首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract

The effect of NaCl stress on the growth, membrane permeability, anti-oxidant enzyme activities and ion content of cucumber seedlings was investigated. Two cultivars (Jinchun No. 2, a relatively salt-sensitive cultivar, and Zaoduojia, a relatively salt-tolerant cultivar) of cucumber were used. Shoot and root dry weights, plant height, stem diameter, leaf area and leaf number of both cultivars decreased when NaCl concentrations increased. The decreases in shoot and root dry weights and leaf area were more significant in Jinchun No. 2 than in Zaoduojia. Meanwhile, the salt injury index, the membrane permeability, malondialdehyde (MDA) contents, superoxide dismutase (SOD) and peroxidase (POD) activities of both cultivars increased significantly with salt stress, and the increases in the salt injury index and MDA were higher in Jinchun No. 2 than in Zaoduojia, whereas the increase in POD activity was lower in Jinchun No. 2 than in Zaoduojia. Free proline content of Zaoduojia increased markedly with increasing concentrations of NaCl, whereas the content of Jinchun No. 2 was unaffected by salt stress. In addition, the contents of Na+ in the leaf, stem and root of both cultivars increased significantly, whereas the contents of K+ decreased significantly, resulting in an increase in the Na+/K+ ratio when NaCl concentrations increased. These results suggest that Zaoduojia exhibits a better protection mechanism against oxidative damage and lipid peroxidation by maintaining higher proline content and POD activity than the salt-sensitive Jinchun No. 2 cultivar.  相似文献   

2.
Abstract

A salt-sensitive cucumber cultivar “Jinchun No. 2” (Cucumis sativus L.) was used to investigate the role of proline in alleviating salt stress in cucumber. Proline was applied twice (day 0 and day 4 after salt treatment) as a foliar spray, with a volume of 25?mL per plant at each time. Plant dry weight, leaf relative water content, proline, malondialdehyde (MDA), Na+, K+ and Cl? contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in the plants were determined at day 8 after salt treatment. The results showed that 100?mmol?L–1 NaCl stress significantly decreased plant dry weight, leaf relative water and K+ contents, and increased leaf MDA, Na+ and Cl? contents and SOD, POD, CAT and APX activities. However, leaf proline accumulation was not affected by salinity. The exogenous application of proline significantly alleviated the growth inhibition of plants induced by NaCl, and was accompanied by higher leaf relative water content and POD activity, higher proline and Cl? contents, and lower MDA content and SOD activity. However, there was no significant difference in Na+ and K+ contents or in CAT and APX activities between proline-treated and untreated plants under salt stress. Taken together, these results suggested that the foliar application of proline was an effective way to improve the salt tolerance of cucumber. The enhanced salt tolerance could be partially attributed to the improved water status and peroxidase enzyme activity in the leaf.  相似文献   

3.
采用营养液栽培,研究了以中国南瓜“360-3×112-2”杂交种和黑籽南瓜为砧木,以“津春2号”为接穗的2种嫁接黄瓜和“津春2号”自根黄瓜成株期在 80 mmol/L NaCl 胁迫12 d 后的生长状况和光合能力,以及试验期间叶片氮素代谢及其关键酶活性的动态变化。结果表明,NaCl 胁迫12 d 后以中国南瓜“360-3×112-2”杂交种为砧木嫁接黄瓜植株的主蔓生长速率、第一片功能叶面积、全株鲜重和光合参数均高于自根黄瓜和以黑籽南瓜为砧木的嫁接黄瓜; 且以“360-3×112-2”杂交种为砧木嫁接黄瓜的生长状况好于以黑籽南瓜为砧木的嫁接黄瓜。NaCl 胁迫处理植株叶片中硝态氮、铵态氮含量、谷氨酰胺合成酶(Gs)活性和可溶性蛋白含量比对照先高后低; 而硝酸还原酶(NR)活性先低后回升,但仍低于对照,说明NaCl 胁迫下,黄瓜叶片氮素代谢能力的降低。不同处理氮素代谢能力的差异其原因在于根系吸收氮源的能力差异。NaCl 胁迫对以“360-3×112-2”杂交种为砧木的黄瓜植株生长抑制较小,氮素代谢能力下降较少,表现出较强的耐盐性,可以作为一个黄瓜耐盐砧木在生产上使用。  相似文献   

