首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 103 毫秒
1.
魔芋甘露聚糖真空冷冻干燥技术研究   总被引:3,自引:0,他引:3  
确定了魔芋甘露聚糖湿品的冻结温度即三相点温度,提出了魔芋甘露聚糖真空冷冻干燥工艺的真空度参数和搁板温度参数。为大批量魔芋甘露聚糖真空冷冻干燥生产提供了参考依据  相似文献   

2.
魔芋甘露聚糖含量测定研究   总被引:4,自引:0,他引:4  
研究了以葡萄糖为标准,以DNS为显色剂,用比色法原理间接测定魔芋精粉中甘露聚糖含量的方法,结果表明该方法简单、准确,适于不同等级魔芋精粉中甘露聚糖的测定。  相似文献   

3.
魔芋甘露聚糖免疫作用的研究   总被引:3,自引:0,他引:3  
研究了魔芋甘露聚糖免疫作用,通过给昆明系小鼠灌胃,持续25d,观察魔芋甘露聚糖对其免疫功能影响。结果表明,魔芋甘露聚糖组半数溶血值(HC50)、淋巴细胞刺激指数(SI)及细胞毒百分率明显上升,提示魔芋甘露聚糖可明显提高小鼠细胞免疫和体液免疫,并增强TNF产生。  相似文献   

4.
利用热风干燥装置,在风温50~80℃,风速0.5m/s,厚5~12.5mm,面积78.5cm2的条件下,研究了风温、厚度对魔芋甘露聚糖干燥特性和效率的影响,提出了魔芋甘露聚糖热风干燥工艺。  相似文献   

5.
利用热风和真空干燥装置,在风温50-80℃,风速0.5m/s,厚5-12.5mm,面积78.5cm^2,真空度为-0.08MPa至-0.07MPa的条件下,研究了干燥方法,风湿,厚度对魔芋甘露聚糖干燥特性和效率的影响。统计结果表明,影响魔芋甘露聚糖干制主要因素强度为:厚度-方法-温度。提出了魔芋甘露聚糖干制工艺参数。  相似文献   

6.
研究了魔芋甘露聚糖对板栗呼吸强度、失水率等的影响,结果表明魔芋甘露聚糖是一种有效的保鲜剂。  相似文献   

7.
魔芋甘露聚糖对水果蔬菜保鲜效果研究   总被引:2,自引:0,他引:2  
主要进行了魔芋甘露聚糖对不同果蔬、食品原料保鲜效果试验,结果表明,魔芋甘露聚糖对果蔬、食品原料有明显的保鲜效果。  相似文献   

8.
1 魔芋甘露聚糖的生物合成1.1 存在形态魔芋甘露聚糖作为粘液状的甘露聚糖颗粒存在于魔芋的块茎中。如果看一下球茎的截面,就可发现在柔细胞中多数都是直径1mm左右的大粒异形细胞,其中还含有与它大小几乎相同的粘液颗粒,这种颗粒是甘露聚糖颗粒,细胞称为甘露聚糖细胞。?..  相似文献   

9.
魔芋精粉中甘露聚糖含量的测定   总被引:2,自引:0,他引:2  
魔芋精粉是由鲜魔芋块茎,经过干燥、机械粉碎、风选等工序得到的一种初级产品。魔芋精粉主要成分为甘露聚糖,其次还有淀粉、纤维素、蛋白质。游离还原糖等。魔芋甘露聚糖是由甘露糖和葡萄糖,通过β-(1→4)苷键和β-(1→3)苷键连接而成的高分子多糖(分子量达106)[1]。研究证明,魔芋甘露聚糖具有减肥作用,对血清胆固醇、肝胆固醇和中性脂肪的上升有明显的抑制作用,并具有调节代谢正常化和增强免疫功能的作用,被广泛应用于保健食品和医药上[2]。甘露聚糖含量是魔芋精粉质量的一个关键指标。目前,生产中仅以粘度的高低判断甘…  相似文献   

10.
1 魔芋甘露聚糖的化学结构1.1 初期的研究魔芋和精粉的主要成分是甘露聚糖,最初是迁[1]在文章中提出来的。即他在以“MannanasanArticleofHumanFood”为题的论文中叙述道:精粉放在酸解液(3%硫酸)中能检出大量的甘露糖,魔芋的主要成分是甘露聚糖——甘露糖的多酐(Polyanh...  相似文献   

11.
通过在赤峰科尔泌沙地魔芋引种试验,初步观测说明,魔芋能够在该在地生长,并能形成较好产量。用500g的种芋种植,当年单株平均产量1329.2g;375g的球茎种平均增重达250.2%。能够适应当地的气候和土壤条件且生长正常。  相似文献   

