首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the bovine myostatin gene on chromosome 2 on birth and carcass traits have been previously assessed. The objective of this study was to identify additional quantitative trait loci (QTL) for economically important traits in two families segregating an inactive copy of myostatin. Two half-sib families were developed from Belgian Blue x MARC III (n = 246) and Piedmontese x Angus (n = 209) sires. Traits analyzed were birth (kg) and yearling weight (kg); hot carcass weight (kg); fat depth (cm); marbling score; longissimus muscle area (cm2); estimated kidney, pelvic, and heart fat (%); USDA yield grade; retail product yield (%); fat yield (%); and wholesale rib-fat yield (%). Meat tenderness was measured as Warner-Bratzler shear force at 3 and 14 d postmortem. The effect of myostatin on these traits was removed by using phase information obtained from the previous study with six microsatellite markers flanking the locus. Selective genotyping was done on 92 animals from both families to identify genomic regions potentially associated with retail product yield and fat depth, using a total of 150 informative markers in each family. Regions in which selective genotyping indicated the presence of QTL were evaluated further by genotyping the entire population and additional markers. For the family with Belgian Blue inheritance (n = 246), a significant QTL for birth and yearling weight was identified on chromosome 6. Suggestive QTL were identified for longissimus muscle area and hot carcass weight on chromosome 6 and for marbling on chromosomes 17 and 27. For the family with Piedmontese inheritance (n = 209), suggestive QTL on chromosome 5 were identified for fat depth, retail product yield, and USDA yield grade and on chromosome 29 for Warner-Bratzler shear force at 3 and 14 d postmortem. Interactions suggesting the presence of QTL were observed between myostatin and chromosome 5 for Warner-Bratzler shear force at 14 d postmortem and between myostatin and chromosome 14 for fat depth. Thus, in families segregating an inactive copy of myostatin in cattle, other loci influencing quantitative traits can be detected. These results are the initial effort to identify and characterize QTL affecting carcass and growth traits in families segregating myostatin.  相似文献   

2.
The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives < 0.05) were observed for birth weight and longissimus area on chromosome 5, for longissimus area on chromosome 6, for retail product yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives < 1) the presence of QTL was detected for several traits. Putative QTL for birth weight were detected on chromosomes 1, 2, and 3, and for weaning weight on chromosome 29. For hot carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations.  相似文献   

3.
A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits.  相似文献   

4.
Most QTL detection studies in pigs have been carried out in experimental F(2) populations. However, segregation of a QTL must be confirmed within a purebred population for successful implementation of marker-assisted selection. Previously, QTL for meat quality and carcass traits were detected on SSC 7 in a Duroc purebred population. The objectives of the present study were to carry out a whole-genome QTL analysis (except for SSC 7) for meat production, meat quality, and carcass traits and to confirm the presence of segregating QTL in a Duroc purebred population. One thousand and four Duroc pigs were studied from base to seventh generation; the pigs comprised 1 closed population of a complex multigenerational pedigree such that all individuals were related. The pigs were evaluated for 6 growth traits, 7 body size traits, 8 carcass traits, 2 physiological traits, and 11 meat quality traits, and the number of pigs with phenotypes ranged from 421 to 953. A total of 119 markers were genotyped and then used for QTL analysis. We utilized a pedigree-based, multipoint variance components approach to test for linkage between QTL and the phenotypic values using a maximum likelihood method; the logarithm of odds score and QTL genotypic heritability were estimated. A total of 42 QTL with suggestive linkages and 3 QTL with significant linkages for 26 traits were detected. These included selection traits such as daily BW gain, backfat thickness, loin eye muscle area, and intramuscular fat content as well as correlated traits such as body size and meat quality traits. The present study disclosed QTL affecting growth, body size, and carcass, physiological, and meat quality traits in a Duroc purebred population.  相似文献   

5.
Porcine chromosome 4 harbours many quantitative trait loci (QTL) affecting meat quality, fatness and carcass composition traits, detected in resource pig populations previously. However, prior to selection in commercial breeds, QTL identified in an intercross between divergent breeds require confirmation, so that they can be segregated. Consequently, the objective of this study was to validate several QTL on porcine chromosome 4 responsible for meat and carcass quality traits. The experimental population consisted of 14 crossbred paternal half-sib families. The region of investigation was the q arm of SSC4 flanked by the markers S0073 and S0813. Regression analysis resulted in the validation of three QTL within the interval: Minolta a * loin, back fat thickness and the weight of trimmed ham. The results were additionally confirmed by factor analysis. Candidate genes were proposed for meat colour, which was the most evident QTL validated in this study.  相似文献   

