首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Behavioural and energetic responses of domesticated rainbow trout Oncorhynchus mykiss (Walbaum) (mean fork length=440±45 mm) to a brief transportation episode were investigated. Fish implanted with radio transmitters measuring muscle activity (electromyogram; EMGi) were transported in a standard commercial shipping tank for 50 min by truck, and then allowed to recuperate for 48 h in stationary culture tanks. The EMGi telemetry data indicated that vigorous swimming activity occurred during transportation. Telemetry recordings also indicated that the fish's swimming activity returned to baseline levels within the 48 h period after transport. However, even beyond the 48 h resting period, the swimming performance (measured as critical speed and endurance) of transported fish was still impaired relative to non‐transported controls (P<0.05). Respirometry measurements of fish taken after transportation indicated that oxygen consumption (Vo2) was significantly elevated. The rise in Vo2 of post‐transport fish could be attributed to handling procedures, as well as the intense swimming behaviour observed during transportation. Therefore, the behavioural responses of fish during transportation produced physiological consequences that persisted long after the transportation event. This study demonstrates the potential for utilizing behavioural measures, in concert with biotelemetry technologies, as tools to assess the impacts of routine aquacultural procedures on the health and welfare of captive fish.  相似文献   

2.
Electromyogram (EMG) telemetry studies that involve remotely monitoring the locomotory activity and energetics of fish are contributing important information to the conservation and management of fisheries resources. Here, we outline the development of this rapidly evolving field and formulate the studies conducted that utilize this technology. To date, more than 60 studies have been conducted using EMG telemetry that spans 18 species. Several general trends were observed in the methodology of the studies that we have highlighted as standards that should be adopted associated with transmitter customization, electrode placement and surgical technique. Although numerous studies have been methodological, there are still some deficiencies in our basic understanding of issues such as the need for individual calibration and the method of reporting or transforming data. Increasingly, this technology is being applied to address issues in conservation, management and aquaculture production. At present, the technology has been most frequently applied to the study of animal activity or energetics and to migration. Several recent studies have also focused on addressing more basic questions in ecological and evolutionary biology (e.g. parental care dynamics) similar to the large body of literature that has been collected for other taxa (e.g. marine mammals, birds), using activity telemetry. Collectively, studies conducted using EMG telemetry have contributed important information on free‐swimming fish that was previously difficult to obtain. EMG telemetry is particularly effective for examining behaviour at temporal and spatial scales that are difficult using other techniques. The development of an ultrasonic transmitter based on the same proven principles as those used in the current radio transmitter technology will permit studies in other environments (i.e. marine, brackish, deep water) and on different species of fish. We encourage the continued development and refinement of devices for monitoring the activity and energetics of free‐swimming fish, and also encourage researchers to consider EMG telemetry as a tool for addressing questions that are not effectively answered with other techniques.  相似文献   

3.
The assumption that animals released from fishing gears survive has frequently been scrutinized by researchers in recent years. Mortality estimates from these research efforts can be incorporated into management models to ensure the sustainability of fisheries and the conservation of threatened species. Post‐release mortality estimates are typically made by holding the catch in a tank, pen or cage for short‐term monitoring (e.g. 48 h). These estimates may be inaccurate in some cases because they fail to integrate the challenges of the wild environment. Most obvious among these challenges is predator evasion. Stress and injury from a capture experience can temporarily impair physiological capacity and alter behaviour in released animals, a period during which predation risk is likely elevated. In large‐scale commercial fisheries, predators have adapted their behaviour to capitalize on impaired fishes being discarded, while in recreational catch‐and‐release fisheries, exercise and air exposure can similarly impede the capacity for released fish to evade opportunistic predators. Owing to the indirect and often cryptic nature of this source of mortality, very few studies have attempted to document it. A survey of the literature demonstrated that <2% of the papers in the combined realms of bycatch and catch‐and‐release have directly addressed or considered post‐release predation. Future research should combine field telemetry and laboratory studies using both natural and simulated predation encounters and incorporate physiological and behavioural endpoints. Quite simply, predation is an understudied and underappreciated contributor to the mortality of animals released from fishing gears.  相似文献   

