首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinyl alcohol) (PVA)/Ag-zeolite nanocomposite hydrogels were prepared by UV irradiation using PVA solution mixed with Ag-zeolite nanoparticles. Physical properties and changes in morphology of the PVA/Ag-zeolite hydrogels were investigated. The PVA/Ag-zeolite hydrogels were prepared at a PVA concentration of 9 wt% with a UV irradiation distance of 15 cm, where gel fraction and swelling ratio were optimized. Hardness of the PVA/Ag-zeolite hydrogels decreased with increasing amounts of Ag-zeolite, reaching that of soft elastomer when the amount of Ag-zeolite was 5 % by weight. The PVA/Ag-zeolite hydrogels showed strong antimicrobial activities against Staphylococcus aureus and Klebsiella pneumoniae, inducing a reduction of bacteria of over 99.9 % at a Ag-zeolite content of 3 wt%.  相似文献   

2.
Functionalization of cellulosic nanofibers was established to develop antibacterial bandages. The functionalization was conducted through preparation of carboxymethyl cellulose (CMC) containing different metal nanoparticles (MNPs) such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs) and zinc nanoparticles (ZnNPs). Fourier Transform Infrared spectroscopy was used to characterize CMC containing MNPs and scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX) to study the surface morphology of CMC with and without MNPs. Furthermore, back scattering electron detector was used to show the position of metal nanoparticles on the microcrystalline CMC. In addition, UV-visible spectroscopy was used to confirm MNPs formation. Nanofiber mats of CMC containing MNPs were synthesized using electrospinning technique. Surface morphology of electrospun CMC containing MNPs was characterized using SEM. The obtained data revealed that elctrospun CMC nanofibers containing MNPs were smooth and uniformly distributed without bead formation. The average fiber diameters were in the range of 150 to 200 nm and the presence of MNPs in the nanofiber did not affect the size of the electrospun nanofiber diameter. Transmission electron microscopy (TEM) images displayed that MNPs were existed inside and over the surface of the electrospun nanofibers without any agglomeration. The average particle diameters of MNPs were 29-39 nm for ZnNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Moreover, Water uptake of electrospun nanofiber mats and the release of MNPs from nanofibers were evaluated. Nevertheless, electrospun CMC nanofibers containing MNPs had an excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus.  相似文献   

3.
In this study, quantum dots (QDs) having the photophysical properties of brightness, photostability and narrow emission were synthesized. The electrospinning has been introduced to be a simple technique for generating ultrathin fibers. Herein, we have synthesized QDs and electrospun polyvinylacetate (PVAc) nanofibers having these strongly luminescing QDs particles. The size and morphology of QDs were recorded with transmission electron microscopy (TEM). The structural nanofiber webs have been discussed by scanning electron microscopy (SEM). And fluorescence properties of strongly luminescing QDs nanofibers were also discussed.  相似文献   

4.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

5.
CdTe quantum dot/PVA (poly vinyl alcohol) composite nanofiber was successfully fabricated by eletrospinning process. CdTe quantum dots were uniformly dispersed and stabilized into solid nanofiber structure. Spectrofluorometer analysis revealed whenever Q.D??s enter to the PVA solution, due to the aggregation of Q.D??s red shift happens; however, when blend Q.D-PVA solution changes to nanofiber form via electrospining, this shift phenomenon offsets and original fluorescence properties of Q.D??s does not degraded due to excellent individual dispersion of Q.D in the nanofibers structure. It is also turned out that the proportion of Q.D??s incorporated in the composite solution of electrospining has strong influence on the nanofiber morphology. Addition of Q.D??s to PVA solution causes remarkable changes in the conductivity and solution viscosity, therefore different nanofiber morphologies can be obtained as evidenced by scanning electron microscopy. Furthermore, differential scanning calorimetric (DSC) revealed addition of small amount of Q.D??s to the electrospining solution causes strenuous improvement in crystalinity and heat of nanofiber fusion. Fluorescence and transmission electron microscopy (TEM) measurements confirmed the evenly dispersion of the Q.D??s into nanofibers structures.  相似文献   

6.
Silver nanoparticles imbedded in polyacrylonitrile (PAN) nanofibers and converted into carbon nanofibers by calcination was obtained in a simple three-step process. The first step involves conversion of silver ions to metallic silver nanoparticles, through reduction of silver nitrate with dilute solution of PAN. The second step involves electrospinning of viscous PAN solution containing silver nanoparticles, thus obtaining PAN nanofibers containing silver nanoparticles. The third step was converting PAN/Ag composites into carbon nanofibers containing silver nanoparticles. Scanning electron microscopy (SEM) revealed that the diameter of the nanofibers ranged between 200 and 800 nm. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) showed silver nanoparticles dispersed on the surface of the carbon nanofibers. The obtained fiber was fully characterized by measuring and comparing the FTIR spectra and thermogravimetric analysis (TGA) diagrams of PAN nanofiber with and without imbedded silver nanoparticles, in order to show the effect of silver nanoparticles on the electrospun fiber properties. The obtained carbon/Ag composites were tested as gram-class-independent antibacterial agent. The electrosorption of different salt solutions with the fabricated carbon/Ag composite film electrodes was studied.  相似文献   

