首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A salt-sensitive cucumber cultivar "Jinchun No. 2" ( Cucumis sativus L.) was used to investigate the role of proline in alleviating salt stress in cucumber. Proline was applied twice (day 0 and day 4 after salt treatment) as a foliar spray, with a volume of 25 mL per plant at each time. Plant dry weight, leaf relative water content, proline, malondialdehyde (MDA), Na+, K+ and Cl contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in the plants were determined at day 8 after salt treatment. The results showed that 100 mmol L–1 NaCl stress significantly decreased plant dry weight, leaf relative water and K+ contents, and increased leaf MDA, Na+ and Cl contents and SOD, POD, CAT and APX activities. However, leaf proline accumulation was not affected by salinity. The exogenous application of proline significantly alleviated the growth inhibition of plants induced by NaCl, and was accompanied by higher leaf relative water content and POD activity, higher proline and Cl contents, and lower MDA content and SOD activity. However, there was no significant difference in Na+ and K+ contents or in CAT and APX activities between proline-treated and untreated plants under salt stress. Taken together, these results suggested that the foliar application of proline was an effective way to improve the salt tolerance of cucumber. The enhanced salt tolerance could be partially attributed to the improved water status and peroxidase enzyme activity in the leaf.  相似文献   

2.
Abstract

The effect of NaCl stress on the growth, membrane permeability, anti-oxidant enzyme activities and ion content of cucumber seedlings was investigated. Two cultivars (Jinchun No. 2, a relatively salt-sensitive cultivar, and Zaoduojia, a relatively salt-tolerant cultivar) of cucumber were used. Shoot and root dry weights, plant height, stem diameter, leaf area and leaf number of both cultivars decreased when NaCl concentrations increased. The decreases in shoot and root dry weights and leaf area were more significant in Jinchun No. 2 than in Zaoduojia. Meanwhile, the salt injury index, the membrane permeability, malondialdehyde (MDA) contents, superoxide dismutase (SOD) and peroxidase (POD) activities of both cultivars increased significantly with salt stress, and the increases in the salt injury index and MDA were higher in Jinchun No. 2 than in Zaoduojia, whereas the increase in POD activity was lower in Jinchun No. 2 than in Zaoduojia. Free proline content of Zaoduojia increased markedly with increasing concentrations of NaCl, whereas the content of Jinchun No. 2 was unaffected by salt stress. In addition, the contents of Na+ in the leaf, stem and root of both cultivars increased significantly, whereas the contents of K+ decreased significantly, resulting in an increase in the Na+/K+ ratio when NaCl concentrations increased. These results suggest that Zaoduojia exhibits a better protection mechanism against oxidative damage and lipid peroxidation by maintaining higher proline content and POD activity than the salt-sensitive Jinchun No. 2 cultivar.  相似文献   

3.
La(NO3)3 对盐胁迫下黑麦草幼苗生长及抗逆生理特性的影响   总被引:2,自引:0,他引:2  
为探讨稀土元素镧(La)对牧草盐胁迫伤害的缓解作用, 采用水培法研究了叶面喷施20 mg·L-1La(NO3)3 对NaCl 胁迫下黑麦草幼苗生长及其抗逆生理特性的影响。结果表明: 盐胁迫显著抑制黑麦草幼苗的生长, 提高叶片电解质渗漏率及丙二醛(MDA)、O2- 和H2O2 含量, 其作用随盐浓度的增大而增强。超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、可溶性蛋白质、脯氨酸含量随盐浓度增大呈先升后降趋势, 可溶性糖和Na+/K+比逐渐增大, 质膜H+-ATP 酶活性逐渐降低, 过氧化物酶(POD)活性及POD 同功酶数量表达增强。喷施La(NO3)3 处理可降低盐胁迫下黑麦草幼苗叶片的O2- 和H2O2 含量, 提高SOD、CAT、POD、APX 和质膜H+-ATP 酶的活性及POD 同功酶的表达, 使AsA、GSH、可溶性蛋白质、可溶性糖和游离脯氨酸含量及幼苗生物量增加, Na+/K+比降低。表明La(NO3)3 可通过提高抗氧化系统的活性和积累渗透溶质减轻盐胁迫伤害, 从而提高黑麦草的耐盐性。  相似文献   