4.
Over the past 20 years, there has been a dramatic increase in the use of physiological tools and experimental approaches for the study of the biological consequences of catch‐and‐release angling practices for fishes. Beyond simply documenting problems, physiological data are also being used to test and refine different strategies for handling fish such that stress is minimised and survival probability maximised, and in some cases, even for assessing and facilitating recovery post‐release. The inherent sensitivity of physiological processes means that nearly every study conducted has found some level of – unavoidable – physiological disturbance arising from recreational capture and subsequent release. An underlying tenet of catch‐and‐release studies that incorporate physiological tools is that a link exists between physiological status and fitness. In reality, finding such relationships has been elusive, with further extensions of individual‐level impacts to fish populations even more dubious. A focus of this article is to describe some of the challenges related to experimental design and interpretation that arise when using physiological tools for the study of the biological consequences of catch‐and‐release angling. Means of overcoming these challenges and the extrapolation of physiological data from individuals to the population level are discussed. The argument is presented that even if it is difficult to demonstrate strong links to mortality or other fitness measures, let alone population‐level impacts of catch‐and‐release, there remains merit in using physiological tools as objective indicators of fish welfare, which is an increasing concern in recreational fisheries. The overarching objective of this paper is to provide a balanced critique of the use of physiological approaches in catch‐and‐release science and of their role in providing meaningful information for anglers and managers.  相似文献   

5.
Fish are increasingly exposed to anthropogenic stressors from human developments and activities such as agriculture, urbanization, pollution and fishing. Lethal impacts of these stressors have been studied but the potential sublethal impacts, such as behavioural changes or reduced growth and reproduction, have often been overlooked. Unlike mortality, sublethal impacts are broad and difficult to quantify experimentally. As a result, sublethal impacts are often ignored in regulatory frameworks and management decisions. Building on established fish bioenergetic models, we present a general method for using the population consequences of disturbance framework to investigate how stressors influence ecologically relevant life processes of fish. We partition impact into the initial energetic cost of attempts to escape from the stressor, followed by the energetic impacts of any injury or behavioural change, and their consequent effects on life processes. As a case study, we assess the sublethal effects of catch and release angling for the European sea bass (Dicentrachus labrax, Moronidae), a popular target species for recreational fishers. The energy budget model described is not intended to replace existing experimental approaches but does provide a simple way to account for sublethal impacts in assessment of the impact of recreational fisheries and aid development of robust management approaches. There is potential to apply our energy budget approach to investigate a broad range of stressors and cumulative impacts for many fish species while also using individual‐based models to estimate population‐level impacts.  相似文献   

6.
Dredging can have significant impacts on aquatic environments, but the direct effects on fish have not been critically evaluated. Here, a meta‐analysis following a conservative approach is used to understand how dredging‐related stressors, including suspended sediment, contaminated sediment, hydraulic entrainment and underwater noise, directly influence the effect size and the response elicited in fish across all aquatic ecosystems and all life‐history stages. This is followed by an in‐depth review summarizing the effects of each dredging‐related stressor on fish. Across all dredging‐related stressors, studies that reported fish mortality had significantly higher effect sizes than those that describe physiological responses, although indicators of dredge impacts should endeavour to detect effects before excessive mortality occurs. Studies examining the effects of contaminated sediment also had significantly higher effect sizes than studies on clean sediment alone or noise, suggesting additive or synergistic impacts from dredging‐related stressors. The early life stages such as eggs and larvae were most likely to suffer lethal impacts, while behavioural effects were more likely to occur in adult catadromous fishes. Both suspended sediment concentration and duration of exposure greatly influenced the type of fish response observed, with both higher concentrations and longer exposure durations associated with fish mortality. The review highlights the need for in situ studies on the effects of dredging on fish which consider the interactive effects of multiple dredging‐related stressors and their impact on sensitive species of ecological and fisheries value. This information will improve the management of dredging projects and ultimately minimize their impacts on fish.  相似文献   

