首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In Japanese soft wheat (Triticum aestivum L.) breeding programs, protein content (PC), and specific surface area (SSA) of flour have been used as important factors for the baking quality of Japanese sponge cake. We proposed batter pasting viscosity (BPV) as a parameter to predict the baking quality of Japanese sponge cake. BPV was measured using a Rapid Visco‐Analyser (RVA) with a modified heating profile. Twenty soft wheat samples from the 2006‐07 season and 22 from the 2007‐08 season, including Japanese soft wheat cultivars, advanced breeders' lines, and Western White (WW) imported from the United States, were milled and evaluated for solvent retention capacity (SRC) values of four solvents, batter pasting properties, flour pasting properties, PC, SSA, and specific cake volume (SCV) to investigate their relationships. BPV was the most strongly correlated of the parameters to SCV (r = –0.90, P < 0.001). Stepwise multiple regression analysis selected BPV and minimum viscosity (MV) of flour pasting as significant independent variables to predict SCV (corrected R2 = 0.848). The variability in BPV related to cake batter expansion was highly explained by PC and sucrose SRC (corrected R2 = 0.854, P < 0.001). MV was correlated to SSA (r = 0.56, P < 0.001) and might be related to the prevention of sponge cake shrinkage during baking.  相似文献   

2.
Soybean (Glycine max (L.) Merr.) has a long planting history in both China and Japan. In order to investigate the genetic relationship between Chinese and Japanese soybeans, 205 Chinese soybean accessions, that represent the seven different soybean ecotypes, and 39 Japanese soybean accessions from various regions were analyzed by using 46 SSR loci. In total 745 alleles were detected with an average allele number of 16.2 per locus. The allelic frequencies varied from 0.002 to 0.554 with an average of 0.06. Cluster analysis with UPGMA separated the Chinese accessions from Japanese accessions, suggesting that soybean in these two countries form different gene pools. When comparing the Japanese soybean with that from seven different Chinese soybean ecotypes, 164–200 alleles were specific to the Chinese accessions and 64–112 specific to the Japanese accessions. The comparison of SSRs diversity revealed that accessions from China exhibited more genetic diversity than those from Japan. The data were analyzed to resolve the genetic structure and to interpret the evolutionary relationships between groups. Three distinct groups were identified, corresponding to Japanese soybean, Northern China soybean, Southern China soybean and a mixed group in which most accessions were from central China. The results indicate that accessions from Japan are distinct from Chinese ones, and Japanese accessions had more close relationship with Chinese northeast spring and southern spring ecotypes. We further analyzed five agronomic trait-related SSR loci and found that the preponderant alleles are different in Chinese and Japanese soybean. Our study provides important insights into further utilization of Japanese soybean in Chinese soybean breeding.  相似文献   

3.
Geng  Lisha  Yang  Zaifu  Xu  Zhinan 《Journal of Soils and Sediments》2020,20(4):2217-2224
Purpose

This study aims to explore the effects of antimony (Sb) on the nutrient composition of green leafy vegetables.

Materials and methods

Red beets (Beta vulgaris L.), mallow (Malva sinensis Cavan.), and Chinese cabbage (Brassicacampestris L.) were planted by pouring antimony solution in flowerpot, then the protein content of plants and the changes of seven nutrient elements such as Ca, Mg, Fe, Mn, Zn, Cu, and I under Sb stress were studied.

Results and discussion

The results showed that the red beet had the highest protein content when the concentration was 20 mg L?1, which was 0.2856 gprot L?1. With an increase in the antimony concentration, the protein content decreased gradually, and the protein content of mallow and Chinese cabbage did not change significantly. For nutrient elements, except for Ca and I, other nutrients in red beets increased with the increase in antimony concentration, and Mn and Zn contents in mallow were reduced to the lowest when Sb was treated with 100 mg L?1, while content of I element was the highest at 100 mg·L?1, and the content of nutrients in Chinese cabbage changed in a small range.

Conclusions

The research showed that the antimony pollution had a great influence on the protein content of red beet. The nutrient content of mallow was fluctuated greatly when Sb was treated with 100 mg L?1. The content of Mn, Zn, and Cu in Chinese cabbage almost did not change due to the antimony concentration.

