species on kernels in the north were F. verticillioides (32.9%), F. graminearum (31.3%), F. proliferatum (7.3%) and F. crookwellense (7.1%), in the south F. verticillioides (57.1%), F. subglutinans (24.6%), F. proliferatum (14.8%) and F. graminearum (1.5%) and on stem pieces F. equiseti (36.0%), F. verticillioides (20.1%), F. graminearum (9.5%), F. crookwellense (6.2%) and F. subglutinans (6.2%). In the south, fumonisin concentration of most hybrids exceeded guidance values for animal feed. Other Fusarium species isolated were F. avenaceum, F. culmorum, F. oxysporum, F. poae, F. sambucinum, F. semitectum, F. sporotrichioides, F. solani, F. tricinctum and F. venenatum. Maize hybrids varied in their susceptibility to Fusarium infection. Because of the high diversity of Fusarium species encountered in Switzerland representing a high toxigenic potential, we propose to screen maize hybrids for resistance against various Fusarium species and examine maize produce for several mycotoxins in order to ensure feed safety.  相似文献   

18.
Fusarium proliferatum can occur on a wide range of economically important vegetable plants but its role in disease is not always well established. In 2000 and 2001, from forty-one field samples of wilting onion and garlic plants in Serbia, F. proliferatum as the predominant fungal species was isolated from root and bulbs. Seventy isolates were firstly characterized for their sexual fertility and were shown to be mostly members of Gibberella intermedia (sixty-seven of seventy isolates, the remaining three isolates were unfertile), the sexual stage of F. proliferatum (syn. mating population D of G. fujikuroi complex). A selected set of eleven F. proliferatum isolates from both hosts were also tested for their pathogenicity and toxigenicity. Although onion and garlic plants were susceptible to all isolates, onion plants showed a significantly higher disease severity index. Six of the eleven isolates of F. proliferatum produced fumonisin B1 from 25 to 3000 μg g−1, and beauvericin from 400 to 550 μg g−1; ten isolates produced fusaric acid from 80 to 950 μg g−1 and moniliformin from 50 to 520 μg g−1. Finally, all isolates produced fusaproliferin up to 400 μg g−1. These results confirm F. proliferatum as an important pathogen of garlic and onion in Europe and that there is a potential mycotoxin accumulation risk in contaminated plants of both garlic and onion.  相似文献   

19.
为明确引起甘肃省兰州百合主产区百合枯萎病的致病镰孢菌种类,对从百合主产区枯萎病罹病植株上分离纯化的4株镰孢菌株进行形态学鉴定、分子生物学鉴定以及致病性测定,同时利用电子显微镜对尖孢镰孢菌Fusarium oxysporum侵入百合鳞片后的细胞超微结构进行观察。结果表明:4株镰孢菌菌株经鉴定分别为尖孢镰孢菌、茄病镰孢菌F. solani、三线镰孢菌F. tricinctum和燕麦镰孢菌F. avenaceum。4株镰孢菌菌株的致病力由强到弱的顺序依次是尖孢镰孢菌、燕麦镰孢菌、茄病镰孢菌、三线镰孢菌;尖孢镰孢菌侵入后,鳞片细胞壁、细胞质膜和细胞核结构被破坏,细胞核附近出现大量线粒体,细胞中淀粉粒数量减少。表明尖孢镰孢菌是兰州百合枯萎病防治的重点防控对象。  相似文献   

20.
This is the first report of a disease of Chinese chive caused by Fusarium proliferatum. Because the symptoms are similar to those of the bulb rot (kampu-byo in Japanese) caused by F. oxysporum, we propose F. proliferatum as another causal agent of bulb rot of Chinese chive. Symptoms are wilting of leaves and brown rot on the basal bulbs of Chinese chive. A Fusarium sp., frequently isolated from symptomatic plants, produced identical symptoms on Chinese chive after inoculation, and was reisolated from the diseased plants. The fungus was identified as F. proliferatum based on morphological, cultural, and molecular characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号