首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
The genome of Xanthomonas oryzae pv. oryzicola annotates one uncharacterized gene, XOC_3841, only one ORF in this strain is annotated to encode Phosphohexose mutase (XanA), which reversibly converts glucose 1-phosphate to glucose 6-phosphate that implicates in the carbon metabolism pathways. However, it is unclear whether the XanA-coding gene is involved in the full virulence of X. oryzae pv. oryzicola. In this report, we showed that the mutagenesis in unique xanA, led the pathogen effectively to unable to utilize glucose and galactose for growth. The expression of xanA was strongly induced by glucose, sucrose, fructose, mannose or galactose at least 3 times higher than that by non-sugar NY medium. Intriguingly, xanA promoter region contains an imperfect PIP-box (plant-inducible promoter) (TTCGC-N16-TTCGA), and the expression of xanA was inducible in rice suspension cells rather than in a nutrient-rich (NB) medium and negatively regulated by a key hrp regulatory HrpG and HrpX cascade. More importantly, mutation in xanA resulted in impairment of bacterial growth and virulence in planta, and reduced bacterial cell motility and extracellular polysaccharides (EPS) production in media. In addition, the lost properties mentioned above in RΔxanA were completely restored to the wild-type level by the presence of xanA in trans. All these results suggest that xanA is required for EPS production, cell motility and the full virulence of X. oryzae pv. oryzicola.  相似文献   

3.
 Xanthomonas oryzae pv. oryzicola基因文库的hrp基因克隆pUHRS138携39.3-kb大小的hrp基因片段。经系列亚克隆和对hrp-突变体的功能互补验证,4.5-kb BamHI-KpnI为最小功能片段,该片段可使X. o. pv. oryzicolahrp-突变体恢复在烟草上激发产生HR和在水稻上具致病性。序列测定和分析显示,4.5-kb hrp片段中含hrpXoochrpGXooc基因。单独的hrpGXoochrpXooc不能功能互补hrp-突变体。hrpXooc与其它黄单胞菌中已克隆的hrpX的同一性达83%以上,推测的蛋白质水平上的差别主要在32、141、164、175、213、247和357位点上。HrpX序列中α-螺旋-转-α-螺旋结构在黄单胞菌中高度保守。hrpGXooc与水稻白叶枯病菌的hrpGXoo同一性达96%,与X. campestris pv. vesicatoriahrpGXcv同一性达87%,与Ralstonia solanacearumhrpGRs同源性较低,4种HrpG蛋白质水平上的差别主要集中在22、29、115和252位点上。HrpGXooc和HrpGXcv同列比较显示,3~9和216~220区域的氨基酸序列有所不同,可能反映了HrpG蛋白在感知环境信号和调节hrp基因表达方面的差别。  相似文献   

4.
We have investigated Pseudomonas syringae pv. tabaci–plant interactions using a large variety of virulence-related mutants. A flagellin-defective mutant, ΔfliC, lost flagellar motility and the ability to produce N-acyl homoserine lactones; it had reduced ability to cause disease symptoms, but the expression of genes encoding a multidrug efflux pump transporter, mexEFoprN, was activated. A type IV pili (T4P)-defective mutant, ΔpilA, lost swarming motility, had reduced expression of hrp-related genes and virulence toward the host tobacco plant, but expression of the genes encoding another multidrug efflux pump transporter, mexABoprM, was activated. These results suggest that the genes regulating flagella- and T4P-mediated motilities also regulate expression of other virulence-related genes.  相似文献   

5.
In many Gram-negative plant pathogenic bacteria the type III secretion system (TTSS), encoded by hrp genes, is essential for pathogenicity in the host and induction of a hypersensitive reaction (HR) in nonhost plants. The expression of hrp genes has been suggested to be repressed in complex media, whereas it is induced in planta and under certain in vitro conditions. We recently reported that XOM2 medium allows efficient hrp expression by Xanthomonas oryzae pv. oryzae. In this study, we investigated hrp-dependent secretion of proteins by the bacteria in vitro. Using modified XOM2, in which bovine serum albumin was added and the pH was lowered to 6.0, we detected at least 10 secreted proteins and identified one as Hpa1. This is the first evidence of protein secretion via TTSS in X. oryzae pv. oryzae.  相似文献   