  相似文献   

4.
Abstract

To determine the rates of increase in C and N stocks in the soil and organic layers following afforestation in Andisols, we measured C and N densities in the organic and soil layers at depths of 0–5, 5–15 and 15–30?cm, together with a chronosequence analysis of 4-year-old, 14-year-old and 23-year-old Japanese cedar (Cryptomeria japonica) and 4-year-old, 12-year-old and 25-year-old Hinoki cypress (Chamaecyparis obtusa) plantations. The short-term changes in C and N were confirmed by repeated sampling 5?years after the first sampling. Tree growth, biomass accumulation and organic layers were much greater in Japanese cedar than in Hinoki cypress plantations. Soil C density (kg?m?3) increased and bulk density decreased with stand age in the surface layer (0–5?cm). The average soil C accumulation rate was 22.9?g?C?m?2?year?1 for Japanese cedar and 21.1?g?C?m?2?year?1 for Hinoki cypress. Repeated sampling showed that the rate of increase in C in the surface soil was relatively slow in young stands and that soil C density (kg?m?3) in the subsurface soil did not change over a 5-year period. Although N accumulated in the tree biomass and organic layers, the soil N density (kg?m?3) did not change after afforestation. Although the andic properties of the soil and differences in the planted species did not influence the rate of increase in soil C, soil C density was expected to increase to a concentration greater than 80?g?kg?1, possibly because of the large C accumulation capacity of Andisols.  相似文献   

5.
ABSTRACT

To investigate fine root dynamics after thinning (50% of standing tree) and liming calcium magnesium carbonate[CaMg(CO3)2] 2 Mg ha? 1, a 2-year study was performed in 40-year-old pitch pine (Pinus rigida Mill.) and 44-year-old Japanese larch (Larix leptolepis Gord.) plantations in central Korea. Mean total fine root mass (kg ha? 1± SE) in the control, thinned, and limed plots were 1234 ± 32, 1346 ± 67, and 1134 ± 40 for the pitch pine plantation and 1655 ± 48, 1953 ± 58, and 1868 ± 70 for the Japanese larch plantation, respectively. Live fine root mass of pitch pine at 0-10 cm soil depth decreased after thinning and liming. In addition, liming significantly increased dead fine root mass of Japanese larch. Fine root production (kg ha? 1 yr? 1± SE) in the control, thinned and limed plots was 1108 ± 148, 2077 ± 262, and 1686 ± 103 for the pitch pine plantation and 1762 ± 103, 1886 ± 277, and 2176 ± 271 for the Japanese larch plantation, respectively. Fine root turnover rates increased after liming for both plantations. Fine root nitrogen (N) and phosphorus (P) concentrations of Japanese larch (1.012% of N and 0.073% of P) were higher than those of pitch pine (0.809% of N and 0.046% of P) in the control. Also N and P inputs into soil through fine root turnover increased after treatments. Results indicated that comparing fine root dynamics among forest types and after forest management practices might influence differences in soil fertility and underground nutrient cycling.  相似文献   

6.
Abstract

To clarify the mechanism of Magnesium (Mg) in alleviating cadmium (Cd) phytotoxicity, Japanese mustard spinach (Brassica rapa L. var. pervirdis) was grown for 10 days after treatment in hydroponics in a growth chamber under natural light. The treatments were: (1) nutrient solution alone (Control), (2) 10 mmol L?1 Mg (High-Mg), (3) 2.5 µmol L?1 Cd (Cd-toxic), (4) 2.5 µmol L?1 Cd plus 10 mmol L?1 Mg (Mg-alleviated). The Cd-toxic treatment showed substantial growth retardation and chlorosis of young leaves, such symptoms were not observed in Mg-alleviated plants. Magnesium-alleviated plants showed higher shoot growth, more than twofold, and decreased shoot Cd concentration, approximately 40%, compared with Cd-toxic plants. This increase in shoot growth and simultaneous decrease in shoot Cd concentration may explain the alleviation of Cd toxicity with Mg in Japanese mustard spinach. In Cd-toxic plants, concentrations of K in shoots and Zn in both shoots and roots increased compared with the other three treatments. Concentrations and accumulations of Fe and Mn in shoots decreased significantly in the Cd-treated (Cd-toxic and Mg-alleviated) plants compared with the control and High-Mg plants. Thus, the application of high amounts of Mg in the nutrient solution can alleviate Cd toxicity in plants.  相似文献   