6.
A directed search for QTL affecting carcass traits was carried out in the region of growth differentiation factor 8 (GDF8, also known as myostatin) on ovine chromosome 2 in seven Texel-sired half-sib families totaling 927 progeny. Weights were recorded at birth, weaning, ultrasound scanning, and slaughter. Ultrasonic measures of LM cross-sectional dimensions and s.c. fat above the LM were made, with the same measurements made on the LM after slaughter. Following slaughter, linear measurements of carcass length and width were made on all carcasses, and legs and loins from 540 lambs were dissected. Genotyping was carried out using eight microsatellite markers from FCB128 to RM356 on OAR 2 and analyzed using Haley-Knott regression. There was no evidence for QTL for growth rates or linear carcass traits. There was some evidence for QTL affecting LM dimensions segregating in some sire families, although it was not consistent between ultrasound and carcass measures of the same traits. There was strong and consistent evidence for a QTL affecting muscle and fat traits in the leg that mapped between markers BM81124 and BULGE20 for the four sires that were heterozygous in this region, but not for the three sires that were homozygous. The size of the effect varied across the four sires, ranging from 0.5 to 0.9 of an adjusted SD for weight-adjusted leg muscle traits, and ranging from 0.6 to 1.2 of an adjusted SD for weight-adjusted leg fat traits. The clearest effect shown was for multivariate analysis combining all leg muscle and fat traits analyzed across sires, where the -log(10) probability was 14. Animals carrying the favorable haplotype had 3.3% more muscle and 9.9% less fat in the leg relative to animals carrying other haplotypes. There was evidence for a second peak in the region of marker TEXAN2 for one sire group. It seems that a QTL affecting muscle and fat traits exists within the New Zealand Texel population, and it maps to the region of GDF8 on OAR2.  相似文献   

7.
Ninety-three crossbred steer calves (BW+/-SD=385+/-50 kg) were used (n=48 steers in yr 1, n=45 steers in yr 2) to examine the relationship among carcass traits, lean, bone, and fat proportions, visceral tissue weights, and pancreatic digestive enzyme activity with DMI, ADG, G:F, and residual feed intake. Calves were progeny from crossbred dams predominantly of Angus and Simmental breeding and were sired by Angus, Simmental, crossbred (predominantly of Angus and Simmental breeding), Charolais, or Piedmontese bulls. Steers were fed a high-moisture corn-based diet for an average of 112 d. Partial correlation analysis accounting for year, pen within year, week of slaughter within year, and sire breed was conducted. Gain:feed was negatively correlated (P 0.10) between performance measures and the pancreatic proportional content of alpha-amylase and trypsin activity (units/kg of BW). These data indicate that carcass fatness traits and changes in the proportional weight of total viscera may be negatively associated with G:F and that visceral fat weight proportion and trim and kidney fat weight proportion may be important factors influencing this relationship.  相似文献   

8.
The objective of this study was to identify quantitative trait loci for economically important traits in two families segregating an inactive copy of the myostatin gene. Two half-sib families were developed from a Belgian Blue x MARC III (n = 246) and a Piedmontese x Angus (n = 209) sire. Traits analyzed were birth, weaning, and yearling weight (kg); preweaning average daily gain (kg/d); postweaning average daily gain (kg/d); hot carcass weight (kg); fat depth (cm); marbling score; longissimus muscle area (cm2); estimated kidney, pelvic, and heart fat (%); USDA yield grade; retail product yield (%); fat yield (%); and wholesale rib-fat yield (%). Meat tenderness was measured as Warner-Bratzler shear force at 3 and 14 d postmortem. The effect of the myostatin gene was removed using phase information from six microsatellite markers flanking the locus. Interactions of the myostatin gene with other loci throughout the genome were also evaluated: The objective was to use markers in each family, scanning the genome approximately every 25 to 30 centimorgans (cM) on 18 autosomal chromosomes, excluding 11 autosomal chromosomes previously analyzed. A total of 89 markers, informative in both families, were used to identify genomic regions potentially associated with each trait. In the family of Belgian Blue inheritance, a significant QTL (expected number of false-positives = 0.025) was identified for marbling score on chromosome 3. Suggestive QTL for the same family (expected number of false-positives = 0.5) were identified for retail product yield on chromosome 3, for hot carcass weight and postweaning average daily gain on chromosome 4, for fat depth and marbling score on chromosome 8, for 14-d Warner-Bratzler shear force on chromosome 9, and for marbling score on chromosome 10. Evidence suggesting the presence of an interaction for 3-d Warner-Bratzler shear force between the myostatin gene and a QTL on chromosome 4 was detected. In the family of Piedmontese and Angus inheritance, evidence indicates the presence of an interaction for fat depth between the myostatin gene and chromosome 8, in a similar position where the evidence suggests the presence of a QTL for fat depth in the family with Belgian Blue inheritance. Regions identified underlying QTL need to be assessed in other populations. Although the myostatin gene has a considerable effect, other loci with more subtle effects are involved in the expression of the phenotype.  相似文献   