6.
The gram-negative plant pathogen Xanthomonas oryzae pv. oryzae (Xoo) is able to infect the host rice and effectively colonize in vascular tissues. The type IV pilus (T4P) is one of the major virulence factors playing an important role in migration of Xoo through host vascular tissues. Here, we identified PilN, a T4P alignment subcomplex protein, which is involved in regulation of swimming motility, and analysed its contribution to bacterial surface-associated behaviours and virulence. We found that the pilN deletion mutant exhibited dramatically reduced twitching motility and scarcely detectable levels of T4P major pili PilA, as well as enhanced biofilm formation and exopolysaccharide (EPS) production. In addition, deletion of the pilN gene in Xoo resulted in impaired virulence in host rice and attenuated type III secretion system (T3SS) genes expression, which is independent of PilA assembly. Expression of the relevant pilN gene in trans was capable of restoring twitching motility and biofilm formation to the wild-type levels in the pilN mutant but partially recovering EPS production and virulence. Moreover, the expression of trh and xrvA genes, which encode the HrpG positive regulators, was decreased in the pilN mutant. Our results suggest that PilN executes versatile functions in bacterial virulence and cell surface-associated behaviours.  相似文献   

7.
8.
水稻条斑病菌(Xanthomonas oryzaepv.oryzicola,Xoc)的hrp基因决定了病原菌在非寄主植物上的过敏反应(hypersensitive response,HR)和在寄主植物上的致病性(pathogenicity),基因产物形成Ⅲ型分泌系统(type-Ⅲ secretion system,T3SS)将致病性效应分子注入寄主细胞从而引起水稻产生抗病性或者感病性反应。以位于hrpB操纵单元的首个hr-pB1基因为对象,通过基因敲除方式对其进行了突变,发现hrpB1突变体丧失了在水稻上的致病性和在烟草上激发HR的能力,并且在水稻组织中的生长能力显著降低。RT-PCR测定结果表明,hrpB1的转录表达受HrpG和HrpX的正调控。免疫杂交结果显示,HrpB1蛋白可通过T3SS进行分泌。这些结果不仅明确了hrpB1基因在病原菌致病性中的功能,而且提示了hrp结构基因不仅仅局限于形成Ⅲ型分泌系统,部分hrp基因产物本身也通过Ⅲ型系统分泌到胞外,并且可能起到效应分子的功能。  相似文献   

9.
The clustered hrp genes encoding the type III secretion system in the Japanese strains MAFF301237 and MAFF311018 of Xanthomonas oryzae pv. oryzae were sequenced and compared. The strains differ in their pathogenicity, location, and year of isolation. A 30-kbp sequence comprising 29 open reading frames (ORFs) was identical in its structural arrangement in both strains but differed from X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines in certain genes located between the hpaB-hrpF interspace region. The DNA sequence and the putative amino acid sequence in each ORF was also identical in both X. oryzae pv. oryzae strains as were the PIP boxes and the relative sequences. These facts clearly showed that the structure of the hrp gene cluster in X. oryzae pv. oryzae is unique.  相似文献   

10.
The plasmid pUFZ75 conferred constitutive GFP expression on the bacterial pathogen Xanthomonas euvesicatoria (syn. X. campestris pv. vesicatoria). Colonisation of the tomato phyllosphere and invasion of tomato leaves by X. euvesicatoria was examined using both fluorescence and confocal laser scanning microscopy. Xanthomonas euvesicatoria established a limited population on the tomato leaf surface, primarily occupying the depressions between epidermal cells and around the stomata, prior to invasion of the leaf via the stomata and subsequent growth within the substomatal chamber and the leaf apoplast. Additionally, hrp-gfp fusions were used to report on the temporal and spatial expression of hrp genes during epiphytic colonisation and invasion. Xanthomonas euvesicatoria cells carrying hrpG- and hrpX-gfp reporter constructs were not fluorescent in vitro on non-hrp-inducing LB agar but did exhibit a low level of fluorescence on the leaf surface within 24 h of inoculation, particularly in the vicinity of stomata. Cells carrying hrpG- and hrpX-gfp fusions exhibited high levels of fluorescence 72 h after inoculation in the substomatal chamber and the leaf apoplast. Cells carrying the hrpF-gfp fusion were slightly fluorescent on LB agar and showed no further increase in fluorescence on the leaf surface by 24 h after inoculation, but did show a significant increase in fluorescence 72 h after inoculation in the substomatal chamber and apoplast. The apparent low-level induction of the regulators hrpG and hrpX on the tomato leaf surface may suggest that some of the genes of the X. euvesicatoria HrpG/HrpX regulon are up- or down-regulated prior to invasion of the stomata while still on the leaf surface.  相似文献   