7.
Abstract

Laboratory incubation and greenhouse experiments were conducted with two soils having contrasting physico‐chemical characteristics to evaluate nitrogen (N) mineralization, immobilization in soil microbial biomass, and accumulation in Japanese mint (Mentha arvensis L.) using labeled (15NH4)2SO4, applied at 0, 50, and 100 mg#lbkg‐1 soil. Rate of mineralization in soils varied from 0.08 to 2.21 μg#lbg‐1#lbday‐1. Fertilizer application increased the mineralization of native soil N. About 22 to 60% of the applied 15N was recovered in the soil microbial biomass during the growth period of mint (January‐June). Relative contribution of fertilizer 15N towards total N uptake by mint at maturity was 42–54% in soil I and 35 to 55% in soil II. Contribution of soil N towards total N accumulation increased with the doses of 15N application.  相似文献   

8.
《Journal of plant nutrition》2013,36(10-11):2307-2319
Abstract

Iron deficiency is estimated to affect over one‐half the world population. Improving the nutritional quality of staple food crops through breeding for high bioavailable iron represents a sustainable and cost effective approach to alleviating iron malnutrition. Forty‐nine late maturing tropical elite maize varieties were grown in a lattice design with two replications in three locations representing three agroecologies in West and Central Africa to identify varieties with high levels of kernel‐Fe. Bioavailable iron was assessed for some varieties selected for high Fe concentration in kernel and improved agronomic traits using an in vitro digestion/Caco‐2 cell model. Significant differences in kernel‐Fe and ‐zinc concentration were observed among varieties (P < 0.001). Kernel‐Fe levels ranged from 16.8 to 24.4 mg kg?1, while kernel‐Zn levels ranged from 16.5 to 24.6 mg kg?1. Environment did not have a significant effect on kernel‐iron and ‐zinc levels, but genotype by environment (G × E) interaction was highly significant. The genetic component accounted for 12% of the total variation in kernel‐Fe and 29% for kernel‐Zn levels. Kernel‐Fe was positively correlated with kernel‐Zn (R 2 = 0.51, P < 0.0001). Significant differences in iron bioavailability were detected among selected Fe‐rich varieties grown at one location. Mean bioavailable Fe ranged between 30% below to 88% above the reference control variety. The results indicate that genetic differences exist in kernel‐Fe and ‐Zn concentrations and Fe bioavailability. These differences may be useful in biofortification intervention programs, but additional research is needed to determine the efficacy of iron‐rich maize varieties in alleviating iron deficiency in humans.  相似文献   

9.
Abstract

Ammonia oxidizing bacteria (AOB) are important microorganisms in rice paddy field ecosystems because they play a key role in the nitrogen (N) cycle by converting ammonia (NH3) to nitrite (NO? 2). In this study, we investigated AOB associated with three types of weeds in a Japanese paddy field (semi-aquatic Echinochloa oryzicola Vasing, floating Lemna paucicostata Hegelm and submerged Najas graminea Delile) using molecular techniques polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and DNA sequencing targeting ammonia monooxygenase (amoA) gene. This work confirmed that rice paddy weeds harbor AOB and that the community composition is different for each type of weed. However, all AOB sequences associated with the tested weeds were closely related to known species of Nitrosospira-like AOB isolated from soil, suggesting that AOB associated with weeds were not specific to weeds and can also be found in the soil. Nitosomanas-like AOB were not detected on any of the weeds tested. In addition, the most dominant AOB strains present in the tested weeds were closely related to Nitrosospira sp. Ka3 and Nitrosospira sp. CT2F. The phylogenetic tree revealed that most of the AOB detected in the present study belonged to amoA cluster 1.  相似文献   

10.
The strontium isotope ratio (87Sr / 86Sr) of brown rice (Oryza sativa L.) was determined by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in order to evaluate the values of 87Sr / 86Sr for use in the estimation of the area of rice production. Sample solutions were prepared from 5 g of rice samples using the acid (HNO3-HClO4-HF) digestion method. Removal of rubidium from the sample solutions was performed using ion-exchange resin (Dowex 50W X8). The Sr isotope ratios were determined with a precision of < 0.01% (RSD, repetitions = 60) by MC-ICP-MS. Typical analysis time for a single sample was about 15 min, reflecting the high sample throughput. The Sr isotope ratios of the Japanese rice samples ranged from 0.706 to 0.709. The Sr isotope ratios of the Chinese and Vietnamese rice samples (0.710 to 0.711) were slightly higher than those of almost all the Japanese samples. Australian rice showed the highest Sr isotope ratio (0.715 to 0.717) among all the rice samples examined. In contrast, the Sr isotope ratio of Californian rice (0.706) was lower than that of almost all the Japanese samples. The variation in the 87Sr / 86Sr ratios for the rice samples analyzed in this study clearly demonstrated that the Sr isotope ratios could provide a key information for the estimation of rice provenance.  相似文献   