9.
We constructed a pig F2 resource population by crossing a Meishan sow and a Duroc boar to locate economically important trait loci. The F2 generation was composed of 865 animals (450 males and 415 females) from four F1 males and 24 F1 females and was genotyped for 180 informative microsatellite markers spanning 2,263.6 cM of the whole pig genome. Results of the genome scan showed evidence for significant quantitative trait loci (<1% genomewise error rate) affecting weight at 30 d and average daily gain on Sus scrofa chromosome (SSC) 6, carcass yield on SSC 7, backfat thickness on SSC 7 and SSC X, vertebra number on SSC 1 and SSC 7, loin muscle area on SSC 1 and SSC 7, moisture on SSC 13, intramuscular fat content on SSC 7, and testicular weight on SSC 3 and SSC X. Moreover, 5% genomewise significant QTL were found for birth weight on SSC 7, average daily gain on SSC 4, carcass length on SSC 6, SSC 7, and SSC X and lightness (L value) on SSC 3. We identified 38 QTL for 28 traits at the 5% genomewise level. Of the 38 QTL, 24 QTL for 17 traits were significant at the 1% genomewise level. Analysis of marker genotypes supported the breed of origin results and provided further evidence that a suggestive QTL for circumference of cannon bone also was segregating within the Meishan parent. We identified genomic regions related with growth and meat quality traits. Fine mapping will be required for their application in introgression programs and gene cloning.  相似文献   

10.
Previously, a quantitative trait locus (QTL) that affects body weight (BW) at 4-12 weeks of age and carcass weight at 12 weeks of age had been mapped on chicken chromosome 1. After including more markers and individuals, the confidence interval was narrowed down to approximately 5.5 Mbps and located this QTL near a microsatellite marker (ADL328). This QTL is the same as the QTL for 12 bone traits, including metatarsus length and metatarsus circumference at 4, 6, 8, 10 and 12 weeks of age and keel length and metatarsus claw weight at 12 weeks of age, that was identified using the same population. In the current study, 1010 individuals from the Northeast Agricultural University F(2) resource population were used and 14 single-nucleotide polymorphism (SNPs) around ADL328 were developed to construct haplotypes, and an association analysis was performed to fine-map the QTL. The haplotypes were constructed on the basis of a sliding 'window', with three SNP markers included in each 'window'. The association analysis results indicated that the haplotypes in 'windows' 6-12 were significantly associated with BW and bone traits and suggested that the QTL for BW and bone traits was located between SNP8 and SNP14 or was in linkage disequilibrium with this region. The interval from SNP8 to SNP14 was approximately 400 kbps. This region contained five RefSeq genes (RB1, P2RY5, FNDC3A, MLNR and CAB39L) on the University of California Santa Cruz website. The RB1 gene was selected as a candidate gene and five SNPs were identified in the gene. The association results indicated that the RB1 gene was a major gene for BW and bone traits. The SNPs g.39692 G>A and g.77260 A>G in RB1 gene might be two quantitative trait nucleotides for BW and bone traits.  相似文献   