4.
为了探讨PEG预处理对盐胁迫和镉胁迫下多年生黑麦草幼苗生理特性的影响,将黑麦草幼苗分别用0,5%,10%,15%,20%,25%(对应水势分别为0,-0.05,-0.15,-0.30,-0.50,-0.77 MPa)的PEG-6000营养液进行预处理后,分别用含150 mmol/L NaCl和Cd~(2+)浓度为10 mg/L的胁迫液培养,然后测定黑麦草幼苗叶片的光合色素含量、MDA含量、游离脯氨酸含量、可溶性糖含量及抗氧化酶(SOD、POD、CAT、APX)活性。结果表明:盐胁迫下15%(-0.30 MPa)PEG预处理和镉胁迫下10%(-0.15 MPa)PEG预处理可以有效提高多年生黑麦草的光合色素含量,降低MDA、游离脯氨酸含量,增加可溶性糖含量,提高抗氧化酶活性。PEG预处理下多年生黑麦草在遭受逆境胁迫时,受到多种生理生化的调节,其生理指标的动态变化是黑麦草应答逆境因子胁迫的重要调节机制,体现了其对逆境胁迫的适应能力以及在多种逆境胁迫下的交叉适应能力。  相似文献   

5.
ABSTRACT

In order to assess whether exogenous application of ascorbic acid (AsA) through different ways could alleviate the adverse effects of salt-induced adverse effects on two wheat cultivars differing in salinity tolerance, plants of a salt tolerant (‘S-24’) and a moderately salt sensitive (‘MH-97’) cultivar were grown at 0 or 120 mM sodium chloride (NaCl). Ascorbic acid (100 mg L?1) was applied through the rooting medium, or as seed soaking or as foliar spray to non-stressed and salt stressed plants of wheat. Salt stress-induced reduction in growth was ameliorated by exogenous application of ascorbic acid through different ways. However, root applied AsA caused more growth enhancement under saline conditions. Leaf ascorbic acid, catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities were also maximal in salt stressed plants of both cultivars treated with AsA through the rooting medium. Furthermore, leaf ascorbic acid, CAT, POD, and SOD activities were higher in salt stressed plants of ‘S-24’ than those of ‘MH-97’. Root applied AsA caused more enhancements in photosynthetic rate. Root applied AsA caused more reduction in leaf sodium (Na+) compared with AsA applied as a seed soaking or foliar spray. Overall, AsA-induced growth improvement in these two wheat cultivars under saline conditions was cultivar specific and seemed to be associated with higher endogenous AsA, which triggered the antioxidant system and enhanced photosynthetic capacity.  相似文献   

6.
A tub experiment was conducted to assess the effect of exogenously applied trehalose (0, 10, and 20 mM) on various attributes of two rice cultivars (Bas-385 and Bas-2000) under salt stress (0, 50, 100, and 150 mM). Salinity decreased growth, gas exchange characteristics, shoot and root potassium (K+) ions, hydrogen peroxide (H2O2), total soluble proteins, activity of catalase (CAT), and yield attributes, while it increased chlorophyll contents, shoot and root sodium (Na+) and calcium (Ca2+), malondialdehyde (MDA), glycinebetain (GB), free proline, and peroxidase (POD) activity. Foliar-applied trehalose improved growth attributes, net photosynthetic rate, GB, total soluble proteins, superoxide dismutase (SOD) and yield. Yield was not obtained at 150 mM salt stress. The rice cultivar Bas-2000 showed better performance with respect to gas exchange attributes and activities of enzymatic antioxidants. Overall, varying levels of foliar-applied trehalose proved to be effective in ameliorating adverse effects of salt stress on rice.  相似文献   

