首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The incidence of neurodegenerative diseases, such as Alzheimer’s disease (AD), increases continuously demanding the urgent development of anti-Alzheimer’s agents. Marine organisms (MO) have to create their own defenses due to the adverse environment where they live and so synthesize several classes of compounds, such as akaloids, to defend themselves. Therefore, the identification of marine natural products with neuroprotective effects is a necessity. Being that AD is not only a genetic but also an environmental complex disease, a treatment for AD remains to discover. As the major clinical indications (CI) of AD are extracellular plaques formed by β-amyloid (Aβ) protein, intracellular neurofibrillary tangles (NFTs) formed by hyper phosphorylated τ-protein, uncommon inflammatory response and neuron apoptosis and death caused by oxidative stress, alkaloids that may decrease CI, might be used against AD. Most of the alkalolids with those properties are derivatives of the amino acid tryptophan mainly with a planar indole scaffold. Certainly, alkaloids targeting more than one CI, multitarget-directed ligands (MTDL), have the potential to become a lead in AD treatment. Alkaloids to have a maximum of activity against CI, should be planar and contain halogens and amine quaternization.  相似文献   

2.
Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs’ neuroprotective potential for neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. We will describe these marine compounds’ potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.  相似文献   

3.
Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.  相似文献   

4.
This paper examined the toxins naturally produced by marine dinoflagellates and their effects on increases in β-amyloid plaques along with tau protein hyperphosphorylation, both major drivers of Alzheimer’s disease (AD). This approach is in line with the demand for certain natural compounds, namely those produced by marine invertebrates that have the potential to be used in the treatment of AD. Current advances in AD treatment are discussed as well as the main factors that potentially affect the puzzling global AD pattern. This study focused on yessotoxins (YTXs), gymnodimine (GYM), spirolides (SPXs), and gambierol, all toxins that have been shown to reduce β-amyloid plaques and tau hyperphosphorylation, thus preventing the neuronal or synaptic dysfunction that ultimately causes the cell death associated with AD (or other neurodegenerative diseases). Another group of toxins described, okadaic acid (OA) and its derivatives, inhibit protein phosphatase activity, which facilitates the presence of phosphorylated tau proteins. A few studies have used OA to trigger AD in zebrafish, providing an opportunity to test in vivo the effectiveness of new drugs in treating or attenuating AD. Constraints on the production of marine toxins for use in these tests have been considered. Different lines of research are anticipated regarding the action of the two groups of toxins.  相似文献   

5.
Alzheimer’s disease (AD) is a devastating neurodegenerative disease and the most common cause of dementia. It has been confirmed that the pathological processes that intervene in AD development are linked with oxidative damage to neurons, neuroinflammation, tau phosphorylation, amyloid beta (Aβ) aggregation, glutamate excitotoxicity, and cholinergic deficit. Still, there is no available therapy that can cure AD. Available therapies only manage some of the AD symptoms at the early stages of AD. Various studies have revealed that bioactive compounds derived from marine organisms and plants can exert neuroprotective activities with fewer adverse events, as compared with synthetic drugs. Furthermore, marine organisms have been identified as a source of novel compounds with therapeutic potential. Thus, there is a growing interest regarding bioactive compounds derived from marine sources that have anti-AD potentials. Various marine drugs including bryostatin-1, homotaurine, anabaseine and its derivative, rifampicins, anhydroexfoliamycin, undecylprodigioisin, gracilins, 13-desmethyl spirolide-C, and dictyostatin displayed excellent bioavailability and efficacy against AD. Most of these marine drugs were found to be well-tolerated in AD patients, along with no significant drug-associated adverse events. In this review, we focus on the drugs derived from marine life that can be useful in AD treatment and also summarize the therapeutic agents that are currently used to treat AD.  相似文献   

