首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have demonstrated laser cooling of a single electron spin trapped in a semiconductor quantum dot. Optical coupling of electronic spin states was achieved using resonant excitation of the charged quantum dot (trion) transitions along with the heavy-light hole mixing, which leads to weak yet finite rates for spin-flip Raman scattering. With this mechanism, the electron spin can be cooled from 4.2 to 0.020 kelvin, as confirmed by the strength of the induced Pauli blockade of the trion absorption. Within the framework of quantum information processing, this corresponds to a spin-state preparation with a fidelity exceeding 99.8%.  相似文献   

2.
研究了低维周期对称量子点中极化子的压缩效应。通过引入单模压缩态,改进了Lee-Low-Pines和Huybrechts(LLP-H)方法,并计算了压缩态下极化子的能量。该计算方法不仅适用于所有的耦合常数范围,而且还可以考虑LLP-H方法中忽略了的哈密顿量中声子算符的线形项以及双线形项。将该计算方法所得到的低维周期对称量子点中极化子基态下极化子结合能和势能与LLP-H方法的计算结果相比较,计算结果更加精确。  相似文献   

3.
We demonstrate coupling and entangling of quantum states in a pair of vertically aligned, self-assembled quantum dots by studying the emission of an interacting electron-hole pair (exciton) in a single dot molecule as a function of the separation between the dots. An interaction-induced energy splitting of the exciton is observed that exceeds 30 millielectron volts for a dot layer separation of 4 nanometers. The results are interpreted by mapping the tunneling of a particle in a double dot to the problem of a single spin. The electron-hole complex is shown to be equivalent to entangled states of two interacting spins.  相似文献   

4.
Double quantum dots provide an ideal model system for studying interactions between localized impurity spins. We report on the transport properties of a series-coupled double quantum dot as electrons are added one by one onto the dots. When the many-body molecular states are formed, we observe a splitting of the Kondo resonance peak in the differential conductance. This splitting reflects the energy difference between the bonding and antibonding states formed by the coherent superposition of the Kondo states of each dot. The occurrence of the Kondo resonance and its magnetic field dependence agree with a simple interpretation of the spin status of a double quantum dot.  相似文献   

5.
A bidirectional single-electron counting device is demonstrated. Individual electrons flowing in forward and reverse directions through a double quantum dot are detected with a quantum point contact acting as a charge sensor. A comprehensive statistical analysis in the frequency and time domains and of higher order moments of noise reveals antibunching correlation in single-electron transport through the device itself. The device can also be used to investigate current flow in the attoampere range, which cannot be measured by existing current meters.  相似文献   

6.
Inelastic light scattering by low-energy spin-excitations reveals three distinct configurations of spin of electron double layers in gallium arsenide quantum wells at even-integer quantum Hall states. The transformations among these spin states appear as quantum phase transitions driven by the interplay between Coulomb interactions and Zeeman splittings. One of the transformations correlates with the emergence of a spin-flip intersubband excitation at vanishingly low energy and provides direct evidence of a link between quantum phase transitions and soft collective excitations in a two-dimensional electron system.  相似文献   

7.
Flynn GW 《Science (New York, N.Y.)》1989,246(4933):1009-1015
Very high resolution lasers allow spectroscopic pictures to be taken following a collision between two molecular reactants. The features of these "pictures" are the electronic, vibrational, rotational, and translational motions of the atomic particles, which relate the quantum states of the reactants to the quantum states of the products. Such state-to-state kinetic information can be used to test the shape and nature of the interaction potential that controls the collision process. The potential itself is akin to a map of the terrain through mountains and valleys where elevation is a measure of energy instead of height. Accurate mapping of this potential surface leads to an understanding of the forces which control rates and mechanisms of chemical reactions. The application of four different advanced laser techniques to the study of collisions between "hot" hydrogen(H) atoms and carbon dioxide(CO(2)) molecules has provided a wealth of information about both reactive and nonreactive collisions for this system. The availability of data for rotationally, vibrationally, and translationally inelastic excitation of CO(2) by H atoms, when compared with data for reactive events producing OH + CO, provides insights into the dynamics of collisions between H and CO(2), and illustrates the future promise of these powerful techniques for elucidating features of potential energy surfaces.  相似文献   

8.
Optically induced entanglement is identified by the spectrum of the phase-sensitive homodyne-detected coherent nonlinear optical response in a single gallium arsenide quantum dot. The electron-hole entanglement involves two magneto-excitonic states differing in transition energy and polarization. The strong coupling needed for entanglement is provided through the Coulomb interaction involving the electrons and holes. The result presents a first step toward the optical realization of quantum logic operations using two or more quantum dots.  相似文献   

9.
Studies of the ground and excited states in semiconductor quantum dots containing 1 to 12 electrons showed that the quantum numbers of the states in the excitation spectra can be identified and compared with exact calculations. A magnetic field induces transitions between the ground and excited states. These transitions were analyzed in terms of crossings between single-particle states, singlet-triplet transitions, spin polarization, and Hund's rule. These impurity-free quantum dots allow "atomic physics" experiments to be performed in magnetic field regimes not accessible for atoms.  相似文献   

10.
Magnetotunneling spectroscopy is used as a noninvasive and nondestructive probe to produce two-dimensional spatial images of the probability density of an electron confined in a self-assembled semiconductor quantum dot. The technique exploits the effect of the classical Lorentz force on the motion of a tunneling electron and can be regarded as the momentum (k) space analog of scanning tunneling microscopy imaging. The images reveal the elliptical symmetry of the ground state and the characteristic lobes of the higher energy states.  相似文献   