7.
A series of blend nanofiber mats comprising poly(vinyl alcohol) (PVA) and polyurethane (PU) were prepared by dual-jet electrospinning in various parameters. Orthogonal experimental design was used to investigate how those parameters affected on fiber diameters and fiber diameter distribution. Altogether three parameters having three levels each were chosen for this study. The chosen parameters were tip-to-collector distance (TCD), voltage and tip-to-tip distance (TTD). Fiber diameters, thermal properties, mechanical properties and hydrophilicity of the blend nanofiber mats were examined by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), tensile test, contact angle and water absorption test, respectively. The results showed that the optimum conditions for PVA/PU blend nanofiber mats fabricated by dual-jet electrospinning were TCD of 20 cm, voltage of 18 kV and TTD of 4 cm. Besides, the thermal stability of PVA/PU blend nanofiber mats had been improved compared with pure nanofibers. Furthermore, the elongation and tensile strength of the blend nanofiber mats were significantly increased compared with pure PVA and pure PU, respectively. And the blend nanofiber mats exhibited well hydrophilicity.  相似文献   

8.
Cobalt ferrite nanocrystals were prepared from an aqueous solution containing metal nitrates and various of concentrations of poly(vinyl pyrrolidone), followed by calcinations temperature. X-ray diffraction (XRD) analysis was performed to determine the degree of crystallinity of the ferrite nanoparticles. By transmission electron microscopy (TEM), the morphology and average particle size of the cobalt ferrite nanoparticles were evaluated which had good agreement with XRD results. Fourier transform infrared spectroscopy (FT-IR) suggested the presence of metal oxide bands in all samples as well as the effective elimination of organic constituents after calcinations. Vibrating sample magnetometer (VSM), was utilized to evaluate the magnetic properties of the cobalt ferrite nanoparticles.  相似文献   

9.
Monodisperse poly(vinyl alcohol) (PVA)/poly(vinyl acetate) (PVAc) nanoparticles with a skin-core structure were prepared through heterogeneous surface saponification of PVAc nanoparticles. For the preparation of PVAc nanoparticles with a uniform particle size distribution, vinyl acetate (VAc) was dispersion polymerized in a mixed solvent of ethanol and water using PVA with a low degree of saponification as a stabilizer. Increase of the amount of ethanol in media, the resulting PVAc nanoparticle size increases due to increasing solubility of VAc and oligomer PVAc. To preserve the sphericity and size uniformity of PVAc nanoparticles, we restricted saponification to the surface of the nanoparticles by using a small amount of aqueous sodium hydroxide solution. To determine the proper concentration of alkali solution for heterogeneous saponification, monodisperse PVAc nanoparticles were saponified with different concentrations of alkali solution at 25 °C for 0.5–3.0 h. The PVA/PVAc nanoparticles obtained by the heterogeneous saponification with 4 % (relative to the amount of the VAc) alkali solution for 2.0 h were uniformly shaped and monodispersed with diameter ranging from 428 to 615 nm. Transmission electron microscopy (TEM) confirmed the spherical nature and regular skin-core structure of the PVA/PVAc nanoparticles.  相似文献   

10.
As a kind of high-performance fibers, PTFE fiber has been widely used in many fields because of its unique characteristics. In this study, the poly(tetrafloroethylene) (PTFE) nanofibers manufactured by electrospinning method was reported. The gel-spinning solution of poly(tetrafluoroethylene)/poly(vinyl alcohol)/boric acid (PTFE/PVA/BA), which was prepared by the gel process of the mixture of PTFE, PVA, BA and redistilled water, was electrospun to form PTFE/PVA/BA composite nanofibers. After calcinating, the PTFE nanofibers with diameters of 200 nm to 1000 nm were obtained. The fibers before and after calcinating were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), FT-IR spectrum analysis and X-ray photoelectron spectroscopy (XPS), respectively, and the mechanical and hydrophobic properties of the fibers were also investigated. The results showed that the PTFE nanofiber membranes could be electrospun effectively used the gel-spinning solution of PTFE/PVA/BA, and may realize the applications in the fields of high-temperature filtration, catalyst supports, battery separator and so on.  相似文献   