7.
A pot experiment was conducted to appraise the inhibitory effects of salt stress on biochemical attributes in the three mungbean cultivars (NCM-209, NCM-89 and NM-92). Salt stress caused a significant decrease in plant height, shoot relative water contents, photosynthetic pigments, endogenous levels of K+ and K+/Na+ ratios and increase in cellular levels of H2O2, MDA, Na+ and Cl?. However, cv. NCM-209 was found to be tolerant in terms of lower salt-induced decline in K+, K+/Na+ ratio and photosynthetic pigments. The endogenous levels of H2O2 and MDA were also lower in cv. NCM-209. Salt stress markedly also affected different yield attributes in all mungbean cultivars. Again cultivar NCM-209 exhibited less inhibitory effects of salt stress on different growth attributes. Salt stress resulted in a marked increase in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase) in mungbean cultivars. Activity of peroxidase was maximal in cv. NCM-209 and catalase activity was maximal in cv. NCM-89, whereas cvs. NCM-89 and NM-92 showed higher activities of superoxide dismutase. Similarly activity of ascorbate peroxidase was higher in cv. NM-92. It could be inferred from data of antioxidant enzymes that mungbean cultivars cannot be categorized as salt tolerant or sensitive on the basis of a single antioxidant enzyme.  相似文献   

8.
燕麦幼苗对氯化钠和氯化钾胁迫的生理响应差异   总被引:1,自引:0,他引:1  
为探讨燕麦对NaCl和KCl胁迫的生理响应差异,采用水培法,研究了不同浓度NaCl和KCl胁迫对幼苗生长,活性氧代谢和渗透调节的影响。结果表明:(1)在75和150mmol/L浓度下,NaCl胁迫对燕麦幼苗的膜脂过氧化伤害和生长抑制大于KCl胁迫。NaCl胁迫下叶片中的超氧化物岐化酶(SOD),过氧化氢酶(CAT)活性及可溶性蛋白、可溶性糖和脯氨酸含量低于KCl胁迫;当浓度增大到225mmol/L时,KCl胁迫叶片中O-2.,H2O2,丙二醛(MDA),可溶性蛋白和可溶性糖含量显著大于NaCl胁迫,而SOD,抗坏血酸过氧化物酶(APX)活性及谷胱甘肽(GSH)含量则相反。(2)225mmol/L KCl和NaCl处理的植株叶片水势分别为-0.867和-1.034 MPa,渗透势分别为-1.409和-1.252 MPa,说明KCl对燕麦的更强伤害不是渗透胁迫所致;经225mmol/L KCl胁迫后,燕麦叶片中Na+含量下降至对照的36.5%,而K+含量上升为对照的1.49倍,而补充20mmol/L NaCl显著提高了225mmol/L KCl胁迫下叶片Na+的含量及SOD,APX活性,降低了K+,H2O2,O-2.和MDA含量,说明离子毒害引起的活性氧积累可能是高浓度KCl胁迫对燕麦幼苗伤害大于NaCl胁迫的重要原因。  相似文献   

