首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Beef cattle were treated to synchronize estrus using one of three procedures, and effects on subsequent endocrine responses and fertility were studied. Procedures were 1) feeding .5 mg.head-1.d-1 of melengestrol acetate (MGA) for 21 d (M), 2) feeding .5 mg.head-1.d-1 of melengestrol acetate for 21 d followed 14 d later by a single injection of prostaglandin F2 alpha (M + P) and 3) two injections of prostaglandin (PGF) 14 d apart (P). In Exp. 1, 94 beef cows were assigned to be artificially inseminated 12 h after detection of estrus. Procedures for synchronizing estrus did not affect the proportion of cows observed in estrus within 7 d (mean = 70.2%). However, conception rate of cows treated with MGA alone was lower (P less than .01) than that of cows treated with PGF alone (31.8 vs 78.3%). The conception rate of cows in the M + P group was intermediate (57.1%) but greater than that of cows treated with MGA alone (P less than .10). In Exp. 2, 18 heifers were observed for estrus four times daily and bled daily from 1 wk before predicted estrus until second estrus or 35 d post-treatment. Heifers treated with MGA alone maintained lower concentrations of progesterone and higher concentrations of estradiol-17 beta before first estrus than heifers treated with MGA and PGF or PGF alone (P less than .01). Conception rate following insemination was lower after long-term feeding of MGA than after two injections of PGF. Delaying insemination until after a PGF-shortened cycle 14 d after MGA resulted in an intermediate conception rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Expanded use of artificial insemination in the beef cattle industry depends on successful application of treatments designed to synchronize estrus. Regulation of estrous cycles is associated with control of the corpus luteum (CL), whose life span and secretory activity are subject to trophic and lytic mechanisms. The advantages of melengestrol acetate (MGA) in estrous synchronization incorporate ease of administration, lower cost relative to other estrous synchronization products, and potential for use to induce estrus in prepubertal heifers. Treatments first designed to synchronize estrous cycles of normally cycling heifers by feeding MGA were imposed daily for 14 to 18 d at levels of .5 to 1 mg. The minimal daily effective dose required to inhibit ovulation was .42 mg. Longer feeding periods of MGA were associated with low fertility at the first synchronized estrus, but at the second estrus, conception was normal. Low fertility at the synchronized estrus resulted in development of alternative treatment practices, which combined feeding of MGA with injections or implants of estradiol-17 beta, estradiol cypionate, luteinizing hormone, human chorionic gonadotropin, pregnant mare serum gonadotropin, or oxytocin. Estrus was synchronized after MGA and estradiol-17 beta or estradiol cypionate treatments, but fertility was low. Short-term feeding of MGA (5 to 7 d) combined with prostaglandin F2 alpha or its analogs (PGF) on the last day of MGA reduced fertility at the synchronized estrus. The reduced conception at first service occurred in animals that began treatment after d 12 of the estrous cycle. However, feeding MGA for 14 d and then injecting PGF 17 d later avoided problems with reduced conception. Fertility of animals after this treatment was similar to that of contemporaries synchronized with Syncro-Mate-B. However, the length of the treatment period creates a need for increased management and may extend management beyond practical limits. Further research is warranted to address problems associated with reduced fertility after short-term treatment with MGA.  相似文献   

3.