11.
In the present study, nano-sized Pt/WO3-carbon nanofiber, Pt-Pd/WO3-carbon nanofiber and Pt-Ru/WO3-carbon nanofiber electrocatalysts were synthesized and the performance of prepared catalysts were compared with catalysts coated carbon black for the oxygen reduction reaction (ORR). The morphology and structure of prepared catalysts were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The SEM images showed that the catalyst nanoparticles were well dispersed on the both carbon nanofiber and carbon black supports. Electrochemical measurements including linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) tests were applied to investigate the potential of the fabricated electrodes on the ORR. The results demonstrated that the catalysts based on carbon nanofibers showed a significant increase of activity toward the ORR. Also, the Pt/Pd coated carbon nanofibrous electrode showed the highest electrochemical activity.  相似文献   

12.
Gallium arsenide (GaAs) does have superior electronic properties compared with silicon. For instant, it has a higher saturated electron velocity and higher electron mobility. Weak mechanical properties and high production cost are the main drawbacks of this interesting semiconductor. In this study, we are introducing production of GaAs nanofibers by electrospinning methodology as a very low cost and yielding distinct product technique. In general, nano-fibrous shape is strongly improving the physical properties due to the high surface area to volume ratio of this nanostructure. The mechanical and environmental properties of the GaAs compound have been modified since GaAs nanofibers have been produced as a core inside a poly(vinyl alcohol) (PVA) shell. GaAs/PVA nanofibers were prepared by electrospinning of gallium nitrate/PVA solution in presence of arsenic vapor. The whole process was carried out in a closed hood equipped with nitrogen environment. FT-IR, XPS, TGA and UV-Vis spectroscopy analyses were utilized to confirm formation of GaAs compound. Transmission electron microscope (TEM) analysis has revealed that the synthesized GaAs compound is crystalline and does have nano-fibrous shape as a core inside PVA nanofibers. To precisely recommend the prepared GaAs nanofiber mats to be utilized in different applications, we have measured the electric conductivity and the band gap energies of the prepared nanofiber mats. Overall, the obtained results affirmed that the proposed strategy successfully remedied the drawbacks of the reported GaAs structures and did not affect the main physical properties of this important semiconductor.  相似文献   

13.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

14.
Poly(vinyl alcohol) (PVA)/zirconium oxide (ZrO2) composite nanofibers with a skin-core structure were prepared and the effect of ZrO2 particle content on uniform web formation was investigated. The optimized polymer concentration, tip to collector distance, and applied voltage for electrospinning were 11 wt%, 12 cm, and 20 kV, respectively. Skin-core PVA/ZrO2 composite nanofibers containing up to 12 wt% ZrO2 were successfully prepared, but it was difficult to obtain PVA/ZrO2 composite nanofiber webs via conventional electrospinning. Increasing the amount of ZrO2 caused the morphology of the PVA/ZrO2 composite nanofibers to become a non-uniform nanoweb with irregular nanofiber diameters. While it was difficult to obtain a uniform nanofiber web containing a content of ZrO2 over 6 wt% for conventional electrospinning, a more uniform nanofiber web could be obtained at up to 9 wt% ZrO2 using a skin-core dual nozzle. More uniform webs could also be obtained when ZrO2 was in the skin rather than the core.  相似文献   

15.
Well-aligned PMIA nanofiber mats were fabricated by electrospinning and then hot-stretching along the fiber axis was used to improve the mechanical properties of nanofibers in this paper. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to characterize the morphology and properties of nanofibers. The results showed that the nanofibers became thinner and better alignment than the as-spun nanofibers after hotstretching, and the average diameter of the nanofibers decreased with the increasing of the tensile force. In the same time, hotstretching improved the crystallinity and T g of the as-spun PMIA nanofibers. The tensile strength and modulus of the hotstretched nanofiber mats peaked at ca.50 % and ca.196 % respectively at the tensile force of 12 N compared with the as-spun nanofiber mats.  相似文献   

16.
A novel nano-silver colloidal solution was prepared in one step by mixing AgNO3 aqueous solution and an amino-terminated hyperbranched polymer (HBP-NH2) aqueous solution under vigorous stirring at room temperature. All results of Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and UV/Visible Absorption Spectrophotometry indicated that silver nanoparticles had been formed in colloidal solution. Cotton fabric was treated with nano-silver colloid by an impregnation method to provide the cotton fabric with antibacterial properties. The whiteness, silver content, antibacterial activity and washing durability of the silver-treated fabrics were determined. The results indicated that the silver-treated cotton fabric showed 99.01 % bacterial reduction of Staphylococcus aureus and 99.26 % bacterial reduction of Escherichia coli while the silver content on cotton was about 88 mg/kg. The antimicrobial activity of the silver-treated cotton fabric was maintained at over 98.77 % reduction level even after being exposed to 20 consecutive home laundering conditions. In addition, the results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirmed that silver nanoparticles have been fixed and well dispersed on cotton fabrics’ surface and the major state of the silver presented on the surface was Ag0.  相似文献   