11.
A QTL that explained a large proportion of the phenotypic difference between broiler and layer chickens in an experimental cross was evaluated in a commercial broiler line. A three-generation design, consisting of 15 grandsires, 608 half-sib hens, and more than 50,000 third-generation offspring, was implemented within the existing breeding scheme of a broiler breeding company. Four markers from a candidate region on chicken chromosome 4 were selected for their informativeness in the grandsires and used to genotype the first two generations. Using half-sib analyses, linkage was studied between these markers and 13 growth and carcass traits. The QTL analyses confirmed the presence of significant QTL for body weight (P < 0.01) and residual feed intake (P < 0.05) on chicken chromosome 4. Furthermore, evidence was found for QTL affecting the relative weight of bone and muscle in the thigh. Four more markers were added to increase resolution of the QTL positions. This increased the significance of the QTL for body weight (P < 0.001) and residual feed intake (P < 0.01) and showed evidence (P < 0.05) for additional QTL affecting carcass weight and conformation score. This study showed for the first time that a QTL that explains differences between broilers and layers was segregating in lines that have been selected for body weight over 50 generations. A possible explanation could be a pleiotropic or closely linked effect on fitness-related traits that are not part of the present study. The results demonstrate the feasibility of QTL detection and the potential for marker-assisted selection within a commercial broiler line without altering the existing breeding scheme.  相似文献   

12.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

13.
Fine mapping of quantitative trait loci (QTL) for 16 ultrasound measurements and carcass merit traits that were collected from 418 hybrid steers was conducted using 1207 SNP markers covering the entire genome. These SNP markers were evaluated using a Bayesian shrinkage estimation method and the empirical critical significant thresholds (α = 0.05 and α = 0.01) were determined by permutation based on 3500 permuted datasets for each trait to control the genome-wide type I error rates. The analyses identified a total of 105 QTLs (p < 0.05) for seven ultrasound measure traits including ultrasound backfat, ultrasound marbling and ultrasound ribeye area and 113 QTLs for seven carcass merit traits of carcass weight, grade fat, average backfat, ribeye area, lean meat yield, marbling and yield grade. Proportion of phenotypic variance accounted for by a single QTL ranged from 0.06% for mean ultrasound backfat to 4.83% for carcass marbling (CMAR) score, while proportion of the phenotypic variance accounted for by all significant (p < 0.05) QTL identified for a single trait ranged from 4.54% for carcass weight to 23.87% for CMAR.  相似文献   

14.
利用24个微卫星进行猪数量性状座位定位及其遗传效应分析   总被引:12,自引:2,他引:10  
以 3头英系大白公猪与 7头梅山母猪杂交产生的三代资源家系用来检测猪重要经济性状的数量性状座位(QTL) ,2 0 0 0年下半年随机选留 140头F2代个体 ,进行屠宰测定 ,记录了包括生长、胴体组成等 43个性状 ;从已定位于家猪 3、4和 7号染色体上的遗传标记中选用 2 4个微卫星标记对所有个体进行基因型检测。采用最小二乘回归区间定位法进行QTL检测 ,通过置换实验来确定显著性阈值。在所研究的 32个生长和胴体性状中 ,3条染色体总共 16个QTL达到染色体显著水平 (P <0 0 5 ) ,其中 4个达到染色体极显著性水平 (P <0 0 1) ;同时在 4号和 7号染色体上还检测到了影响器官重性状的 3个QTL ,达到了染色体显著水平 (P <0 0 5 )。在某些QTL座位 ,其有利等位基因来源于具有较低性状平均值的品种。 2QTL模型分析下 ,在 4号染色体上检测到影响板油重的 2个QTL ,并且它们的效应方向相反。  相似文献   

15.
Feed intake and feed efficiency are economically important traits in beef cattle because feed is the greatest variable cost in production. Feed efficiency can be measured as feed conversion ratio (FCR, intake per unit gain) or residual feed intake (RFI, measured as DMI corrected for BW and growth rate, and sometimes a measure of body composition, usually carcass fatness, RFI(bf)). The goal of this study was to fine map QTL for these traits in beef cattle using 2,194 markers on 24 autosomes. The animals used were from 20 half-sib families originating from Angus, Charolais, and University of Alberta Hybrid bulls. A mixed model with random sire and fixed QTL effect nested within sire was used to test each location (cM) along the chromosomes. Threshold levels were determined at the chromosome and genome levels using 20,000 permutations. In total, 4 QTL exceeded the genome-wise threshold of P < 0.001, 3 exceeded at P < 0.01, 17 at P < 0.05, and 30 achieved significance at the chromosome-wise threshold level (at least P < 0.05). No QTL were detected on BTA 8, 16, and 27 above the 5% chromosome-wise significance threshold for any of the traits. Nineteen chromosomes contained RFI QTL significant at the chromosome-wise level. The RFI(bf) QTL results were generally similar to those of RFI, the positions being similar, but occasionally differing in the level of significance. Compared with RFI, fewer QTL were detected for both FCR and DMI, 12 and 4 QTL, respectively, at the genome-wise thresholds. Some chromosomes contained FCR QTL, but not RFI QTL, but all DMI QTL were on chromosomes where RFI QTL were detected. The most significant QTL for RFI was located on BTA 3 at 82 cM (P = 7.60 x 10(-5)), for FCR on BTA 24 at 59 cM (P = 0.0002), and for DMI on BTA 7 at 54 cM (P = 1.38 x 10(-5)). The RFI QTL that showed the most consistent results with previous RFI QTL mapping studies were on BTA 1, 7, 18, and 19. The identification of these QTL provides a starting point to identify genes affecting feed intake and efficiency for use in marker-assisted selection and management.  相似文献   