Conception rate in heifers after synchronization of estrus with melengestrol acetate (MGA) and fenprostalene (a prostaglandin F2 alpha analogue; PGF) was determined in pubertal Bos taurus and Bos indicus crossbred yearling heifers. Angus x Hereford (AH, n = 137) and Brahman x Hereford (BH, n = 97) heifers were sorted by body weight after weaning into light (LW) and heavy (HW) weight blocks. Heifers were assigned by age to diets to reach a target weight of 55% (LE) or 65% (HE) of their projected mature weight by the start of breeding. Heifers that exhibited estrus and had serum progesterone greater than or equal to 1 ng/ml (0 or 10 d before estrous synchronization treatment) were assigned randomly within breed and nutritional groups to either an estrous synchronization (S) or control (C) group. Heifers in the S group were fed .5 mg of MGA for 7 d and injected s.c. with 2 mg PGF on d 7 of MGA. All heifers were inseminated 12 h after first detected estrus. A greater proportion of AH (P less than .01) than of BH heifers were in estrus within 6 d after PGF, and more S heifers than C heifers (P less than .01) were in estrus. Conception rate at first service was proportionately higher (P less than .001) in AH than in BH heifers and lower (P less than .02) in S than in C heifers. There was a breed x energy level interaction (P less than .01) for conception rate at first service. Stage of the estrous cycle at the time treatment with MGA was initiated influenced (P less than .05) conception rate at first service in the S, AH heifers, with lower conception rates among heifers beginning treatment late in their estrous cycles (greater than or equal to d 12). Pregnancy rates after 21 d were higher (P less than .01) in AH than in BH heifers and higher (P less than .01) in HW than in LW heifers. More HE than LE heifers (P less than .02), and more AH than BH heifers were pregnant after 45 d. Pregnancy rates at the end of 21 d were higher among HE, BH heifers than among LE contemporaries. A higher (P less than .02) percentage of HE, HW, BH heifers were pregnant at the end of 45 d compared with other BH groups. Results indicated that a 7-d MGA-PGF treatment reduced conception rates at first service in pubertal yearling heifers. Pregnancy rate was affected by prebreeding nutrition in BH yearling heifers at the end of 45 d.  相似文献   

4.
Our hypothesis was that estrus synchronization in beef cattle using melengestrol acetate (MGA) and an injection of progesterone (P4) and 17beta-estradiol (E2) to regress dominant ovarian follicles would improve pregnancy rate (number conceived/number in group) to AI compared with feeding only MGA or injecting PGF2alpha. During 2 yr, peripubertal heifers (n = 52) and cows (n = 327) received either 1) MGA for 18 d (d 0 = 1st d of MGA) plus an injection of P4 and E2 in sesame oil (vehicle) on d 11 to regress persistent ovarian follicles (MGA+P4), 2) MGA for 18 d plus vehicle on d 11 (MGA), or 3) two injections of PGF2alpha 10 d apart (d 7 and 17, PG). Concentration of P4 was assessed in blood samples obtained on d 0, 7, and 17 to indicate estrual status (anestrual or estrual) during treatment to induce estrus synchrony. Observations for detection of estrus occurred every 6 h for 180 h following treatment cessation. Females showing estrus were inseminated 6 to 12 h after estrus detection. Conception to AI was determined by ultrasonography 35 to 40 d later. Conception rate was greater (P < .05) in females in the PG than in those in the MGA group but did not differ from conception rate of females in the MGA+P4 group. Among anestrual females, estrus synchrony rates were greatest (P < .10) among females treated with MGA+P4. Among females that were estrual before treatment cessation, estrus synchrony rates were greater (P < .10) among females treated with MGA+P4 or PG than among those given MGA. Pregnancy rates were greater (P < .05) among females that were anestrual before treatment cessation and treated with MGA or MGA+P4 than among those treated with PG. Estrus synchronization using MGA+P4 and E2 differentially improves estrus synchronization and pregnancy rates among anestrual and estrual beef cattle while maintaining conception rates similar to those of PGF2alpha-treated females.  相似文献   

5.