17.
Polyglycolic acid-poly lactic glycolic acid (PGA-PLGA) electrospun nanofibers containing silver nanoparticles have been produced and twisted into the nanofibrous yarn. The morphology of nanofibers and produced yarns, as well as the mechanical properties of the yarns, were investigated. Furthermore, in vitro antibacterial properties and in vitro degradation behavior of yarns containing various silver nanoparticles were studied. SEM images confirmed that the addition of the silver nanoparticles into the polymer solution increases the fiber diameters. The result of the mechanical test of the yarns alone and used in two different forms of the knots was measured and results showed that the strength of the yarns without the knot was significantly more than that of others. The biodegradability test showed that the mechanical properties and the weight of the yarns were quickly reduced after subjecting to in vitro condition. The result of the antibacterial test indicated that the nanofiber yarns containing %3 silver nanoparticles were the most appropriate sample with a considerably antibacterial activity against both gram-positive bacterium Staphylococcus aureus and gram-negative bacterium Escherichia Coli with inhibition zones of 8.1 and 9.5 mm, respectively; which demonstrated that silver nanoparticles retained their effectiveness after the electrospinning process. Therefore the nanofibrous yarns containing silver nanoparticles could be successfully produced by the electrospinning process with the proper antibacterial property as a candidate for the surgical sutures.  相似文献   

18.
In this study, we developed optimal multifunctional electrospun wound dressings possessing an antibacterial activity and rich in iron, a vital trace element for cell growth. Therefore, synthetic ferric oxide nanoparticles (α-Fe2O3 NPs) were ultrasonically dispersed into preheated gelatin-glycerol solution. A variety of techniques (X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal analysis (DTA), in-vitro swelling-degradation studies and antibacterial tests) were used to characterize the electrospun mats. The results highlight that α-Fe2O3 NPs could be successfully dispersed into the electrospun gelatin nanofibers. The electrospun ferric oxide-gelatin-glycerol nanofibrous mats revealed free beads nanofibers with appropriated swelling-degradation behavior. It was observed that addition of α-Fe2O3 NPs enhanced the antibacterial activity of electrospun mats against positive and negative bacteria.  相似文献   

19.
In this study, various concentrations of polyethylene terephthalate (PET) polymeric solution were investigated to produce hollow nanofiber yarn. First, the electrospining apparatus was designed in a way that to put PVA multifilament in the core and to twist PET nanofibers onto multifilament yarn as a sheath simultaneously, followed by dissolving PVA yarn in hot water, PET hollow nanofiber yarn was produced. In this survey, it has been observed that the average thickness of sheath increased by increasing concentrations of PET polymeric solution. Results showed that maximum efficiency of extracting the PVA multifilament from the hollow yarn under certain conditions (concentration of 18 % (w/v) of PET, applied voltage of 10 kV, and flow rate of 0.0526 ml/h) was more than 85 %. The mechanical and physical properties of PET hollow yarns were investigated and indicated that the hollow nanofiber yarns at concentration of 30 % and 18 % polymeric solution had the lowest strength and the highest regain moisture, respectively.  相似文献   

20.
Nanofibrous membranes are intensively applied to fabricate advanced intelligent devices like highly sensitive sensors due to their flexibility, high porosity, high surface area and good mechanical and chemical stability. In this work, fluorescent cadmium telluride (CdTe) quantum dots (Q.Ds) were synthesized and then uniformly embedded in poly vinyl alcohol (PVA) nanofibers by electrospinning technique to serve as reversible quenching fluorescence-based sensor to detect the traces of benzene, toluene and xylene vapors selectively at room temperature. Fluorescence analysis suggested that Q.Ds preserve their original fluorescent property in solid nanofiber as if they were in solution. Scanning electron microscopy images showed the uniform diameter of nanofibers. In addition, Fluorescence and transmission electron microscopy (TEM) measurements confirmed the uniform distribution of the Q.Ds into nanofibers structures. The main mechanism of quenching based sensor was designated as electron transfer from thiogalycolic acid (TGA) — capped Q.D surface to target volatile organic compounds (VOC’s) vapors. Fabricated sensor showed selectively sensing upon trace of different target vapors due to the difference in the electronegativity of various VOC’s molecules. For example exposure to more electron withdrawing toluene molecules induces severe quenching effect on fluorescence intensity of Q.D (about 25 %) over xylene exposure. Moreover, it was observed that reducing the diameter of nanofibers enhanced the sensitivity of sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号