7.
Catch‐and‐release angling is popular in many parts of the world and plays an increasingly important role in management of recreational fisheries. Although the magnitude of catch‐and‐release mortality is well documented for many species, potential sublethal effects have been little studied. An experiment was conducted to assess directly the effects of catch‐and‐release angling on growth of largemouth bass, Micropterus salmoides Lacépède. Angling mortality was 0.00 ± 0.092% for largemouth bass caught on plastic grubs. There was no difference (P = 0.57) in weight gain between caught and uncaught fish over a 40‐day angling and recovery period. Although catch‐and‐release angling appears to have no effect on largemouth bass growth, previous studies documented sublethal effects on growth and reproduction in other species, suggesting that the occurrence and magnitude of sublethal effects vary among species.  相似文献   

8.
Fish welfare issues are increasingly appearing on social and political agendas and have recently gained prominence in fisheries literature. By focusing on examples from recreational fishing, this paper challenges some of the previous accounts of fish welfare. Issues of concern encompass: (1) the feelings‐based approach to fish welfare; (2) the artificial divide between human beings and nature; and (3) ways in which stakeholders can address fish welfare issues. The different approaches to characterizing the interaction of humans with animals are animal welfare, animal liberation and animal rights. We show that the suffering‐centred approaches to fish welfare and the extension of the moral domain to fish – characteristic of the concepts of animal liberation and animal rights – are not the cornerstone of animal welfare. This, however, does not question the need of fisheries stakeholders to consider the well‐being of fish when interacting with them. There are many ways in which recreational fishing stakeholders can modify standard practices to improve the welfare of fish, without questioning fishing as an activity per se. Examples are choice of gear and handling techniques. Previous accounts have failed to include discussions of the many efforts – voluntary or mandated – pursued by fisheries stakeholders to reduce fish stress, injury and mortality. Progress towards addressing fish welfare issues will be enhanced by avoiding the viewing of humans as ‘non‐natural’ disturbance to fishes and keeping three types of crucial question in separate compartments. The three questions cover the symptoms of good and poor welfare, the conscious experience of suffering, and the ethical attitudes towards animals. Fish biologists should focus on the first question – objective measurement of biochemical, physiological and behavioural indicators – to evaluate whether human interactions with fish impair the latters’ health or prevent them from receiving what they need, if held in captivity.  相似文献   

9.
Analysing how fish populations and their ecological communities respond to perturbations such as fishing and environmental variation is crucial to fisheries science. Researchers often predict fish population dynamics using species‐level life‐history parameters that are treated as fixed over time, while ignoring the impact of intraspecific variation on ecosystem dynamics. However, there is increasing recognition of the need to include processes operating at ecosystem levels (changes in drivers of productivity) while also accounting for variation over space, time and among individuals. To address similar challenges, community ecologists studying plants, insects and other taxa increasingly measure phenotypic characteristics of individual animals that affect fitness or ecological function (termed “functional traits”). Here, we review the history of trait‐based methods in fish and other taxa, and argue that fisheries science could see benefits by integrating trait‐based approaches within existing fisheries analyses. We argue that measuring and modelling functional traits can improve estimates of population and community dynamics, and rapidly detect responses to fishing and environmental drivers. We support this claim using three concrete examples: how trait‐based approaches could account for time‐varying parameters in population models; improve fisheries management and harvest control rules; and inform size‐based models of marine communities. We then present a step‐by‐step primer for how trait‐based methods could be adapted to complement existing models and analyses in fisheries science. Finally, we call for the creation and expansion of publicly available trait databases to facilitate adapting trait‐based methods in fisheries science, to complement existing public databases of life‐history parameters for marine organisms.  相似文献   