4.
Tolerance of gerbera (Gerbera jamesonii L.) to long-term sodium chloride (NaCl) salt stress was evaluated by subjecting plants to 0, 10, 20, 30 and 40 mM NaCl levels for ten weeks. Increased NaCl led to a significant decrease in leaf and stem biomass. Salt stress significantly affected sodium (Na+), potassium (K+) concentrations in leaves, stems and roots leading to sharp declines in K+/Na+ ratios. Magnesium concentrations in stems and roots also showed significant declines. Adverse effect of salt stress on chlorophyll content was also significant. Proline seemed less effective in osmotic adjustment under long-term high salt stress. Switching from vegetative to reproductive growth phase was crucial for certain physiological functions. Leaf Na+ concentration showed significant correlation with important traits. These data suggest that NaCl threshold level in irrigation water for gerbera is around 10 mM. Leaf fresh weight, chlorophyll content and leaf K+/Na+ ratio are promising indicators of salt-sensitivity of gerbera.  相似文献   

5.
In the course of investigations on the impact of salinity on mineral ion transport in differentially salt susceptible soybeans (“Lee” and “Jackson”) short-term experiments were conducted to elucidate the distribution pattern of Na+ and some other cations. The results showed that low salinity (7.5 mM NaCl) did not induce varietal differences in Na+ content during a 30 hrs uptake period. At 66.5 mM NaCl, however, the Na+ contents increased more in the leaves of the salt sensitive variety “Jackson” than in “Lee”. Both soybean varieties retained Na+ in the proximal root and stem. Furthermore, they extruded considerable amounts of Na+ from the roots to the medium. Increasing the level of salinity in the solution substantially reduced the Ca2+ uptake of both soybean varieties. In an experiment with the salt sensitive variety under constant salinity but increasing Ca2+ concentration in the medium, the plants showed a reduction in Na+ uptake and translocation to stem and leaves and an enhanced Ca2+ uptake and translocation to the shoots. It is suggested that the injury observed in “Jackson” after salt treatment is not only related to the insufficient control of Cl? transport. At higher salinity levels the increasing accumulation of Na+ in the leaves and the varietally independant depression of Ca2+ uptake and translocation may enhance the development of leaf necrosis.  相似文献   

6.
To investigate the influence of potassium (K+) on the salinity tolerance of Chinese cabbage (Brassica pekinensis Rupr.) seedlings, the plants were cultured at three K+ levels (0, 5, or 10?mM), under normal (0?mM NaCl) and high-salt (100?mM NaCl) conditions. The results indicated that the dry weight of Chinese cabbage increased with the application of K+ under salt stress. Addition of K+ increased K+ concentrations and suppressed sodium (Na+) concentration, which eventually increased the K+/Na+ ratios in roots or shoots. Application of K+ enhanced the uptake of K+ and suppressed the uptake of Na+. Moreover, the ratios of shoot-K+/root-K+ increased considerably, but the ratios of shoot-Na+/root-Na+ decreased in response to K+ application. It was concluded that the application of K+ could enhance the salt stress tolerance in Chinese cabbage because more K+ than Na+ was absorbed and translocated from roots to shoots.  相似文献   

7.
Plant dry matter accumulation rate (DMAR), relative water content (RWC), electrolyte leakage percentage (ELP), chlorophyll content, osmotic adjustment ability (OAA), and osmotica accumulation in leaves of sunflower (Helianthus annuus L.) seedlings under different levels of dehydration and salinity stress induced by iso-osmotic PEG (polyethylene glycol) or sodium chloride (NaCl) were evaluated. Plants were subjected to four stress treatments for 10 days: ?0.44 MPa PEG6000, ?0.44 MPa NaCl, ?0.88 MPa PEG6000, ?0.88 MPa NaCl. Results showed that PEG and NaCl treatments decreased the plant's DMAR and RWC, and NaCl treatments had more severe inhibitory effect on the plants than PEG treatments. Leaf ELP in sunflower seedlings increased after NaCl and PEG treatments. However, leaf ELP under salt stress was higher than that under dehydration stress (PEG treatment). All stress treatments increased OAA in plant leaves. Leaf OAA was enhanced significantly as PEG concentration increases, while leaf OAA was less enhanced at higher concentration of NaCl. OAA of sunflower leaves under dehydration stress was due to an increase in potassium (K+), calcium (Ca2+), amino acid, organic acid, magnesium (Mg2+), and proline content. OAA of sunflower leaves under moderate salt stress was owing to an increase in K+, chlorine (Cl?), amino acid, organic acid, sodium (Na+), and proline content, and was mainly due to an accumulation of K+, Cl?, Na+, and proline under severe salt stress.  相似文献   