Two progestin-based protocols for estrus synchronization in postpartum beef cows were compared following treatment administration on the basis of estrous response, interval to and synchrony of estrus, and pregnancy. Cows were assigned to one of the two treatment protocols by age, body condition score (BCS), and days postpartum (DPP). The MGA Select-treated cows (MGA Select; n = 109) were fed melengestrol acetate (MGA; 0.5mg x cow-1 x d(-1)) for 14 d, fed carrier for 8 d, GnRH (100 microg of Cystorelin) was injected i.m. 12 d after MGA withdrawal, and PG (25 mg of Lutalyse) was administered i.m. 7 d after GnRH. Cows assigned to the 7-11 Synch protocol (7-11 Synch; n = 111) were fed carrier for 15 d, fed MGA for 7 d, injected with PG on d 22 (d 7 of MGA), injected with GnRH on d 26, and injected with PG on d 33. Mean BCS (4.8 +/- 0.1, MGA Select; 4.7 +/- 0.1, 7-11 Synch) and DPP (40 +/- 1, MGA Select; 40 +/- 1, 7-11 Synch) did not differ between treatments. Blood samples were collected 8 d and 1 d before feeding of MGA or carrier to determine the pretreatment estrous cyclicity (progesterone > or = 1 ng/mL; 10/109 [9%], MGA Select; 12/111 [11%], 7-11 Synch), and again at PG on d 33 to evaluate treatment response (81/109 [74%], MGA Select; 84/111 (76%), 7-11 Synch). Serum concentrations of progesterone at PG on d 33 differed (P < 0.01) between treatments (3.3 +/- 0.3 ng/mL [MGA Select] vs. 1.7 +/- 0.1 ng/mL [7-11 Synch]). HeatWatch was used for 6 d after PG on d 33 to detect estrus, and AI was performed 12 h after the onset of estrus. Estrous response did not differ between treatments (100/109 [92%], MGA Select; 101/111 [91%], 7-11 Synch). Mean interval to estrus (65 +/- 2.7 h, MGA Select; 52 +/- 1.8 h, 7-11 Synch) and synchrony of estrus differed (P < 0.01) between treatments. Synchronized conception and pregnancy rates (61/100 [61%], 61/109 [56%], MGA Select; 71/101 [70%], 71/111 [64%], 7-11 Synch), and final pregnancy rates (94/109 [86%], MGA Select; 99/110 [90%], 7-11 Synch) did not differ between treatments. In summary, estrous response and fertility did not differ among cows assigned to the MGA Select or 7-11 Synch protocols. Synchrony of estrus, defined as the variance in the interval to estrus from PG, however, was improved following treatment with the 7-11 Synch protocol.  相似文献   

6.
At the beginning of the breeding season, most beef herds consist of a population of cyclic and anestrous postpartum cows. To be most effective and economical, an estrous synchronization method for postpartum beef cows must be capable of synchronizing estrus in cyclic cows and inducing estrus in anestrous cows. In the first of two experiments, the combination of melengestrol acetate (MGA) fed for 9 d and prostaglandin F2 alpha (PGF2 alpha) administered on the last day of MGA feeding synchronized estrus in cyclic cows (94%) and induced estrus in anestrous cows (66%) as effectively as combining PGF2 alpha with a progestin implant (97 and 75%, respectively). In the second experiment, MGA treatment was necessary for 7 d prior to administering PGF2 alpha to maximize the expression of estrus in cyclic and anestrous cows. In both experiments the proportion of cows exhibiting a synchronized estrus and the pregnancy rates tended to be higher for cows that were cyclic prior to treatment. However, the MGA-PGF2 alpha treatments consistently induced estrus in more than 50% of the anestrous cows and approximately one-third of the cows that were anestrous prior to treatment conceived during the synchronized breeding period. The MGA-PGF2 alpha treatment was 33 to 46% less expensive than a comparable estrous synchronization method that is approved by the U.S. Food and Drug Administration. If feeding MGA and administering PGF2 alpha is approved, it may be the treatment of choice for synchronizing estrus in cyclic cows and inducing estrus in anestrous cows when supplemental feeding is feasible.  相似文献   

7.