9.
Abstract

To assess whether grafting raised the salt tolerance of cucumber seedlings by limiting transport of Na+ to the leaf and to test whether the salt tolerance of grafted plants was affected by the shoot genotype, two cucumber cultivars (“Jinchun No. 2”, a relatively salt-sensitive cultivar, and “Zaoduojia”, a relative salt-tolerant cultivar) were grafted onto rootstock pumpkin (Cucurbita moschata Duch. cv. “Chaojiquanwang”, a salt-tolerant cultivar). Ungrafted plants were used as controls. The effects of grafting on plant growth and ion concentrations were investigated under NaCl stress. Reductions in the shoot and root dry weights, leaf area and stem diameter of grafted plants were lower and concentrations of K+ and Cl? in the leaves were higher than those of ungrafted plants under the same NaCl stress. The Na+ concentration and Na+/K+ ratio in scion leaves and in the stems of grafted plants were lower, whereas those in rootstock stems and roots were higher than in ungrafted plants under the same NaCl stress. Shoot and root dry weight, leaf area and stem diameter were negatively correlated with leaf Na+ concentrations and Na+/K+ ratio, but were positively correlated with leaf K+ concentrations. The Na+ concentrations and Na+/K+ ratio were lower, whereas the K+ concentrations in the leaves of grafted “Zaoduojia” plants were higher than those in grafted “Jinchun No. 2” plants under the same NaCl stress. The reductions in leaf area and stem diameter of grafted “Jinchun No. 2” plants were more severe than those of grafted “Zaoduojia” plants. These results indicate that: (1) the higher salt tolerance of grafted cucumber seedlings is associated with lower Na+ concentrations and Na+/K+ ratio and higher K+ concentrations in the leaves, (2) grafting improved the salt tolerance of cucumber seedlings by limiting the transport of Na+ to the leaves, (3) the salt tolerance of grafted cucumber seedlings is related to the shoot genotype.  相似文献   

10.
An experiment with factorial arrangement of treatments on a randomized complete block (RCB) design basis with three replications was conducted in a greenhouse during Spring 2010 to investigate changes in sodium ion (Na+), potassium ion (K+), Na+/K+ and to determine proline, protein content, and superoxide dismutase (SOD) of four wheat and four barley cultivars. Three salt levels {1, control (no salt), 7, and 13 dS m?1 [2.5 and 5 g salt [sodium chloride (NaCl) and sodium sulfate (Na2SO4) in 1:1 ratio] per kg of soil, respectively]} were used in this investigation. Salt stress treatments were applied 4 weeks after planting (at 2 leaf stage). Leaf samples were taken four weeks after imposition of salt treatment. The results showed that salinity caused an increased in proline and protein content, and SOD in all wheat and barley cultivars. The highest proline and protein content of barley and wheat cultivars at all salinity levels were observed in ‘Nimrooz’ and ‘Bam’ cultivars, respectively. At all salinity levels, wheat and barley cultivars ‘Kavir’ and ‘Nimrooz’, respectively, had the lowest Na+ content. Barley cultivar ‘Kavir’ and wheat cultivar ‘Bam’ had higher K+ and K+:Na+ ratios. This might be related to salt tolerance in these two cultivars. Wheat and barley cultivars showed differences with regard to proline, protein, and SOD content, Na+, K+, and K+:Na+ ratio, indicating existence of genetic diversity among the cultivars. These findings indicated that higher K+, K+:Na+ ratio, proline, protein, and SOD content could be the key factors, which offer advantage to barley over wheat for superior performance under saline conditions.  相似文献   

11.
The effects of paclobutrazol (PBZ) and putrescine (Put) on antioxidant enzymes activity, proline contents and nutrients uptake were studied on salt tolerant citrus rootstock sour orange. Six-month-old nucellar seedlings grown in pots and subjected to three levels of PBZ and two levels each of salinity and Put for 90 days. Seedlings treated with PBZ or Put alone or in combination had higher anti-oxidant enzymes activities, accumulation of proline and nutrients contents like potassium (K+) and calcium (Ca2+) under both saline and non-saline conditions. Further, application of PBZ or Put alone or in combination also reduced the accumulation of both Na+ and Cl? ions in leaves and roots in NaCl stressed seedlings. A combined application of 250 mg L?1 PBZ and 50 mg L?1 Put proved to be more effective in improving proline and Ca2+ content and restricting accumulation of Na+ ions in leaf tissues.  相似文献   