8.
Soybean plants, varieties “Lee”, “Jackson” and “Bragg” were grown in solution culture at various salinity levels. A NaCl concentration of 10 mM was already inhibitory to growth of “Jackson”; growth of “Lee”, however, was only reduced at a salt concentration of 50 mM or higher. The moderately salt tolerant variety “Lee” efficiently excluded Cl? from the leaves up to about 50 mM NaCl in the medium, but showed high Cl? contents in the root; exclusion of Na+ from the leaves was also apparent in this variety. On the other hand, the salt sensitive variety “Jackson” did not have the capacity for exclusion of Cl? and Na+. The physiological behaviour of the variety “Bragg” resembled that of “Jackson”. It is suggested that the exclusion of Cl? and Na+ from the leaves in the soybean variety “Lee” is regulated by the root.  相似文献   

9.
The effects of NaCl salt (EC = 16 dS m−1) on water potential, and accumulation of proline, Na+ and K+ in leaves on the main stem of 30 wheat cultivars (Triticum aestivum L.) at awn appearance and 20 days after anthesis (20 DAA) were evaluated in a greenhouse experiment. Plants were arranged in a according to a randomized complete block design with factorial treatments in three replications. Proline accumulation at 20 DAA increased with increasing salt stress. This increase was 27.4-fold with the salt-sensitive cultivar “Ghods,” while the mean was 5.2-fold for 19 salt-resistant cultivars. Positive correlations between proline, and K+ + Na+ concentrations associated with higher sensitivity to salt stress indicated that proline may not have a protecting role against salt stress. No correlation was observed between leaf proline and water potential. Almost no contribution to the osmotic adjustment seems to be made by proline. The contribution made by proline to the osmotic adjustment of plants at 20 DAA was 0.69 bar, whereas that made by K+ and Na+ was 2.11 and 4.48 bar, respectively. The 30 wheat CVs used in this experiment showed different performances regarding the traits observed. Eleven of them showing the higher stress sensitivity indices had the highest level of proline and Na+ concentrations. They were considered to be salt-sensitive cultivars. Among the others, nine cultivars showed salt tolerance with almost the same Na+ and proline concentrations, but a higher K+/Na+ selectivity of ions from leaf to grains. In 10 of the cultivars, Na+ and proline concentrations were low, indicating the presence of a salt avoiding mechanism.  相似文献   

10.
不同供氮形态下油菜幼苗对盐胁迫的响应   总被引:3,自引:2,他引:1  
为比较不同供氮形态下油菜对盐胁迫的响应,通过供应铵态氮和硝态氮,探讨盐胁迫对油菜幼苗生物量、 光合作用、 离子含量等的效应。结果表明: 非盐胁迫条件下的硝态氮处理的植株生物量和叶片光合参数均显著高于其它处理; 在盐胁迫条件下,两种供氮形态处理油菜的生长和光合均受到明显抑制,其中铵态氮处理表现的抑制效应较显著,且其光合抑制主要来自气孔限制。在两种供氮条件下,盐胁迫使得植株Na+浓度均显著增加,其中铵态氮处理的叶片和叶柄中Na+浓度的增幅大于硝态氮处理,而其根中Na+浓度则小于硝态氮处理。盐胁迫导致两种供氮形态下整株和叶柄中K+浓度均显著降低,而在根中,则只造成硝态氮处理的K+浓度的显著降低。在整株水平上,盐胁迫下铵态氮处理的K+ 、 Na+的选择性比率(SK,Na)要显著低于硝态氮处理。综上,在盐胁迫条件下,硝态氮处理对K+吸收维持较高的相对选择性是其耐盐性高于铵态氮处理的重要原因。  相似文献   

11.
盐胁迫下柚实生苗生长、矿质营养及离子吸收特性研究   总被引:7,自引:1,他引:7  
以坪山柚为材料,对盐胁迫下实生苗生长、矿质营养及离子吸收特性进行了研究。结果表明,沙培30d,80~200mmol/L盐胁迫,随盐浓度提高,坪山柚实生苗株高、叶面积、地上部干重和根部干重明显降低。溶液培养8d,坪山柚实生苗地上部及根Na+、Cl-含量随盐浓度的增加而增加,根及地上部K+、Ca2+、Mg2+以及P和Mn含量下降,Fe、Zn、Cu含量的变化因器官而异。其中,地上部Fe含量对盐胁迫敏感,可作为柚耐盐性鉴定指标。40mmol/L盐胁迫,坪山柚地上部K+/Na+、Ca2+/Na+、Mg2+/Na+值均显著下降,且Mg2+/Na+值+/Na+值>1;浓度≥160mmol/L盐胁迫,K+/Na+值+吸收、运转效率比Cl-高。  相似文献   