10.
We searched major electronic databases to identify peer‐reviewed literature investigating the role of temperature on the stress response and mortality of captured and released fish. We identified 83 studies that fit these criteria, the majority of which were conducted in North America (81%) on freshwater fish (76%) in the orders Perciformes (52%) and Salmoniformes (28%). We found that hook‐and‐line fisheries (65% of all studies) were more commonly studied than all net fisheries combined (24%). Despite the wide recognition for many species that high water temperatures exacerbate the effects of capture on released fish, this review is the first to quantitatively investigate this problem, finding that warming contributed to both mortality and indices of stress in 70% of articles that measured each of those endpoints. However, more than half (58%) of the articles failed to place the experimental temperatures into a biological context, therefore limiting their broad applicability to management. Integration of survival and sublethal effects to investigate mechanisms of fish mortality was relatively rare (28%). Collectively, the results suggest that capture–release mortality increases at temperatures within, rather than above, species‐specific thermal preferenda. We illustrate how knowledge of ecologically relevant high temperatures in the capture and release of fish can be incorporated into management, which will become increasingly important as climate change exerts additional pressure on fish and fisheries.  相似文献   

11.
Models of human dimensions of fisheries are important to understanding and predicting how fishing industries respond to changes in marine ecosystems and management institutions. Advances in computation have made it possible to construct agent‐based models (ABMs)—which explicitly describe the behaviour of individual people, firms or vessels in order to understand and predict their aggregate behaviours. ABMs are widely used for both academic and applied purposes in many settings including finance, urban planning and the military, but are not yet mainstream in fisheries science and management, despite a growing literature. ABMs are well suited to understanding emergent consequences of fisher interactions, heterogeneity and bounded rationality, especially in complex ecological, social and institutional contexts. For these reasons, we argue that ABMs of human behaviour can contribute significantly to human dimensions of fisheries in three areas: (a) understanding interactions between multiple management institutions; (b) incorporating cognitive and behavioural sciences into fisheries science and practice; and (c) understanding and projecting the social consequences of management institutions. We provide simple examples illustrating the potential for ABMs in each of these areas, using conceptual (“toy”) versions of the POSEIDON model. We argue that salient strategic advances in these areas could pave the way for increased tactical use of ABMs in fishery management settings. We review common ABM development and application challenges, with the aim of providing guidance to beginning ABM developers and users studying human dimensions of fisheries.  相似文献   

12.
Abstract  Catch-and-release angling is a well-established practice in recreational angler behaviour and fisheries management. Accompanying this is a growing body of catch-and-release research that can be applied to reduce injury, mortality and sublethal alterations in behaviour and physiology. Here, the status of catch-and-release research from a symposium on the topic is summarised. Several general themes emerged including the need to: (1) better connect sublethal assessments to population-level processes; (2) enhance understanding of the variation in fish, fishing practices and gear and their role in catch and release; (3) better understand animal welfare issues related to catch and release; (4) increase the exchange of information on fishing-induced stress, injury and mortality between the recreational and commercial fishing sectors; and (5) improve procedures for measuring and understanding the effect of catch-and-release angling. Through design of better catch-and-release studies, strategies could be developed to further minimise stress, injury and mortality arising from catch-and-release angling. These strategies, when integrated with other fish population and fishery characteristics, can be used by anglers and managers to sustain or enhance recreational fishing resources.  相似文献   

13.
Abstract  The practice of catch and release (CR) as a fisheries management tool to reduce fishing mortality is widely applied in both freshwater and marine fisheries, whether from shifts in angler attitudes related to harvest or from the increasing use of harvest restrictions such as closed seasons or length limits. This approach assumes that for CR fishing policies to benefit the stock, CR will result in much lower mortality than would otherwise occur. There are many challenges in the design of CR studies to assess mortality, and in many practical settings it is difficult to obtain accurate and precise estimates. The focus of this article is on the design and quantitative aspects of estimating CR mortality, the need for a comprehensive approach that explicitly states all components of CR mortality, and the assumptions behind these methods. A general conceptual model for CR mortality that is applicable to containment and tagging-based studies with a slight modification is presented. This article reviews the design and analysis of containment and tagging studies to estimate CR mortality over both the short and long term and then compares these two approaches. Additionally, the potential population-level impacts of CR mortality are discussed. A recurring theme is the difficulty of designing studies to estimate CR mortality comprehensively and the need for additional research into both statistical model development and field study design.  相似文献   