6.
Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered.  相似文献   

7.
Alzheimer’s disease (AD) is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the ability to perform simple tasks. As the aging population continues to increase exponentially, AD has become a big concern for society. Therefore, neuroprotective compounds are in the spotlight, as a means to tackle this problem. On the other hand, since it is believed—in many cultures—that marine organisms in an individual diet cannot only improve brain functioning, but also slow down its dysfunction, many researchers have focused on identifying neuroprotective compounds from marine resources. The fact that the marine environment is a rich source of structurally unique and biologically and pharmacologically active compounds, with unprecedented mechanisms of action, marine macroorganisms, such as tunicates, corals, sponges, algae, as well as microorganisms, such as marine-derived bacteria, actinomycetes, and fungi, have been the target sources of these compounds. Therefore, this literature review summarizes and categorizes various classes of marine-derived compounds that are able to inhibit key enzymes involved in AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase (BACE-1), and different kinases, together with the related pathways involved in the pathogenesis of AD. The compounds discussed herein are emerging as promising anti-AD activities for further in-depth in vitro and in vivo investigations, to gain more insight of their mechanisms of action and for the development of potential anti-AD drug leads.  相似文献   

8.
Edible marine algae are rich in bioactive compounds and are, therefore, a source of bioavailable proteins, long chain polysaccharides that behave as low-calorie soluble fibers, metabolically necessary minerals, vitamins, polyunsaturated fatty acids, and antioxidants. Marine algae were used primarily as gelling agents and thickeners (phycocolloids) in food and pharmaceutical industries in the last century, but recent research has revealed their potential as a source of useful compounds for the pharmaceutical, medical, and cosmetic industries. The green, red, and brown algae have been shown to have useful therapeutic properties in the prevention and treatment of neurodegenerative diseases: Parkinson, Alzheimer’s, and Multiple Sclerosis, and other chronic diseases. In this review are listed and described the main components of a suitable diet for patients with these diseases. In addition, compounds derived from macroalgae and their neurophysiological activities are described.  相似文献   

9.
Due to the diversity of biological activities that can be found in aquatic ecosystems, marine metabolites have been an active area of drug discovery for the last 30 years. Marine metabolites have been found to inhibit a number of enzymes important in the treatment of human disease. Here, we focus on marine metabolites that inhibit the enzyme acetylcholinesterase, which is the cellular target for treatment of early-stage Alzheimer’s disease. Currently, development of anticholinesterase drugs with improved potency, and drugs that act as dual acetylcholinesterase and amyloid-β aggregation inhibitors, are being sought to treat Alzheimer’s disease. Seven classes of marine metabolites are reported to possess anti-cholinesterase activity. We compared these metabolites to clinically-used acetylcholinesterase inhibitors having known mechanisms of inhibition. We performed a docking simulation and compared them to published experimental data for each metabolite to determine the most likely mechanism of inhibition for each class of marine inhibitor. Our results indicate that several marine metabolites bind to regions of the acetylcholinesterase active site that are not bound by the clinically-used drugs rivastigmine, galanthamine, donepezil, or tacrine. We use the novel poses adopted for computational drug design of tighter binding anticholinesterase drugs likely to act as inhibitors of both acetylcholinesterase activity and amyloid-β aggregation inhibition.  相似文献   

10.
Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer’s disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.  相似文献   

11.
Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.  相似文献   

12.
Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases.  相似文献   

13.
Liu M  Hansen PE  Lin X 《Marine drugs》2011,9(7):1273-1292
Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals.  相似文献   

14.
Part of our ocean’s richness comes from its extensive history of supporting life, resulting in a highly diverse ecological system. To date, over 250,000 species of marine organisms have been identified, but it is speculated that the actual number of marine species exceeds one million, including several hundreds of millions of species of marine microorganisms. Past studies suggest that approximately 70% of all deep-sea microorganisms, gorgonians, and sea sponges produce secondary metabolites with anti-cancer activities. Recently, novel FDA-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin’s disease. Despite the fact that many marine natural products have been shown to possess a good inhibition potential against most of the cancer-related cell signaling pathways, only a few marine natural products have been shown to target JAK/STAT signaling. In the present paper, we describe the JAK/STAT signaling pathways found in marine organisms, before elaborating on the recent advances in the field of STAT inhibition by marine natural products and the potential application in anti-cancer drug discovery.  相似文献   