12.
Olive (Olea europaea L cv. Leccino and cv. Frantoio) plants grown in aeroponic cultivation system were supplied with Hoagland solutions containing 0 and 150 mM NaCl for 4 weeks. Sodium (Na+), chloride (Cl), and potassium (K+) concentration was measued on 15‐day‐old leaves and K+/Na+ selectivity ratio was calculated. Plant water relations were estimated on the same leaves by measuring leaf bulk water and osmotic potentials, and by calculating leaf turgor pressure. Root and leaf tissues were also analysed for lipid composition, estimating free sterol (FS), glycolipid (GL) and phospholipd (PL) content. The salt‐sensitive Leccino accumulated more Na+ and Cl in the leaves and showed a lower K+/Na+ selectivity ratio than the salt‐tolerant Frantoio. The FS/PL ratio and the content of GL (namely mono‐galactosyldiglyceride, MGDG) in the roots were related to the salt accumulation in the shoot. Salinity‐induced changes on root lipids were more important in Frantoio than in Leccino, indicating the specific role of the roots in salt exclusion mechanisms. Conversely the effect of salinity on leaf lipid composition was more important in the leaves of the salt‐sensitive Leccino.  相似文献   

13.
ABSTRACT

The present work was aimed at determining the limits of tolerance to sodium chloride (NaCl) of a halophyte, Beta macrocarpa Guss (wild Swiss chard). Five week-old plants were cultivated with a nutritive solution to which was added 0, 100, 200, and 300 mM NaCl. Plants were harvested after four weeks of treatment. The growth (fresh and dry weight, leaf surface area, and leaf number), water contents, and the mineral composition (meq · g?1 DW) of roots and leaves (reduced nitrogen (N), K+, Ca2 +, Na+, Cl?) were determined on individual plants. Results show that Beta macrocarpa can tolerate up to 200 mM NaCl. A significant decrease in biomass production (to 50% of control) was observed only for 300 mM NaCl. In the latter treatment, leaf mean surface area was 25% of control. The shoot-to-root ratio was not changed. Leaf hydration was not modified by salt treatment. This ability of the plant to maintain the hydric equilibrium of its leaves seemed associated with an efficient intracellular compartmentalization of Na+ and Cl? ions. Salt treatment had little effect on N content (80% of control), but decreased significantly K+ and Ca2 + contents. These three essential elements could be limiting for growth of leaves and roots of plants challenged by NaCl.  相似文献   

14.
【目的】土壤盐碱化是制约农作物产量的主要因素之一,盐胁迫影响养分运输和分布,造成植物营养失衡,导致作物发育迟缓,植株矮小,严重威胁着我国的粮食生产。在必需营养元素中,氮素是需求量最大的元素,NO-3和NH+4是植物吸收氮素的两种离子形态。植物对盐胁迫的响应受到不同形态氮素的调控,研究不同形态氮素营养下植物的耐盐机制对提高植物耐盐性及产量具有重要的意义。【方法】本文以喜硝植物油菜(Brassica napus L.)和喜铵植物水稻(Oryza sativa L.)为试验材料,采用室内营养液培养方法,研究了NO-3和NH+4对Na Cl胁迫下油菜及水稻苗期生长状况、对Na+运输和积累的影响,以对照与盐胁迫植株生物量之差与Na+积累量之差的比值,评估Na+对植株的伤害程度。【结果】1)在非盐胁迫条件下,硝态氮营养显著促进油菜和水稻根系的生长;盐胁迫条件下,油菜和水稻生物量均显著受到抑制,Na Cl对供应铵态氮营养植株的抑制更为显著。2)盐胁迫条件下,两种供氮形态下,油菜和水稻植株Na+含量均显著增加,硝态氮营养油菜叶柄Na+显著高于铵态氮营养,叶柄Na+含量/叶片Na+含量大于铵营养油菜,硝态氮营养水稻根系Na+含量显著低于铵营养,地上部则相反。3)铵营养油菜和水稻Na+伤害度显著高于硝营养植株。4)盐胁迫条件下,硝态氮营养油菜地上部和水稻根系K+含量均显著高于铵态氮营养。5)盐胁迫条件下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株。【结论】与铵营养相比,硝营养油菜和水稻具有更好的耐盐性。硝态氮处理油菜叶柄Na+显著高于铵态氮处理,能够截留Na+向叶片运输。同时,供应硝态氮营养更有利于油菜和水稻吸收K+,有助于维持植物体内离子平衡。盐胁迫下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株,表明硝态氮营养油菜和水稻木质部-韧皮部对离子有较好的调控能力,是其耐盐性高于铵营养的原因之一。  相似文献   