An estrus synchronization protocol (7-11 Synch) was developed to synchronize the first follicular wave and timing of ovulation in postpartum beef cows. In Exp. 1, follicular development and timing of ovulation in response to the following protocol were evaluated. Beef heifers (n = 12) and cows (n = 6), at random stages of the estrous cycle, were fed melengestrol acetate (MGA; .5 mg x animal(-1) x d(-1)) for 7 d and injected with PGF2alpha (PG; 25 mg) on the last day of MGA. A second injection of PG was administered 11 d after cessation of MGA. After the second injection of PG, estrus was synchronized in 6/12 heifers and 3/6 cows. The interval to estrus in heifers and cows was 54 and 64 h, respectively (P > .10). All animals exhibiting estrus ovulated first-wave follicles. Animals that failed to respond to the second injection of PG were in estrus later than 6 d after cessation of MGA and had corpora lutea that were unresponsive to the injection of PG. Based on the variation in interval to estrus following the first PG injection on the last day of MGA feeding in Exp. 1, an injection of GnRH (100 microg) was added to the protocol 4 d after the cessation of MGA to ensure ovulation or luteinization of dominant follicles and synchronization of first-wave follicular development. This revised protocol was termed "7-11 Synch." In Exp. 2, two estrus synchronization protocols were compared. Multiparous beef cows were stratified by breed and postpartum interval and randomly assigned to the 7-11 Synch (n = 44) or Select Synch protocols (GnRH injection followed by PG injection 7 d later; n = 45). Timing of estrus after the last PG injection (0 h) ranged from 42 to 102 h in the 7-11 Synch group and -30 to 114 h in the Select Synch group. Eight cows (18%) in the Select Synch group exhibited estrus 30 h before to 18 h after PG. Synchronized estrus peaked between 42 and 66 h after the last PG injection, and a maximum number of cows were in estrus at 54 h for both treatment groups. Synchrony of estrus from 42 to 66 h was greater (P < .05) in 7-11 Synch (91%: 41/44) than in Select Synch cows (69%: 31/45). Artificial insemination pregnancy rate from 42 to 66 h was greater (P < .05) in the 7-11 Synch group (66%: 29/44) than in the Select Synch group (40%: 18/45). In summary, the 7-11 Synch protocol improved synchrony of estrus without reducing fertility. This protocol has potential future application for fixed-time AI in beef cattle production systems.  相似文献   

8.
Two experiments were conducted to determine whether extending the interval between removal of melengestrol acetate (MGA) from feed and injection of prostaglandin F (PGF) from 17 to 19 d would affect synchronization of estrus, conception, and pregnancy rates of beef heifers. In both experiments, heifers were fed MGA for 14 d, and PGF was given at either 17 or 19 d after cessation of MGA feeding. Heifers were observed for estrus and artificially inseminated for 5 d after PGF injection. In Exp. 1, 240 yearling heifers were randomly assigned to either a 17- or a 19-d treatment group according to estrous status and day of the estrous cycle. In Exp. 2, 1409 yearling heifers on a cooperating ranch were randomly assigned to the same two treatment groups without knowledge of estrous status. The PGF injection at 19 d (Exp. 1) caused a higher (P<0.05) percentage of heifers to exhibit estrus by 72 h after the injection compared with heifers receiving the injection at 17 d. A greater percentage (P<0.01) of heifers in the 19-d group were in the late luteal phase of the estrous cycle at the time of PGF injection compared with the heifers in the 17-d group, and pregnancy rates were higher for the heifers in the late luteal phase. In Exp. 2, heifers injected with PGF at 19 d after MGA had a greater (P<0.05) percentage in estrus (10%) during the 5-d breeding period, and had higher (P<0.05) pregnancy rates in 5 d (7.6%) and 50 d of breeding (5.5%), compared with heifers injected with PGF 17 d after withdrawal of MGA. These results indicate that the PGF injection given at 19 d after removal of MGA from the diet increases synchronized estrous response and results in higher pregnancy rates in heifers compared with the 17-d injection treatment.  相似文献   

9.