16.
The reduction of extra subcutaneous, intermuscular and abdominal fat is important to increase the carcass lean percentage of pigs. Image analyses of fat area ratios were effective for estimation of separated fat in pig carcasses. Serum concentrations of leptin are useful as physiological predictors of fat accumulation in pigs. The objectives of the present study were to perform a quantitative trait locus (QTL) analysis for fat area ratios and serum leptin concentrations in a Duroc purebred population. Pigs (n = 226 to 538) were measured for fat area ratios of carcass cross‐sections at the fifth to sixth thoracic vertebrae, half body length and last thoracic vertebra using an image analysis system, and serum leptin concentration. In total, animals were genotyped for 129 markers and used for QTL analysis. For fat area ratios, four significant and 12 suggestive QTLs were detected on chromosomes 1, 6, 7, 8, 9, 12 and 13. Significant QTLs were detected on the same region of chromosome 6, which was located near a leptin receptor gene. For serum leptin concentrations, two significant and two suggestive QTLs were detected on chromosomes 6, 9, and 16, and the QTLs on chromosome 6 were also in the same region for fat area ratios.  相似文献   

17.
Fifty-eight Holstein and 58 crossbred beef steers were individually fed one of four isonitrogenous diets to evaluate the effects of forage source (corn silage and alfalfa haylage) and protein source (soybean meal and fish meal) on feedlot performance. Phase 1 diets (up to 354 kg of BW) were 40% forage and 60% concentrates and were fed for 70 to 136 d (depending on diet and breed group). Phase 2 diets (354 kg of BW until slaughter) were 20% forage and 80% concentrates and were fed for 127 to 150 d (depending on diet and breed group). Slaughter end points were .6 cm of 12th rib fat for Holsteins and 1.0 cm of rib fat for crossbreds using real-time ultrasonic estimates. The steers were fed for a maximum of 330 d each year. Forage source was a significant component of variation for most growth, efficiency, and carcass traits. Holstein and crossbred steers fed alfalfa haylage had significantly lower average daily gain, feed efficiency, dressing percentage, and empty body fat and required more days on feed to reach slaughter end points, but had higher total feed energy intake available for production. Steers fed corn silage diets had significantly greater energetic efficiency (P less than .05) than those fed alfalfa haylage, due to increased use of ME to produce fat in the carcass. Protein type did not influence gain, feed or energetic efficiency, energy intake, or most carcass traits. A significant protein system x forage source interaction among the four diets was detected for crossbred steers fed corn silage and fish meal, for which there was significantly greater feed conversion with lower energy intake above maintenance, possibly due to better fiber digestion and(or) amino acid flow to the lower tract. Alfalfa haylage plus soybean meal diets decreased (P less than .05) the percentage of Holsteins grading USDA Choice or higher. These results indicate that corn silage, because of greater energy concentration, was a more desirable forage in feedlot diets composed of less than or equal to 40% forage and that protein type (soybean meal and fish meal) in growing diets is not an important factor in feedlot performance or carcass traits of Holstein or crossbred steers that are fed these diets.  相似文献   