11.
We report manipulation of the atom number statistics associated with Bose-Einstein condensed atoms confined in an array of weakly linked mesoscopic traps. We used the interference of atoms released from the traps as a sensitive probe of these statistics. By controlling relative strengths of the tunneling rate between traps and atom-atom interactions within each trap, we observed trap states characterized by sub-Poissonian number fluctuations and adiabatic transitions between these number-squeezed states and coherent states of the atom field. The quantum states produced in this work may enable substantial gains in sensitivity for atom interference-based instruments as well as fundamental studies of quantum phase transitions.  相似文献   

12.
Quantum dots are typically formed from large groupings of atoms and thus may be expected to have appreciable many-body behavior under intense optical excitation. Nonetheless, they are known to exhibit discrete energy levels due to quantum confinement effects. We show that, like single-atom or single-molecule two- and three-level quantum systems, single semiconductor quantum dots can also exhibit interference phenomena when driven simultaneously by two optical fields. Probe absorption spectra are obtained that exhibit Autler-Townes splitting when the optical fields drive coupled transitions and complex Mollow-related structure, including gain without population inversion, when they drive the same transition. Our results open the way for the demonstration of numerous quantum level-based applications, such as quantum dot lasers, optical modulators, and quantum logic devices.  相似文献   

13.
The ground and excited state spectra of a semiconductor quantum dot with successive electron occupancy were studied with linear and nonlinear magnetoconductance measurements. A direct correlation was observed between the mth excited state of the N-electron system and the ground state of the (N + m)-electron system for m up to 4. The results are consistent with a single-particle picture in which a fixed spectrum of energy levels is successively filled, except for a notable absence of spin degeneracy. Further departures from the single-particle picture due to electron-electron interaction were also observed. Magnetoconductance fluctuations of ground states show anticrossings where wave function characteristics are exchanged between adjacent levels.  相似文献   

14.
We observed mixing between two-electron singlet and triplet states in a double quantum dot, caused by interactions with nuclear spins in the host semiconductor. This mixing was suppressed when we applied a small magnetic field or increased the interdot tunnel coupling and thereby the singlet-triplet splitting. Electron transport involving transitions between triplets and singlets in turn polarized the nuclei, resulting in marked bistabilities. We extract from the fluctuating nuclear field a limitation on the time-averaged spin coherence time T2* of 25 nanoseconds. Control of the electron-nuclear interaction will therefore be crucial for the coherent manipulation of individual electron spins.  相似文献   

15.
A multi- high-frequency electron paramagnetic resonance method is used to probe the magnetic excitations of a dimer of single-molecule magnets. The measured spectra display well-resolved quantum transitions involving coherent superposition states of both molecules. The behavior may be understood in terms of an isotropic superexchange coupling between pairs of single-molecule magnets, in analogy with several recently proposed quantum devices based on artificially fabricated quantum dots or clusters. These findings highlight the potential utility of supramolecular chemistry in the design of future quantum devices based on molecular nanomagnets.  相似文献   

16.
A tunable kondo effect in quantum dots   总被引:1,自引:0,他引:1  
A tunable Kondo effect has been realized in small quantum dots. A dot can be switched from a Kondo system to a non-Kondo system as the number of electrons on the dot is changed from odd to even. The Kondo temperature can be tuned by means of a gate voltage as a single-particle energy state nears the Fermi energy. Measurements of the temperature and magnetic field dependence of a Coulomb-blockaded dot show good agreement with predictions of both equilibrium and nonequilibrium Kondo effects.  相似文献   

17.
Multiple exciton generation, the creation of two electron-hole pairs from one high-energy photon, is well established in bulk semiconductors, but assessments of the efficiency of this effect remain controversial in quantum-confined systems like semiconductor nanocrystals. We used a photoelectrochemical system composed of PbS nanocrystals chemically bound to TiO(2) single crystals to demonstrate the collection of photocurrents with quantum yields greater than one electron per photon. The strong electronic coupling and favorable energy level alignment between PbS nanocrystals and bulk TiO(2) facilitate extraction of multiple excitons more quickly than they recombine, as well as collection of hot electrons from higher quantum dot excited states. Our results have implications for increasing the efficiency of photovoltaic devices by avoiding losses resulting from the thermalization of photogenerated carriers.  相似文献   

18.
The ability to switch the coupling between quantum bits (qubits) on and off is essential for implementing many quantum-computing algorithms. We demonstrated such control with two flux qubits coupled together through their mutual inductances and through the dc superconducting quantum interference device (SQUID) that reads out their magnetic flux states. A bias current applied to the SQUID in the zero-voltage state induced a change in the dynamic inductance, reducing the coupling energy controllably to zero and reversing its sign.  相似文献   

19.
We report experiments on quantum dot single-electron-tunneling (SET) transistors made from short multiwall nanotubes and threaded by magnetic flux. Such systems allow us to probe the electronic energy spectrum of the nanotube and its dependence on the magnetic field. Evidence is provided for the interconversion between gapped (semiconducting) and ungapped (metallic) states. Our tubes exhibit h/e-period magnetic flux dependence, in agreement with simple tight-binding calculations.  相似文献   

20.
We have measured carbon nanotube quantum dots with multiple electrostatic gates and used the resulting enhanced control to investigate a nanotube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams as a function of two nearly independent gate voltages. The device can be tuned from weak to strong interdot tunnel-coupling regimes, and the transparency of the leads can be controlled independently. We extract values of energy-level spacings, capacitances, and interaction energies for this system. This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号