Beef (n = 783) and dairy (n = 209) heifers at 14 locations were used to evaluate the efficacy of feeding melengestrol acetate (MGA; .5 mg/d) for 7 d followed by an i.m. injection of 25 mg prostaglandin F2 alpha (PGF) on the last day of MGA feeding (MGA + PGF) to synchronize estrus. Untreated heifers (C) and heifers injected once i.m. with PGF served as contemporary controls. Heifers were observed for estrual behavior for a minimum of 38 d starting on the 2nd d of MGA feeding. Heifers in estrus from d 1 through d 60 after PGF injection were artificially inseminated (AI) or bred to bulls (d 30 to 60 post PGF only). During the 7-d MGA feeding period fewer (P less than .01) MGA + PGF (1.5%) than C (20.6%) or PGF (18.1%) heifers were observed in estrus. Percent of heifers in estrus d 1 to 6 post PGF was different among groups (P less than .05; 30.5, 52.8, 72.3 for C, PGF and MGA + PGF, respectively). More (P less than .01) MGA-fed (92%) than non-MGA-fed (C and PGF combined) heifers (85.4%) were observed in estrus during d 1 to 24. Conception rate (CR) during d 1 to d 6 was not different (P = .19) between C (58.9%) and MGA + PGF (51.2%) heifers; CR was lower (P = .01) for MGA + PGF than for PGF (68.3%) heifers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Effects of an increased level of dietary energy (flushing) on plasma concentrations of FSH, LH, insulin, progesterone and estradiol-17 beta and ovulation rate were studied in 16 gilts. Gilts received 5,400 kcal ME/d for one estrous cycle and the first 7 d of a second. On d 8 of the second estrous cycle, gilts received either 5,400 kcal ME/d (control [C], n = 8) or 11,000 kcal ME/d (flushed [F], n = 8) for the remainder of the estrous cycle. Blood was collected daily at 15-min intervals for 6 h from d 8 through estrus. Gilts were examined by laparotomy 6 d after estrus. Ovulation rate was greater (P less than .05) in F than C gilts (16.0 vs 9.4). Mean daily concentrations of FSH were greater (P less than .05) in F gilts at 5 d, 4 d and 3 d prior to estrus compared with C females. In both C and F gilts, FSH decreased (P less than .05) prior to estrus. Mean daily concentrations of LH and LH pulse amplitude were not different (P greater than .05) between treatments. Mean number of LH pulses/6 h at 4 d, 3 d and 2 d prior to estrus were greater (P less than .05) in F than in C gilts. In both treatments, LH pulse amplitude decreased (P less than .05) and pulse frequency increased (P less than .07) prior to estrus. Mean plasma concentrations of insulin tended to be higher (P less than .07) in F than in C females during the 7-d period before estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During the fourth week postpartum, 443 healthy Holstein cows milked thrice daily were randomly divided among four groups to receive 0, 2, 8 and 32 micrograms of the GnRH analog HOE 766. Intervals from calving to first estrus and to first breeding, from breeding to conception and conception rates at first breeding were calculated to measure treatment response, and progesterone was measured in the fat-free portion of milk samples collected twice weekly during the first 4 wk following treatment. Uterine involution at the time of treatment was estimated by palpation per rectum. Twenty percent of the cows examined were classified as having delayed uterine involution (abnormal). By analyzing milk progesterone patterns it was determined that 38% of the animals were in the luteal phase of an estrous cycle when treated. Cows without luteal tissue (less than 1 ng of progesterone/ml milk) given 8 or 32 micrograms of HOE 766 increased in progesterone to greater than or equal to 1 ng/ml within 7 d in 77 and 72% of the cows compared with 40 and 57% for cows receiving 0 and 2 micrograms (P less than .05). This increase in progesterone was followed by a normal estrous cycle within 4 wk in a higher proportion of cows treated with the two higher doses of GnRH analog (87 and 86%) compared with 67 and 70% of those receiving 0 or 2 micrograms of the analog (P less than .005). There were no treatment differences (P greater than .05) for other traits analyzed, but cows with a normal progesterone cycle were observed in estrus and were bred sooner (P less than .01) than those with irregular progesterone patterns. It was concluded that the GnRH analog hastened the onset of normal ovarian cycles in cows milked thrice daily.  相似文献   

12.