12.
Salinity is one of the major environmental stressors which has deleterious effects on the growth, development, and yield of crops. Because of the gradual increase in soil and water salinity in the East Azarbaijan, Iran, Tanacetum balsamita L. cultivation in this region has always been associated with many problems. To study the effect of foliar spray of iron sulfate (FeSO4) (0, 750, and 1500 mg L?1) under sodium chloride (NaCl) salinity (0, 50, and 100 mM) on some physiological characteristics of Tanacetum balsamita L. plants, an experiment was conducted as a factorial based on complete randomized block design with three replications. Total soluble solids (TSS) and essential oil contents were significantly affected by the interaction effects of FeSO4 foliar application and salinity levels. The highest TSS and essential oil content were found in the plants under NaCl0 × FeSO4 1500 mg L?1 treatment combination. Leaf length, leaf fresh and dry weights were influenced by both Fe foliar application and salinity levels. Foliar application of iron (Fe) positively affected leaf length, leaves fresh and dry weights, root fresh and dry weights and peroxidase (POD) content, especially at 1500 mg L?1. Other traits such as leaf length, leaf fresh and dry weights, malondialdehyde (MDA), POD and catalase (CAT) contents were influenced by salinity levels. For POD, MDA, and CAT contents, the highest values were recorded with NaCl 50 and 100. The highest values of leaf length, leaf fresh and dry weights were found in the control plants.  相似文献   

13.
Twenty genotypes of wheat resulting from different crossings between some wheat parental lines were compared for salt stress (control and gradually increasing salinity). Ion content in root, shoot, and flag leaves and also the root and shoot dry weights were measured. Based on these results, eight genotypes among the twenty were selected as susceptible, semi-tolerant, and tolerant genotypes for evaluating their biochemical characteristics. Results indicated that concentration of sodium (Na+) and potassium (K+) in shoot, root, and flag leaves of stressed plants were, respectively, higher and lower than that in the non-stressed plants. Overall, salinity stress caused reductions in root and shoot dry weights and relative water content (RWC), but enhancement in pigments content. Concentrations of the total carbohydrate, total protein, and soluble proline were higher in plants under salt stress condition. Salinity stress induced higher production in hydrogen peroxide (H2O2) and malondialdehyde (MDA) and also higher activity of catalase (CAT) and ascorbic peroxidase (APX) as antioxidant enzymes, but lower activity of peroxidase (POD). Genotypes 4s, Arg, and 386dh had generally higher enzymatic activity and other tolerant indices, and hence they can be introduced as tolerant genotypes for more study by the plant breeders. On the other hand, genotype 278s was most susceptible based on the most results.  相似文献   

14.
Application of plant growth regulator (PGR) may alleviate some negative effects of environmental stresses such as salinity. A controlled environment experiment was conducted to study barley (Hordeum vulgare L. cv. Reyhane) growth, yield, antioxidant enzymes and ions accumulation affected by PGRs under salinity stress conditions at Shiraz University during 2012. The treatments were PGRs at four levels—water (as control), cycocel (CCC, 19 mM), salicylic acid (SA, 1 mM), and jasmonic acid (JA, 0.5 mM)—and four salinity levels—no stress (0.67 dS m?1, as control), 5, 10, and 15 dS m?1, which were arranged in a factorial experiment based on completely randomized design with four replicates. The results showed that salinity stress significantly decreased plant height, peduncle length, leaf area, ear length, grain number, dry weight, grain yield, harvest index, potassium (K+) accumulation, and potassium/sodium (K+/Na+) concentration ratio, which were closely associated with stress severity. However, PGRs compensated some of these negative effects, so that SA foliar application had the most ameliorative effect. Salt stress also increased Na+ accumulation as well as the activity of peroxidase, catalase, and superoxide dismutase (SOD). Since ion discrimination and enhanced antioxidant enzymes are associated with salt tolerance, in this experiment PGRs application might have enhanced K+ accumulation and antioxidant enzyme activity. The activity of SOD and K+/Na+ ratio were found to be useful in salt tolerance manipulation in barley plants.  相似文献   