11.
The United States Department of Agriculture (USDA)—Agricultural Research Service (ARS)—National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon, is a genebank that preserves strawberry genetic resources. Representatives of two Japanese diploid species, Fragaria iinumae Makino and F. nipponica Makino were collected for conservation by the NCGR during an expedition to Hokkaido, Japan. Fragaria iinumae may be a genome contributor to the cultivated octoploid strawberries. The objective of this study was to evaluate the genetic diversity of these two species by using simple sequence repeat (SSR) markers. Twenty of 82 Fragaria-derived SSRs, polymorphic among and within the two species, were selected for genetic analysis of 137 accessions. Genetic diversity, based on the proportion of shared alleles between the two species, in F. nipponica (0.4542) and F. iinumae (0.1808) was significantly different. Three wild interspecific hybrids were identified from intermediate memberships in the two diploid species groups revealed by using the clustering program, Structure. Principal coordinate analysis followed by non-parametric modal clustering (PCO-MC) grouped accessions into two clusters representing the two diploid species. Further clustering within the species groups generated with the program, STRUCTURAMATM, resulted in seven subclusters in F. iinumae and three in F. nipponica, which may represent breeding populations appropriate for clonal conservation. Long-term preservation of the species populations and the limited number of hybrids on the island is discussed relative to their geographical distribution and the geological history of Hokkaido Island.  相似文献   

12.
The quality of wheat (Triticum aestivum L.) grain favored in breadmaking is strongly affected by components of seed storage protein, particularly high molecular weight glutenin subunits (HMW‐GS). The HMW‐GS 2.2 controlled by the Glu‐D1ƒ allele is frequently found in Japanese cultivars and landraces. In the investigation into the factors affecting the distribution of the allele, the available data on HMW‐GS of common wheats from Japan were analyzed and compared with the data for intensity of winter habit and wheat flour hardness. We show that the main factors affecting the Glu‐D1ƒ allele frequency in Japanese wheat were the intensity of natural selection for winter habit and artificial selection for flour hardness. According to a study of the worldwide distribution of Glu‐1 alleles, the Glu‐D1ƒ allele is rare. However, Glu‐D1ƒ allele was the most common Japanese wheat seed storage protein allele. It is well known that Chinese wheat contributed to Japanese landraces, and Japanese landraces contributed to modern cultivars from Japan. However, common Japanese and Chinese wheats differ in the frequencies of Glu‐D1ƒ allele. These results may be explained either by the founder effect or by a selective bottleneck in Japanese common wheat genetic resources.  相似文献   

13.
The condition around coniferous trees in the soil is becoming gradually acidic when acid rain falls continuously. Nutrient uptake by the roots of coniferous trees could be affected in such environmental change of root zone. The experiments of water culture of coniferous seedlings in modified systems were carried out using (2-and, 3-year-old) of Japanese cedar(Cryptomeria japonica) and, Japanese cypress(Chamaecyparis obtusa) that are the typical Japanese forest trees. Nine major nutrients such as Na+, NH4 +, K+, Ca2+, Mg2+, Cl?, NO3 ?, PO4 3?, and SO4 2?, were given in the water culture solution and growth of trees was observed for two years. The aspects of nutrient uptake by these seedlings and the effects of acidity in culture solution were observed. The following results were obtained. 1) Japanese cedar of 50% and Japanese cypress of 30 % in tested seedlings could live for two years. 2) All Japanese cedar and cypress that started in the strong acidic condition ( pH=3.0) were dead within three months. 3) The minimum pH value in the acidic condition is estimated as 3.2 for these coniferous seedlings, and it means that they can live at least for two years in this condition. 4) The seasonal pattern of the uptake of nitrogen nutrient by Japanese cedar was determined.  相似文献   

14.
Purpose

Copper (Cu) is the earliest anthropogenic metal pollutant, but knowledge of Cu soil concentrations at ancient metalworking sites is limited. The objective of this work was to examine the ability of portable X-ray fluorescence to quantify Cu in soils at such sites.