14.
Life history theory predicts a trade‐off between migration and residency where migration is favoured when it infers elevated fitness. Although migration to more favourable environments may offer higher growth rates, migrants often experience increased mortality due to predation. Here, we investigated mortality and migration behaviour of the North Sea houting (Coregonus oxyrinchus), an anadromous salmonid endemic to the Wadden Sea. We used acoustic telemetry to map the migration of the only remaining indigenous population by applying stationary hydrophones combined with manual tracking. Data suggested a total mortality of 26%, with 30% of the total mortality attributed to predation by great cormorants (Phalacrocorax carbo sinensis), highlighting that North Sea houting conservation could be jeopardised by increased cormorant predation. Risk of cormorant predation was size‐dependent, with smaller fish suffering higher risk of predation. The study found North Sea houting to exhibit disparate migration strategies and identified a lentic area in the estuary as an important habitat. Two newly established artificial lakes within the river system significantly reduced the migration speeds, possibly indicating constrained navigation through the lakes. The migration into the Wadden Sea correlated with temperature perhaps indicating osmoregulatory constraints of sea entry. Unlike many salmonid species, migration occurred both day and night. Moreover, fish exhibited repeatable individual differences in diel activity patterns, suggesting that individuals differ consistently in their migratory activity throughout the 24‐hr period. Our study provides novel information on salmonid migration, which is crucial for the development of science‐based conservation strategies.  相似文献   

15.
Inland fisheries can be diverse, local and highly seasonal. This complexity creates challenges for monitoring, and consequently, many inland fish stocks have few data and cannot be assessed using methods typically applied to industrial marine fisheries. In such situations, there may be a role for methods recently developed for assessment of data‐poor fish stocks. Herein, three established data‐poor assessment tools from marine systems are demonstrated to highlight their value to inland fisheries management. A case study application uses archived length, catch and catch‐per‐unit‐effort data to characterise the ecological status of an important recreational brown trout stock in an Irish lake. This case study is of specific use to management of freshwater sport fisheries, but the broader purpose of the paper was to provide a crossover between marine and inland fisheries science, and to highlight accessible data‐poor assessment approaches that may be applicable in diverse inland systems.  相似文献   

16.
Despite improved knowledge and stricter regulations, numerous fish stocks remain overharvested. Previous research has shown that fisheries management may fail when the models and assessments used to inform management are based on unrealistic assumptions regarding fishers' decision‐making and responses to policies. Improving the understanding of fisher behaviour requires addressing its diversity and complexity through the integration of social science knowledge into modelling. In our paper, we review and synthesize state‐of‐the‐art research on both social science's understanding of fisher behaviour and the representation of fisher decision‐making in scientific models. We then develop and experiment with an agent‐based social–ecological fisheries model that formalizes three different fishing styles. Thereby we reflect on the implications of our incorporation of behavioural diversity and contrast it with the predominant assumption in fishery models: fishing practices being driven by rational profit maximizing. We envision a next generation of fisheries models and management that account for social scientific knowledge on individual and collective human behaviours. Through our agent‐based model, we demonstrate how such an integration is possible and propose a scientific approach for reducing uncertainty based on human behavioural diversity in fisheries. This study serves to lay the foundations for a next generation of social–ecological fishery models that account for human behavioural diversity and social and ecological complexity that are relevant for a realistic assessment and management of fishery sustainability problems.  相似文献   