15.
Plant dry matter accumulation rate (DMAR), relative water content (RWC), electrolyte leakage percentage (ELP), chlorophyll content, osmotic adjustment ability (OAA), and osmotica accumulation in leaves of sunflower (Helianthus annuus L.) seedlings under different levels of dehydration and salinity stress induced by iso-osmotic PEG (polyethylene glycol) or sodium chloride (NaCl) were evaluated. Plants were subjected to four stress treatments for 10 days: ?0.44 MPa PEG6000, ?0.44 MPa NaCl, ?0.88 MPa PEG6000, ?0.88 MPa NaCl. Results showed that PEG and NaCl treatments decreased the plant's DMAR and RWC, and NaCl treatments had more severe inhibitory effect on the plants than PEG treatments. Leaf ELP in sunflower seedlings increased after NaCl and PEG treatments. However, leaf ELP under salt stress was higher than that under dehydration stress (PEG treatment). All stress treatments increased OAA in plant leaves. Leaf OAA was enhanced significantly as PEG concentration increases, while leaf OAA was less enhanced at higher concentration of NaCl. OAA of sunflower leaves under dehydration stress was due to an increase in potassium (K+), calcium (Ca2+), amino acid, organic acid, magnesium (Mg2+), and proline content. OAA of sunflower leaves under moderate salt stress was owing to an increase in K+, chlorine (Cl?), amino acid, organic acid, sodium (Na+), and proline content, and was mainly due to an accumulation of K+, Cl?, Na+, and proline under severe salt stress.  相似文献   

16.
Abstract

The effect of salinity on some physiological parameters in 16 barley genotypes with different salt tolerance was investigated. The results showed 50 mM NaCl treatment increased Na+/K+ ratio, malondialdehyde (MDA) and proline contents, and decreased cell membrane stability index (CMSI) and fresh shoot biomass (FSB) of all tested genotypes. Salt stress also resulted in a decreased chlorophyll (Chl) content and net photosynthesis (Pn) for most genotypes. Under higher salt stress (300 mM NaCl), the marked increase for Na+/K+, MDA, and proline content, and decrease for other parameters were found for all genotypes. The affected extent of these parameters by salt stress varied with genotypes. Proline accumulation in barley was associated with injured extent under salt stress, indicating it is not a defensive reaction to the stress. K+ uptake was less affected, whereas Na+ accumulation in plants was enhanced under high salt stress. The correlation analysis showed that MDA and proline content, Na+ concentration and Na+/K+ were negatively correlated with FSB, whereas other parameters examined in the study were positively correlated with FSB.  相似文献   

17.
采用营养液培养方法,研究了添加不同浓度的精胺(Spm)对NO3-胁迫下黄瓜幼苗生长、叶片抗氧化酶活性及光合作用的影响。结果表明,140 mmol/L NO3-胁迫下,外加1 mmol/L Spm,10 d后,黄瓜幼苗叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)活性显著增加,电解质渗漏率和丙二醛(MDA)含量显著降低;气孔导度(Gs)、胞间CO2浓度(Ci)和净光合速率(Pn)显著升高,气孔限制值(Ls)显著降低。说明1 mmol/L Spm处理能增强黄瓜幼苗对活性氧的清除能力,降低膜脂过氧化程度;降低气孔关闭,改善叶片的气体交换,幼苗生长势增加,对高浓度NO3-胁迫的抗性增强。当Spm浓度高达1.5~2 mmol/L时,与1mmol/L Spm相比,SOD、POD、APX、CAT活性均开始降低,电解质渗漏率和MDA含量增加,Gs、Ci和Pn显著降低,黄瓜幼苗生长受到抑制。可见,外加一定浓度的Spm可通过提高抗氧化酶活性、降低膜脂过氧化程度及改善光合作用来缓解NO3-胁迫对黄瓜幼苗的影响。  相似文献   