Ewes of three genotypes (Hampshire, n = 59; Rambouillet, n = 36; crossbred, n = 57) were used to determine the efficiency of melengestrol acetate (MGA) and(or) PG-600 (a combination of pregnant mare's serum gonadotropin and human chorionic gonadotropin) in inducing fertile estrus in seasonally anestrus ewes. Ewes were assigned randomly, within genotype, to treatments in a 2 x 2 factorial arrangement. Treatments were control, .125 mg of MGA given twice per day for 9 d (MGA), a single 5-mL injection of PG-600 (PG-600), and the combination of treatments MGA and PG-600 (MGA/PG-600). Feeding of MGA began on May 14, 1990, and ended on May 23. Injections of PG-600 were given immediately after the last feeding of MGA or vehicle on May 23. All ewes were exposed to fertile, brisket-painted rams on May 24 (d 0) for 40 d. Ewes were checked for estrus twice daily for 9 d. Laparoscopy was performed, to assess ovulation rate (OR), on d 6 for ewes that were not detected in estrus and on d 12 for ewes that exhibited estrus. Percentage of ewes mated was increased by MGA (P less than .001). Ovulation rate of ewes exposed to rams was increased by PG-600 (P less than .01) and this effect was enhanced by MGA (P less than .05), whereas MGA alone tended to decrease OR (P less than .10). Melengestrol acetate decreased the interval to lambing by 6.5 d (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In Trial 1, 26 heifers were allotted randomly to a control group or one of four groups to receive a single injection of 3,000 IU hCG on d 1, 4, 7 or 10 of an estrous cycle. Heifers next completed a nontreated cycle, and at their third estrus were reallotted to one of the five groups described previously. Estrous cycle length was extended in cycle 1 but was not altered during the nontreated cycle or in cycle 3. Administration of hCG on d 4 or 7 increased (P less than .05) mean serum progesterone (P4) over the first 16 d of the estrous cycle by .9 and .8 ng/ml, respectively. In Trial 2, 23 heifers were allotted randomly to one of two groups to receive a placebo or a single injection of 3,000 IU hCG on d 4 of an estrous cycle. Heifers were inseminated artificially at subsequent estrus. On d 4 postbreeding, treatments were repeated. Administration of hCG on d 4 of the prebreeding estrous cycle increased (P less than .05) mean P4 over the first 16 d by .9 ng/ml, whereas mean P4 over the first 16 d postbreeding was not affected by a second injection of hCG on d 4 postbreeding. Administration of hCG increased (P less than .05) first-service pregnancy rate (92 vs 55%). In conclusion, progesterone concentrations were enhanced by hCG given on d 4 or 7 of the estrous cycle, and pregnancy rate was increased when hCG was administered both on d 4 of the prebreeding cycle and d 4 postmating.  相似文献   

14.
In two herds that used different breeding and housing schemes, altrenogest (15 mg/d) was fed for 14 d to gilts or 10 d to sows in .45 kg of a diet formulated to meet or exceed their nutrient requirements. In Herd 1 (five breeding seasons per year), 63 of 123 gilts and 40 of 70 sows in seven replications were fed in individual crates to ensure proper intake. In Herd 2 (continuous breeding), 244 of 484 gilts in 20 replications received the treated feed in individual feeding stalls to which animals had free access. Average and median days to estrus were reduced (P less than .01) for treated gilts and sows compared with controls in both herds. Of 29 treated gilts that did not mate or become pregnant, three had cystic follicles, compared to 1 of 14 controls. There were no statistically significant treatment differences in litter size born or number of stillborn pigs in either herd, but farrowing rates of cycling gilts were 8% lower (P less than .05) in Herd 2 for treated gilts than for controls. Overall, altrenogest could be a valuable tool for improving reproductive efficiency by allowing producers to better control the estrous cycle.  相似文献   

15.