17.
The world's fish species are under threat from habitat degradation and over‐exploitation. In many instances, attempts to bolster stocks have been made by rearing fish in hatcheries and releasing them into the wild. Fisheries restocking programmes have primarily headed these attempts. However, a substantial number of endangered species recovery programmes also rely on the release of hatchery‐reared individuals to ensure long‐term population viability. Fisheries scientists have known about the behavioural deficits displayed by hatchery‐reared fish and the resultant poor survival rates in the wild for over a century. Whilst there remain considerable gaps in our knowledge about the exact causes of post‐release mortality, or their relative contributions, it is clear that significant improvements could be made by rethinking the ways in which hatchery fish are reared, prepared for release and eventually liberated. We emphasize that the focus of fisheries research must now shift from husbandry to improving post‐release behavioural performance. In this paper we take a leaf out of the conservation biology literature, paying particular attention to the recent developments in reintroduction biology. Conservation reintroduction techniques including environmental enrichment, life‐skills training, and soft release protocols are reviewed and we reflect on their application to fisheries restocking programmes. It emerges that many of the methods examined could be implemented by hatcheries with relative ease and could potentially provide large increases in the probability of survival of hatchery‐reared fish. Several of the necessary measures need not be time‐consuming or expensive and many could be applied at the hatchery level without any further experimentation.  相似文献   

18.
Abstract  Transmitter retention and the effects gastrically and surgically implanted telemetry transmitters had on condition and mortality of shovelnose sturgeon, Scaphirhynchus platorhynchus (Rafinesque), >450-mm fork length were examined. Four, 35-day trials were conducted with approximately equal numbers of control fish, fish receiving dummy transmitters gastrically and fish receiving dummy transmitters surgically. Four sturgeon expelled gastrically implanted transmitters during the observation period. Two mortalities occurred among fish receiving gastrically implanted transmitters during the study period and one mortality was recorded for control fish. No mortalities were recorded for fish receiving surgically implanted transmitters. Condition change (Δ K n ) was significantly different between fish receiving surgical implantation (mean Δ K n  ± SE; −5.17 ± 0.94), fish receiving gastric implantation (−2.98 ± 0.72) and control fish (−0.65 ± 1.09). Surgical transmitter implantation is recommended for telemetry studies on shovelnose sturgeon because of increased transmitter expulsion and occurrence of mortality in fish receiving gastric implantation.  相似文献   

19.
Salmon smolts were released upstream of a run‐of‐river hydropower site and recaptured downstream for inspection. Descending fish behaviour through three possible migration routes (turbines, fishway, spillway) was analysed using telemetry, fyke nets and diving. Tagged smolts did not follow the main water flow; over 70% used the fishway, which received only about 10% of the flow. The turbines received about 80% of the water, but <25% of the smolts. Smolts were not fully stopped from entering the turbines by the 25‐mm bar racks. Mortality of smolts passing through the Kaplan turbines was at minimum 36%. No mortality was found in fish moving through the fishway or spillway. This shows that small and fast‐rotating Kaplan turbines can cause relatively high mortality. No mortality in alternative migration routes resulted in a total mortality for descending smolts at the hydropower station of 8.5%, emphasising the importance of providing functional alternative migration routes.  相似文献   

20.
As temperatures drop and fish metabolism slows, cyprinids are generally assumed to form dense, static shoals or migrate to suitable sites up tributaries to reduce predation risk. Using telemetry, common bream Abramis brama (L.) were observed to remain active and (presumably) foraged throughout winter in an area in the middle of an 8‐m‐deep valley reservoir coinciding with a 3–5 m zone of warmer, oxygenated water below an inverse thermocline. Tagged bream appeared to avoid cold, shallow zones (<1.5 m) at the inlet and banks and the deepest zone (5–8 m) near the dam/outlet, possibly due to poor food availability. Under certain conditions, bream populations showed higher levels of winter activity (and feeding) than previously assumed, with implications for both reservoir fisheries management and future studies assessing cyprinid behaviour, energy budgets and diet in lakes and reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号