18.
The effects of NaCl salt (EC = 16 dS m−1) on water potential, and accumulation of proline, Na+ and K+ in leaves on the main stem of 30 wheat cultivars (Triticum aestivum L.) at awn appearance and 20 days after anthesis (20 DAA) were evaluated in a greenhouse experiment. Plants were arranged in a according to a randomized complete block design with factorial treatments in three replications. Proline accumulation at 20 DAA increased with increasing salt stress. This increase was 27.4-fold with the salt-sensitive cultivar “Ghods,” while the mean was 5.2-fold for 19 salt-resistant cultivars. Positive correlations between proline, and K+ + Na+ concentrations associated with higher sensitivity to salt stress indicated that proline may not have a protecting role against salt stress. No correlation was observed between leaf proline and water potential. Almost no contribution to the osmotic adjustment seems to be made by proline. The contribution made by proline to the osmotic adjustment of plants at 20 DAA was 0.69 bar, whereas that made by K+ and Na+ was 2.11 and 4.48 bar, respectively. The 30 wheat CVs used in this experiment showed different performances regarding the traits observed. Eleven of them showing the higher stress sensitivity indices had the highest level of proline and Na+ concentrations. They were considered to be salt-sensitive cultivars. Among the others, nine cultivars showed salt tolerance with almost the same Na+ and proline concentrations, but a higher K+/Na+ selectivity of ions from leaf to grains. In 10 of the cultivars, Na+ and proline concentrations were low, indicating the presence of a salt avoiding mechanism.  相似文献   

19.
甜菜碱对干旱胁迫下棉花幼苗生理特性的影响   总被引:1,自引:0,他引:1  
以新疆广泛种植的棉花品种新陆早18号为试材,通过测定棉花幼苗体内脯氨酸、可溶性糖和丙二醛(MDA)的含量及抗氧化酶包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性,研究叶面喷施不同浓度甜菜碱(Glycine betaine,GB)对干旱胁迫下棉花幼苗生理特性的影响。结果表明,干旱胁迫下,与对照相比,脯氨酸、可溶性糖、MDA含量及SOD和POD活性都显著提高,喷施甜菜碱后促进脯氨酸和可溶性糖含量进一步提高,酶活也显著升高,同时有效抑制了丙二醛含量的增加,CAT活性受干旱胁迫及甜菜碱的影响较小。研究表明喷施低浓度甜菜碱在一定程度上可以缓解干旱胁迫对棉花幼苗的伤害。  相似文献   

20.
Abstract

Superoxide dismutase (SOD) pattern, catalase, Cyt c oxidase and fumarase activity were studied in leaves of Phaseolus vulgaris and Vigna unguiculata plants growth in two sodium chloride (NaCl) concentrations (35 mM and 100 mM). In bean plants growth with NaCl, leaf chloride (Cl?) contents were higher than in control plants, and the same was found for sodium (Na+) and potassium (K+) contents, although to a lesser degree. In cowpea leaves, Na+ and Cl? had a similar increase due to salt‐growth conditions. Under salinity, all changes in the antioxidant (SOD and catalase) enzymes levels were smaller in bean than in cowpea plants. In Phaseolus at 15 days growth, Cu, Zn‐SOD I showed an increase by the effect of salt treatment, but this induction did not occur at 30 days growth, and both Mn‐SOD and Cu, Zn‐SOD II did not show variations due to salt‐stress. In Vigna, Mn‐SOD was decreased by salinity but this was compensated by an increase in Cu, Zn‐SOD I activity in plants at 30 days growth, whereas in young leaves under saline conditions, both isozymes were also decreased. Likewise, there was a rise in cytochrome c oxidase and fumarase activity in leaves of NaCl‐treated plants compared to the control. The activity changes observed are discused in term of their possible relevance to plant sensitivity to saline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号