15.
The salinity tolerance of loquat grafted onto anger or onto loquat was studied. The plants were irrigated using solutions containing 5, 25, 35, 50, or 70 mM sodium chloride (NaCl) for five months. Different parameters of vegetative growth were studied, all of them showing that plants grafted onto loquat are much less salinity-tolerant than those grafted onto anger. Thus, the concentration of NaCl that produced a growth reduction of 50% (C50) for the growth parameters of the shoot was around 35 mM for loquat plants grafted onto loquat. With the NaCl levels employed, loquat-anger plants did not reach the C50. Lower chloride (Cl?) and sodium (Na+) uptake, higher potassium (K+)-Na+ selectivity and a lower reduction in the leaf magnesium (Mg2+) concentration for the loquat-anger combination can explain the higher salinity tolerance compared to loquat-loquat.  相似文献   

16.
Two cultivars ("Spirit”; and “Jubileo") of maize (Zea mays L.) were studied to compare their response to various levels of potassium (K+) (0.1, 1, and 6 mol/m3) and sodium chloride (NaCl) (0 and 50 mol/m3) in nutrient solutions with 16 h photoperiod, day/night temperature regime of 25/20°C, and a photon flux density of 380 nmol/m2/sec. ‘Spirit’ produced about 1.5 times more biomass than ‘Jubileo’ at 6 mol/m3 K+in the control treament, while at 0.1 mol/m3 K+ the growth of both cultivars was similar. Plant fresh weight was reduced by 20% in ‘Spirit’ and by 30% in ‘Jubileo’ with 50 mol/m3 NaCl and 6 mol/m3 K+. Growth reduction of maize plants by salinity was associated with an excessive accumulation of sodium (Na+) and chloride (Cl) rather than an effect on water relations. The higher salt tolerance of ‘Spirit’ can be related to its greater capacity to exclude Na+ and Cl from the leaves and to maintain a higher K+/Na+ ratio. Increasing the K+ supply in the rooting media did not improve growth reduction imposed by the 50 mol/m3 NaCl treatment. ‘Jubileo’ had a lower turgor potential than ‘Spirit’. High concentrations of Na+ in the leaves may help to maintain turgor, but cannot substitute for K+ to give adequate growth of maize. The accumulation in leaf tissue of inorganic ions was sufficient for osmotic adjustment in both cultivars and no single organic solute appears to be important in this process.  相似文献   

17.
Thirty eight accessions of brown mustard (Brassica juncea (L.) Czern. and Coss.) were screened after two weeks growth in solution culture containing 120 mol m‐3 NaCl. Considerable variation for salt tolerance was observed in this set of germplasm, since some accessions showed relatively vigorous growth in saline medium.

In order to determine the consistency of degree of salt tolerance at different growth stages of crop life cycle two salt tolerant accessions, P‐15 and KS‐51 and two salt sensitive 85362 and 85605 were tested at the adult stage in 0(control), 100 and 200 mol m‐3 NaCl. Both the tolerant accessions produced significantly greater fresh and dry biomass and had considerably higher seed yield than those of the salt sensitive accessions. Analysis of different ions in the leaves showed that salt tolerant accessions contained greater amounts of Na+, K+ and Ca2+ than the salt sensitive accessions, although they did not differ significantly for leaf Cl. Only one salt tolerant accession P‐15 had greater leaf K/Na ratio and K+ versus Na+ selectivity compared with the tolerant KS‐51 and the two salt sensitive accessions.