A replicated trial was conducted with suckled Angus and Polled Hereford cows (110 d postcalving) to determine metabolic and endocrine responses to an energy-restricted diet after cows had re-established postpartum estrous cyclicity. Cows were individually fed 26.5 Mcal ME (H) or 15.2 Mcal ME (L) for a 30-d preliminary period and fitted with an indwelling jugular cannula at synchronized estrus. Average daily weight change during the estrous cycle was .60 +/- .25 and -1.37 +/- .30 kg/d for H and L, respectively (P less than .05). Blood concentrations of cortisol, progesterone and LH during the estrous cycle were not affected by diet, nor did diet affect frequency or amplitude of LH pulses (P greater than .05). No dietary differences were observed for daily concentrations of total protein, glucose, nonesterified fatty acids or acetate. Mean blood concentrations of propionate and butyrate were not different between diets; however, L cows had lower concentrations of propionate and butyrate on d 11 of the cycle (P less than .05). Cows fed L had higher concentrations of blood urea nitrogen (P less than .05), but they had lower concentrations of cholesterol (P less than .05) on d 4, 11, 18 and subsequent estrus (E). Insulin was not different on d 4 and 11; however, cows fed L had lower insulin concentrations on d 18 and d E (P less than .05). Dietary energy restriction in these cyclic cows caused no change in endocrine responses. Of metabolic responses measured, only blood urea nitrogen, cholesterol and insulin showed consistent changes.  相似文献   

16.
Two experiments were conducted to determine whether dosage of estradiol valerate (EV) or day of estrous cycle when treatment was administered affected response to Syncro-Mate-B (SMB). Suckled beef cows received a 6-mg Norgestomet (NOR) ear implant (in situ 9 d) and a 3-mg NOR i.m. injection. In Exp. 1, 74 cows received NOR treatments concurrently with either 5 or 6 mg of EV administered i.m. on either d 1, 3, or 5 of an estrous cycle (estrus = d 1). In Exp. 2, 169 cows received NOR treatments concurrently with either 5, 7, or 9 mg of EV administered i.m. on either d 3 or 9 of an estrous cycle. In Exp. 1, 67, 50 and 92%, respectively, of cows receiving 5 mg of EV on d 1, 3, or 5 had functional corpora lutea (CL) at implant removal, whereas 42, 75, and 77%, respectively, of cows receiving 6 mg of EV had functional CL at implant removal (dosage P greater than .10; day P less than .05). Synchronized estrous responses were 50, 33, and 23%, respectively, when cows received 5 mg of EV on d 1, 3, or 5, and 67, 33, and 38%, respectively, when cows received 6 mg of EV (dosage P greater than .10; day P less than .05). First-service pregnancy rate was decreased (P less than .05) in cows treated on d 5 (33%) compared with cows treated on d 1 (63%), but dosage of EV had no effect on pregnancy rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of the uterus on luteal lifespan and pattern of secretion of progesterone following early weaning of calves from anestrous beef cows was studied. Calves were weaned from 15 anestrous beef cows 23 to 33 d postpartum, and cows were allotted to a control (sham surgery, n = 8) or a hysterectomy (n = 7) group, with surgery performed at weaning. Cows in the hysterectomy group were injected (im) with 25 mg prostaglandin F2 alpha (PGF2 alpha) approximately 20 d after first estrus (d 0). The interval from weaning to estrus was longer (P less than .05) for the hysterectomy group (10.4 +/- 1.6 d) than the control group (6.2 +/- .5 d). In the control group, the first estrous cycle (8.8 +/- .3 d) was shorter (P less than .01) than the second estrous cycle (20.2 +/- .5 d). Following first estrus in the hysterectomy group, cows were not detected in estrus until after injection of PGF2 alpha and did not return to estrus. From d 0 to 5, mean concentrations of plasma