Materials and methods

Using a Bruker Tracer III-SD pXRF, we examine factory “scan” settings versus simple instrument parameter changes (a reduction in energy settings from 40 to 12 kV) to target analysis for Cu. We apply these to a set of uncontaminated samples (n?=?18, <?92 mg Cu kg?1) from Central Thailand and compare results to standard wet chemistry analysis (aqua regia digestion and ICP-OES analysis). We then apply the optimized method to a set of highly contaminated samples (n?=?86, <?14,200 mg Cu kg?1) from a known ancient smelting site.

Results and discussion

We demonstrate that simple changes to factory recommended “scan” settings can double the sensitivity of Cu determination via pXRF (“optimized limit of determination” of 19.3 mg kg?1 versus an initial value of 39.4 mg kg?1) and dramatically improve the accuracy of analysis. Changes to other results for other elements are variable and depend on concentration ranges, soil matrix effects, and pXRF response for the individual element. We demonstrate that pXRF can accurately determine Cu across a wide concentration range and identify grossly contaminated soil samples.

Conclusions

We conclude that pXRF is a useful tool to rapidly screen and analyse samples at remote sites and can be applied to ancient metalworking sites. Simple optimization of the pXRF settings greatly improves accuracy and is essential in determining comparative background concentrations and “unaffected” areas. Application to other elements requires further element and matrix specific optimization.

  相似文献   

15.
The proton budget for a Japanese cedar (Cryptomeria japonica) forest in Gunma Prefecture, Japan, was studied by estimating biogeochemical fluxes. The proton budgets were estimated for three individual compartments of the ecosystem: vegetation canopy, and the upper (O horizon + 0–10 cm) and lower (10–100 cm) soil layers. The dominant proton sources in the compartments were atmospheric deposition (1.2 kmol ha?1 yr?1), nitrification (5.1 kmol, ha?1 yr?1) and base-cation uptake by vegetation (8.0 kmol, ha?1 yr?1) respectively. These proton sources were neutralized almost completely within the individual compartments mainly by base-cation release from the canopy or the soil. The sum of internal proton sources was five times as large as that of external ones. Nitrogen input from the atmosphere was 2.2 kmol ha?1 yr?1, whereas its output from the lower soil layer was 3.9 kmol ha?1 yr?1, indicating that a net loss of nitrogen occurred in the ecosystem. However, this did not cause the acidification of soil leachates because of a sufficient release rate of base cations from the soil.  相似文献   

16.
We examined arsenic (As) accumulation and speciation in the major cultivars currently grown in Japan, because differences in grain As levels among cultivars may influence dietary As exposure in Japanese people. Ten major cultivars (Oryza sativa L.) were grown under flooded conditions in a paddy field with a background level of As (low-As soil) or in pots filled with soil containing a high level of As (high-As soil). In the low-As soil, the total grain As ranged from 0.11 to 0.17?mg?kg?1, with a mean concentration of 0.14?mg?kg?1, and inorganic As was the major species in all cultivars. There were few genotypic differences in the levels of either total As or inorganic As in the grain. In the high-As soil, total grain As increased to a mean level of 2.4?mg?kg?1 in the 10 cultivars, with markedly increased levels of dimethylarsinic acid. The genotypic variations among cultivars in the levels of both total As and dimethylarsinic acid were statistically significant. However, the genotypic variability of inorganic As levels was quite small, and these levels remained low (at about 0.2?mg?kg?1) even when total As levels increased markedly. These results suggest that differences in grain As levels among Japanese cultivars may not influence dietary As exposure, because there is little genotypic difference in the accumulation of inorganic As, which is considered more toxic than organic As to humans. We discuss the possible mechanism of As accumulation in Japanese paddy rice, in the context of the accumulation of As species in the developing grain and in other plant tissues.  相似文献   