From this study it was established that there is a considerable variation for salt tolerance in B.juncea which can be exploited by selection and breeding for improvement of its salt tolerance. Since the degree of salt tolerance in B.juncea does not change at different growth stages of the crop life cycle, selection for salt tolerance at the initial growth stages could provide individuals that would be tolerant at all other growth stages. Accumulation of Na+, K+ and Ca2+ in the leaves are important components of salt tolerance in B.juncea.  相似文献   

18.
Salt and alkali stress limit crop growth and reduce agricultural productivity worldwide, which have led to increased interest in enhancing salt tolerance in crop plants. Sweet sorghum (Sorghum bicolor (Linn.) Moench) is a monocotyledonous crop species that shows greater tolerance to salt–alkali stress than most other crops, although the underlying mechanisms behind this tolerance remain unclear. Therefore, we investigated the effects of salt and alkali stresses on two sweet sorghum varieties M-81E, which is stress tolerant, and 314B, which is stress sensitive. Namely, we surveyed plant growth parameters, measured Na+ and K+ distributions at the level of the whole plant as well as in three specific tissues, and then determined the activities of H+-ATPase, H+-PPase and Na+/H+ exchange in root vacuole membranes under stress conditions. Following treatment of the seedlings for 3 days with salt or alkali solutions, the plant growth was inhibited and Na+ levels in the whole plant, leaves, sheath, and roots were increased in both genotypes. Under alkali stress, K+ levels in the whole plant, leaves, sheath, and roots were decreased in both genotypes. M-81E roots accumulated significantly higher levels of Na+ than leaves, whereas the opposite was true for 314B. Under salt stress, both the hydrolytic and proton-transporting activities of V-H+-ATPase were enhanced and Na+/H+ exchange activity was dramatically upregulated, whereas V-H+-PPase activity was decreased. M-81E showed a greater capacity to compartmentalize Na+ within root cell vacuoles and maintain higher levels of K+ uptake compared with 314B, resulting in higher K+/Na+ transport selectivity in this genotype. These results also demonstrated that H+-ATPase activity and ionic homeostasis (Na+/K+) were likely important contributors to the tolerance of saline-alkali stress and crucially important for understanding alkaline stress in both crops and wild plants.  相似文献   

19.
Seedlings of two tomato cultivars were exposed to 0, 50, or 100 mM sodium chlroide (NaCl) stress with or without silicon (Si) for 10 days, and leaf electrolyte leakage, root activity, plant growth, and ion sodium, potassium, calcium, and magnesium (Na+, K+, Ca2+, and Mg2+) contents were determined. No significant differences were observed in total biomass and the root/crown ratio of salt-stressed plants treated with exogenous Si, but leaf electrolyte leakage of both cultivars treated with 50 mM NaCl and Si was lower than that in the same salt treatment without Si. Root activities of both cultivars were significantly affected by treatment with NaCl and exogenous Si. Application of Si induced a significant decrease in Na+ content and increases in K+, Ca2+, and Mg2+ contents in leaves of plants treated with 50 mM NaCl, and consequently the K+/Na+ and Ca2+/Na+ ratios increased by at least two times. The effects of Si on the ion contents of the roots were not notable.  相似文献   

20.
La(NO3)3 对盐胁迫下黑麦草幼苗生长及抗逆生理特性的影响   总被引:2,自引:0,他引:2  
为探讨稀土元素镧(La)对牧草盐胁迫伤害的缓解作用, 采用水培法研究了叶面喷施20 mg·L-1La(NO3)3 对NaCl 胁迫下黑麦草幼苗生长及其抗逆生理特性的影响。结果表明: 盐胁迫显著抑制黑麦草幼苗的生长, 提高叶片电解质渗漏率及丙二醛(MDA)、O2- 和H2O2 含量, 其作用随盐浓度的增大而增强。超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、可溶性蛋白质、脯氨酸含量随盐浓度增大呈先升后降趋势, 可溶性糖和Na+/K+比逐渐增大, 质膜H+-ATP 酶活性逐渐降低, 过氧化物酶(POD)活性及POD 同功酶数量表达增强。喷施La(NO3)3 处理可降低盐胁迫下黑麦草幼苗叶片的O2- 和H2O2 含量, 提高SOD、CAT、POD、APX 和质膜H+-ATP 酶的活性及POD 同功酶的表达, 使AsA、GSH、可溶性蛋白质、可溶性糖和游离脯氨酸含量及幼苗生物量增加, Na+/K+比降低。表明La(NO3)3 可通过提高抗氧化系统的活性和积累渗透溶质减轻盐胁迫伤害, 从而提高黑麦草的耐盐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号