progesterone were similar (P greater than .05) between groups for both estrous cycles; after d 5 of estrous cycle 1, concentrations of plasma progesterone decreased in the control group. Within the hysterectomy group, the pattern of secretion of progesterone from d 0 to 16 was similar after the first and second estrus. Furthermore, there was no difference in the pattern of secretion of progesterone from d 0 to 16 between hysterectomy (first or second estrous cycles) and control (second estrous cycle) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In Exp. 1, 45 fine-wool ewes received (sc) either 0, 50 or 100 mg epostane (3-beta-hydroxysteroid dehydrogenase inhibitor) to examine effects on return to estrus and conception rates. Treatments were imposed on d 10 of an estrous cycle (estrus = d 0) and jugular blood samples were collected once daily on d 8 and 9, twice daily on d 10 through 13 and once daily from d 14 until first post-treatment estrus or d 20 (15 ewes/treatment). Intensive samples were obtained hourly for 6 h after treatment (d 10; five ewes/treatment). Serum progesterone (P4) before treatment was similar among groups; but by 2 h after treatment, epostane-treated ewes had lower (P less than .10) values than controls. By 6 h post-treatment, serum P4 in ewes receiving 50 (1.0 ng/ml) and 100 (.9 ng/ml) mg epostane was well below control values (3.2 ng/ml). By 7 d after treatment, 93.3% of ewes treated with 50 mg epostane had recycled compared with 66.7 and 33.3% of those receiving 100 and 0 mg, respectively (P less than .10). Similarly, 93.3, 53.3 and 26.7% of ewes receiving 50, 100 or 0 mg epostane, respectively, lambed to breeding within 7 d of treatment (P less than .05). Overall conception rates during a 34-d breeding season were similar among groups. Preweaning performance of offspring did not differ among maternal treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Two progestin-based protocols for the synchronization of estrus in beef cows were compared. Cyclic, nonlactating, crossbred, beef cows were assigned by age and body condition score to one of two treatments. Cows assigned to the MGA Select protocol were fed melengestrol acetate (MGA; 0.5 mg x cow(-1) x (-1)) for 14 d, GnRH was administered (100 microg i.m. of Cystorelin) 12 d after MGA withdrawal, and PGF2alpha (25 mg of i.m. Lutalyse) was administered 7 d after GnRH. Cows assigned to the 7-11 Synch protocol were fed MGA for 7 d and were injected with PG on d 7 of MGA, GnRH on d 11, and PG on d 18. Transrectal ultrasonography was performed daily to monitor follicular dynamics from the beginning of MGA feeding through ovulation after the synchronized estrus. All cows exhibited estrus in response to PG. Mean interval to estrus was shorter (P < 0.01) for 7-11 Synch-treated cows (56 +/- 1.5 h) than for cows assigned to the MGA Select protocol (73 +/- 4.7 h). Mean interval from estrus to ovulation did not differ between treatments (P > 0.10). Variances for interval to estrus differed (P < 0.01) between treatments. Mean follicular diameter at GnRH injection, PG injection, and estrus did not differ (P > 0.10) between treatments. Relative to MGA Select, serum estradiol-17beta concentrations were higher (P < 0.01) for 7-11 Synch 2 d and 1 d before, on the day of GnRH injection, in addition to 4 d after GnRH, and 24 h after PG. Mean progesterone concentrations were greater (P < 0.01) for MGA Select cows from 4 d before to 7 d after GnRH. Forty-four percent of the variation in interval to estrus between treatments was explained by differences in estradiol-17beta concentrations 24 h after PG. This study suggests that follicular competence is likely related to steroidogenic capacity of the follicle and the endocrine environment under which growth and subsequent ovulation of the dominant follicle occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号