12.
The use of calibrated near infrared (NIR) spectroscopy for predicting the chemical composition of Pinus taeda L. (loblolly pine) wood samples is investigated. Seventeen P. taeda radial strips, representing seven different sites were selected and NIR spectra were obtained from the radial longitudinal face of each strip. The spectra were obtained in 12.5 mm sections from pre-determined positions that represented juvenile wood (close to pith), transition wood (zone between juvenile and mature wood), and mature wood (close to bark). For these sections, cellulose, hemicellulose, lignin (acid soluble and insoluble), arabinan, galactan, glucan, mannan, and xylan contents were determined by standard analytical chemistry methods. Calibrations were developed for each chemical constituent using the NIR spectra, wood chemistry data and partial least squares (PLS) regression. Relationships were variable with the best results being obtained for cellulose, glucan, xylan, mannan, and lignin. Prediction errors were high and may be a consequence of the diverse origins of the samples in the test set. Further research with a larger number of samples is required to determine if prediction errors can be reduced.  相似文献   

13.
Cunninghamia lanceolata wood meal samples with different lignin contents after delignification with an acidic NaClO2 system were carboxymethylated, and the degree of substitution (DS) and the distribution of the carboxymethyl (CM) groups were investigated by proton nuclear magnetic resonance (1H NMR) spectroscopy. Cellulose samples prepared from bleached kraft softwood pulp, food-grade konjac mannan, and commercial oat xylan (containing 10% arabinosyl and 15% glucosyl residues) were also investigated. The chemical shift of methylene protons in 1H NMR spectra of CM groups of carboxymethyl konjac mannan and commercial oat xylan appeared in the same region as those of carboxymethylcellulose. The DS of carboxymethyl lignocellulose (CMLC) increased slightly from 1.36 to 1.48 with decreasing lignin content, but the water solubility of CMLC clearly increased with decreasing lignin content. It was suggested that the covalent linkages between lignin and cell-wall polysaccharides play the role of cross-linker in CMLC. Water absorbents were synthesized by graft-copolymerization of acrylic acid onto CMLC samples with different lignin contents. The highest level of water absorbency was obtained from CMLC containing 14% of lignin, suggesting the importance of lignin as the cross-linker.  相似文献   

14.
Summary Cellulases and hemicellulases (mannanase and xylanase) from culture filtrates of various fungi, including a brown rot fungus, Polyporus schweinitzii and a soft rot fungus, Chaetomium globosum, have been isolated and characterized. Investigations of their molecular weights, pH- and temperature optima and stabilities indicate that hydrolases of the wood destroying fungi are very similar to one another and to hydrolases from various other plant organisms. Substrate specificities and the effect of substituents on the natural substrates have also been investigated. Routine tests for mannanase and xylanase were carried out with model substrates (mannan from Tubera salep, xylan from wheat straw), but preliminary tests with complex hemicelluloses isolated from wood showed that these too could be broken down to monoor oligosaccharides. The results presented are discussed in relation to possible roles of the various enzymes in vivo.Paper presented at the Int. Wood Chemistry Symposium, Seattle, 3. IX. 1969.With support of the Deutsche Forschungsgemeinschaft.  相似文献   

15.
采用单因素实验法,比较川牛膝多糖提取过程中,提取方式、提取温度、提取时间、提取料液比对川牛膝多糖得率的影响,用硫酸苯酚显色法与紫外分光光度法进行最优条件筛选。结果表明,川牛膝最佳多糖提取工艺为,超声波辅助提取法、提取温度60℃、提取料液比1∶20、提取时间1.5h时最优,提取率为47.12%。提取条件的不同川牛膝植物多糖提取率有较大差异,为后期工业化生产提供理论支持。  相似文献   

16.
以山楂品种"甜水"为试材,分别采用单因素试验法和正交试验法,研究山楂叶总黄酮3种提取方法的最佳提取工艺。结果表明:在3种提取方法中,以浸渍法提取率最高,回流提取法最低,超声波法居中;3种方法所得提取物中总黄酮含量,以回流提取法最高,超声波法与浸渍法相差不大;从总黄酮得率来看,以浸渍法所得黄酮总量最高,超声波法次之,而热回流提取法所得黄酮总量最低。但超声波法所用溶剂量最少,提取时间最短,且产率较高,是提取山楂叶总黄酮的一种非常便捷高效的方法。  相似文献   

17.
采用碱提法对地鳖虫多糖进行提取试验,以碱液浓度、提取温度、提取时间等因素做正交试验,用苯酚-硫酸进行多糖含量测定,最佳的提取工艺条件为最佳的提取工艺条件为A3B2C1,即碱液浓度为0.03mol/L,提取时间1h,提取温度为60℃。  相似文献   

18.
提取方法对石榴籽油提取率及抗氧化活性的影响   总被引:1,自引:0,他引:1  
考察加热回流提取、超声波辅助提取、微波辅助提取3种方法中不同溶剂对石榴籽油的提取率的影响,并进行性状检查;采用Schaal烘箱法(60±1℃)比较各提取物的体外抗氧化的作用。结果表明,以石油醚为溶剂在3种方法中提取率均为最高,且产品纯净无杂质,并有特殊香味;3种提取方法的提取率和抗氧化活性略有不同,但无显著性差异。超声法和微波法由于提取时间短,效率高更具有优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号