17.
Abstract

To determine the means and variations in CH4 uptake and N2O emission in the dominant soil and vegetation types to enable estimation of annual gases fluxes in the forest land of Japan, we measured monthly fluxes of both gases using a closed-chamber technique at 26 sites throughout Japan over 2 years. No clear seasonal changes in CH4 uptake rates were observed at most sites. N2O emission was mostly low throughout the year, but was higher in summer at most sites. The annual mean rates of CH4 uptake and N2O emission (all sites combined) were 66 (2.9–175) µg CH4-C m?2 h?1 and 1.88 (0.17–12.5) µg N2O-N m?2 h?1, respectively. Annual changes in these fluxes over the 2 years were small. Significant differences in CH4 uptake were found among soil types (P < 0.05). The mean CH4 uptake rates (µg CH4-C m?2 h?1) were as follows: Black soil (95 ± 39, mean ± standard deviation [SD]) > Brown forest soil (60 ± 27) ≥ other soils (20 ± 24). N2O emission rates differed significantly among vegetation types (P < 0.05). The mean N2O emission rates (µg N2O-N m?2 h?1) were as follows: Japanese cedar (4.0 ± 2.3) ≥ Japanese cypress (2.6 ± 3.4) > hardwoods (0.8 ± 2.2) = other conifers (0.7 ± 1.4). The CH4 uptake rates in Japanese temperate forests were relatively higher than those in Europe and the USA (11–43 µg CH4-C m?2 h?1), and the N2O emission rates in Japan were lower than those reported for temperate forests (0.23–252 µg N2O-N m?2 h?1). Using land area data of vegetation cover and soil distribution, the amount of annual CH4 uptake and N2O emission in the Japanese forest land was estimated to be 124 Gg CH4-C year?1 with 39% uncertainty and 3.3 Gg N2O-N year?1 with 76% uncertainty, respectively.  相似文献   

18.
Canadian and Japanese barleys were compared for whole and pearled grain composition and starch properties. Whole grain color and composition of the barleys showed large intercultivar differences, but few (color, protein, and total dietary fiber) significant differences between the Canadian and Japanese barleys. The Canadian hull-less barleys (HB) were pearled to 55% yield to match pearl yields of Japanese barleys. In Canadian HB, pearl time was correlated (r2 = +0.96**) with grain hardness. There were large intercultivar differences in color and composition of the pearled barleys; only protein, starch, total dietary fiber, and viscosity showed significant differences between the Canadian and Japanese pearled barleys. Pasting properties of the four Canadian pearled barleys (CDC Candle, AC Hawkeye, Falcon, and CDC Richard) and three Japanese pearled barleys (Hinode, Ichiban-Boshi, and Minori) showed Canadian pearled barleys had higher peak viscosity, viscosity at 95°C, and setback viscosity than the Japanese barleys. These differences in pasting properties were not related to amylose or crude lipid contents of Canadian and Japanese pearled barleys, nor to swelling factor and thermal properties of starches isolated from the barleys. They were likely due to higher β-glucan and protein in starch slurries of Canadian HB.  相似文献   

19.
ABSTRACT

The response of soil organic matter (SOM) to global warming is a crucial subject. However, the temperature sensitivity of SOM turnover remains largely uncertain. Changes in the mineralization of native SOM, i.e., priming effect (PE) may strongly affect the temperature sensitivity of SOM turnover in the presence of global warming. We investigated the direction and magnitude of the PE in a Japanese volcanic ash soil at different temperatures (15°C, 25°C, and 35°C) using a natural 13C tracer (C4-plant, maize leaf) in a short-term (25 days) incubation study. In addition, we evaluated the temperature sensitivity expressed as Q10 value with and without the addition of maize to the soil and their relations to PE. We found that positive PE occurred at each temperature condition and tended to increase with decreased temperature, and these PE results were consistent with the microbial biomass at the end of the incubation period. CO2 emission from control soil (without maize) increased with increasing temperature (Q10 = 2.6), but CO2 emission from the soil with added maize did not significantly change with increasing temperature (Q10 = 1.0). This was caused by the suppression of CO2 emission from the soil with increasing temperature (Q10 = 0.9). On the other hand, soil-originated CO2 emission clearly increased with increasing temperature (Q10 = 3.4) when Q10 values were calculated on the assumption that the temperature and substrate supply increase at the same time (from 25°C). These results suggest that not only the temperature increase but also the labile carbon supply may be important for the temperature sensitivity of Japanese volcanic ash soil.  相似文献   

20.
The wild soybean, an annual self-pollinating plant, is the progenitor of soybeans and is extensively distributed in the Far East of Russia, the Korea peninsula, China and Japan. Geographically, Japan is surrounded by sea and insulated from China. We preliminarily evaluate whether the Japanese and Chinese wild soybean germplasm pools are genetically differentiated from each other using SSR markers. The results showed that the two pools have great genetic differentiation. Some loci presented obvious differences in mean genetic divergence (GST) value between the two pools. The GST among the geographic regions in China was higher than that in Japan. The average within-geographic region gene diversity values (HS) in the two pools were completely identical and thus the genetic difference between the two pools was mostly attributed to the relatively high level of between-geographic region gene diversity (DST) in China. We suggest that Japanese and Chinese wild soybeans should be comparatively independently evolving in phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号