18.
Genetic parameters for LM fatty acid composition were estimated in Scottish Blackface sheep, previously divergently selected for carcass lean content (LEAN and FAT lines). Furthermore, QTL were identified for the same fatty acids. Fatty acid phenotypic measurements were made on 350 male lambs, at approximately 8 mo of age, and 300 of these lambs were genotyped across candidate regions on chromosomes 1, 2, 3, 5, 14, 18, 20, and 21. Fatty acid composition measurements included in total 17 fatty acids of 3 categories: saturated, monounsaturated, and polyunsaturated. Total i.m. fat content was estimated as the sum of the fatty acids. The FAT line had a greater i.m. fat content and more oleic acid, but less linoleic acid (18:2 n-6) and docosapentaenoic acid (22:5 n-3) than did the LEAN line. Saturated fatty acids were moderately heritable, ranging from 0.19 to 0.29, and total SFA were highly heritable (0.90). Monounsaturated fatty acids were moderately to highly heritable, with cis-vaccenic acid (18:1 n-7) being the most heritable (0.67), and total MUFA were highly heritable (0.73). Polyunsaturated fatty acids were also moderately to highly heritable; arachidonic acid (20:4 n-6) and CLA were the most heritable, with values of 0.60 and 0.48, respectively. The total PUFA were moderately heritable (0.40). The QTL analyses were performed using regression interval mapping techniques. In total, 21 chromosome-wide QTL were detected in 6 out of 8 chromosomal regions. The chromosome-wide, significant QTL affected 3 SFA, 5 MUFA, and 13 PUFA. The most significant result was a QTL affecting linolenic acid (18:3 n-3) on chromosome 2. This QTL segregated in 2 of the 9 families and explained 37.6% of the phenotypic variance. Also, 10 significant QTL were identified on chromosome 21, where 8 out of 10 QTL were segregating in the same families and detected at the same position. The results of this study demonstrate that altering carcass fatness will simultaneously change i.m. fat content and oleic, linoleic, and docosapentaenoic acid content. The heritabilities of the fatty acids indicate opportunities for genetically altering most fatty acids. Moreover, this is the first report of detection of QTL directly affecting fatty acid composition in sheep.  相似文献   

19.
Results from univariate outbred F2 interval mapping and sib-pair analyses of 12 growth and 28 carcass traits to identify QTL on SSC 2, 6, 13, and 18 were compared. Phenotypic and genetic data were recorded on a three-generation resource population including 832 F2 pigs from a cross between three Berkshire sires and 18 Duroc dams. Thirty markers with an average spacing of approximately 16 cM were genotyped across the four chromosomes. The outbred F2 mixed model included the effects of sex, birth month, and year, one-QTL additive, dominance and imprinting coefficients calculated every 1 cM using interval mapping, and a random family effect. The general sib-pair model used to describe the phenotypic differences between sib-pairs included the same systematic and random effects and a one-QTL additive coefficient calculated every 1 cM. The outbred F2 analysis found significant evidence of QTL on SSC 2 associated with 105-d weight, backfat thicknesses, LM area, fat percent, shear force, juiciness, marbling, and tenderness. In addition, QTL were identified on SSC 6 relating to 42-d weight and LM area, and on SSC 18 for fat and moisture percents. In most instances, the outbred F2 approach offered greater power to detect QTL; however, the sib-pair analysis offered greater power in several instances. The trait-specific superiority could be due to the relative advantage of each model within a trait data set. The two approaches provided complementary evidence for QTL segregating between the Berkshire and Duroc breeds used in the study that may be used to aid marker-assisted introgression and selection and candidate gene studies to improve swine growth and meat quality characteristics.  相似文献   

20.
This study was conducted to detect quantitative trait loci (QTL) affecting growth and beef carcass fatness traits in an experimental population of Angus and Brahman crossbreds. The three-generation mapping population was generated with 602 progeny from 29 reciprocal backcross and three F2 full-sib families, and 417 genetic markers were used to produce a sex-averaged map of the 29 autosomes spanning 2,642.5 Kosambi cM. Alternative interval-mapping approaches were applied under line-cross (LC) and random infinite alleles (RA) models to detect QTL segregating between and within breeds. A total of 35 QTL (five with genomewide significant and 30 with suggestive evidence for linkage) were found on 19 chromosomes. One QTL affecting yearling weight was found with genomewide significant evidence for linkage in the interstitial region of bovine autosome (BTA) 1, and an additional 19 QTL were detected with suggestive evidence for linkage under the LC model. Many of these QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects the fact that heterosis for growth is known to be appreciable in crosses among Brahman and British breeds. Four QTL affecting growth were detected with genomewide significant evidence for linkage under the RA model on BTA 2 and BTA 6 for birth weight, BTA 5 for yearling weight, and BTA 23 for hot carcass weight. An additional 11 QTL were detected with suggestive evidence for linkage under the RA model. None of the QTL (except for yearling weight on BTA 5) detected under the RA model were found by the LC analyses, suggesting the segregation of alternate alleles within one or both of the parental breeds. Our results reveal the utility of implementing both the LC and RA models to detect dominant QTL and also QTL with similar allele frequency distributions within parental breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号