15.
Marine carotenoids are important bioactive compounds with physiological activities related to prevention of degenerative diseases found principally in plants, with potential antioxidant biological properties deriving from their chemical structure and interaction with biological membranes. They are substances with very special and remarkable properties that no other groups of substances possess and that form the basis of their many, varied functions and actions in all kinds of living organisms. The potential beneficial effects of marine carotenoids have been studied particularly in astaxanthin and fucoxanthin as they are the major marine carotenoids. Both these two carotenoids show strong antioxidant activity attributed to quenching singlet oxygen and scavenging free radicals. The potential role of these carotenoids as dietary anti-oxidants has been suggested to be one of the main mechanisms for their preventive effects against cancer and inflammatory diseases. The aim of this short review is to examine the published studies concerning the use of the two marine carotenoids, astaxanthin and fucoxanthin, in the prevention of cardiovascular diseases.  相似文献   

16.
Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author’s lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes.  相似文献   

17.
Neurodegenerative diseases (NDs) represent a drawback in society given the ageing population. Dementias are the most prevalent NDs, with Alzheimer’s disease (AD) representing around 70% of all cases. The current pharmaceuticals for AD are symptomatic and with no effects on the progression of the disease. Thus, research on molecules with therapeutic relevance has become a major focus for the scientific community. Cyanobacteria are a group of photosynthetic prokaryotes rich in biomolecules with confirmed activity in pathologies such as cancer, and with feasible potential in NDs such as AD. In this review, we aimed to compile the research works focused in the anti-AD potential of cyanobacteria, namely regarding the inhibition of the enzyme β-secretase (BACE1) as a fundamental enzyme in the generation of β-amyloid (Aβ), the inhibition of the enzyme acetylcholinesterase (AChE) lead to an increase in the availability of the neurotransmitter acetylcholine in the synaptic cleft and the antioxidant and anti-inflammatory effects, as phenomena associated with neurodegeneration mechanisms.  相似文献   

18.
Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home to much of the planet’s biodiversity. Biodiversity is directly related to chemodiversity, which can inspire new drug discoveries. Therefore, natural products (NPs) in general, and MNPs in particular, have been used for decades as a source of inspiration for the design of new drugs. However, NPs present both opportunities and challenges. These difficulties can be technical, such as the need to dive or trawl to collect the organisms possessing the compounds, or biological, due to their particular marine habitats and the fact that they can be uncultivable in the laboratory. For all these difficulties, the contributions of CADD can play a very relevant role in simplifying their study, since, for example, no biological sample is needed to carry out an in-silico analysis. Therefore, the amount of natural product that needs to be used in the entire preclinical and clinical study is significantly reduced. Here, we exemplify how this combination between CADD and MNPs can help unlock their therapeutic potential. In this study, using a set of marine invertebrate molecules, we elucidate their possible molecular targets and associated therapeutic potential, establishing a pipeline that can be replicated in future studies.  相似文献   

19.
In the last decades, it has been demonstrated that marine organisms are a substantial source of bioactive compounds with possible biotechnological applications. Marine sponges, in particular those belonging to the class of Demospongiae, have been considered among the most interesting invertebrates for their biotechnological potential. In this review, particular attention is devoted to natural compounds/extracts isolated from Demospongiae and their associated microorganisms with important biological activities for pharmacological applications such as antiviral, anticancer, antifouling, antimicrobial, antiplasmodial, antifungal and antioxidant. The data here presented show that this class of sponges is an exciting source of compounds, which are worth developing into new drugs, such as avarol, a hydroquinone isolated from the marine sponge Disidea avara, which is used as an antitumor, antimicrobial and antiviral drug.  相似文献   

20.
Marine trypanocidal natural products are, most often, reported with trypanocidal activity and selectivity against human cell lines. The triaging of hits requires a consideration of chemical tractability for drug development. We utilized a combined Lipinski’s rule-of-five, chemical clustering and ChemGPS-NP principle analysis to analyze a set of 40 antitrypanosomal natural products for their drug like properties and chemical space. The analyses identified 16 chemical clusters with 11 well positioned within drug-like chemical space. This study demonstrated that our combined analysis can be used as an important strategy for prioritization of active marine natural products for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号