11.
HrpG, a two-component response regulator-like protein, is a key regulator of the type III secretion system (T3SS) in Xanthomonas spp. In X. campestris pv. vesicatoria, HrpG with a single amino acid substitution (HrpG*) gains the ability to induce the expression of T3SS-related genes even under nutrient-rich conditions. In this study, we investigated the role of HrpG in the synthesis of the secretory protein using HrpG* in strain NA-1 of X. axonopodis pv. citri (Xac NA-1), a causal agent of citrus canker. Eleven proteins secreted via a type II secretion system (T2SS) were induced by HrpG*. In proteomic analyses, six of the 11 proteins were identified as extracellular enzymes, and the others as a fimbrial biogenesis-related protein, a type IV-related protein, two hypothetical proteins, and a conserved hypothetical protein. Further analysis of these proteins revealed that the genes coding all 11 proteins were upregulated by HrpG*, even though they had different expression patterns for HrpXct-dependency. The data indicated that HrpG, a key regulator of T3SS, also acts as a positive regulator of certain proteins secreted via a T2SS in Xac NA-1.  相似文献   

12.
To analyze the regulation of hrp expression and to detect and identify hrp-dependent secretion proteins of plant-pathogenic bacteria, an appropriate hrp-inducing medium is indispensable. In this study, two efficient hrp-inducing media for Xanthomonas oryzae pv. oryzae were designed by assaying the expression of a hrcU (the first gene of the hrpC operon) and a gus (β-glucuronidase) fusion gene. We modified XVM2, which is a hrp-inducing medium for X. campestris pv. vesicatoria, by adding 0.01% xylose in place of fructose and sucrose (0.18 and 0.34%, respectively) as a sugar source. The resulting medium induced approximately 15-fold more GUS activity from transformants containing a hrcU::gus gene than did XVM2. Moreover, a methionine-containing synthetic medium with 0.18% xylose as a sugar source was able to induce much stronger expression of HrcU::GUS, with GUS activity approximately 100-fold greater than that in XVM2. Induction depended on a regulator, HrpXo, and the PIP (plant-inducible-promoter) box, suggesting that HrcU::GUS was expressed in a hrp-dependent manner. The induction of operons hrpA to hrpF in XOM2 was also confirmed. These results suggest that both media, especially XOM2, are highly efficient hrp-inducing media for X. oryzae pv. oryzae. Received 7 October 2002/ Accepted in revised form 22 November 2002  相似文献   

13.
The effector gene avrXa7 from Xanthomonas oryzae pv. oryzae has avirulence function in rice with the Xa7 resistance gene and confers pathogenic fitness (aggressiveness). Field strains of X. oryzae pv. oryzae displayed a diversity of phenotypes on rice ranging from complete to partial loss of these functions. To understand the molecular basis for variation in avrXa7 function, we sequenced the alleles from seven field strains. The avrXa7 gene is an avrBs3/pthA family member and contains nuclear localization signal sequences and an acidic activation domain (AAD) in the 3′ end and a central region containing repeated sequences, all of which are important for avirulence and aggressiveness. Sequence analysis revealed changes in the avrXa7 alleles ranging from a point mutation to multiple mutations spread throughout the alleles. Some strains with identical mutant alleles exhibited different levels of aggressiveness to rice, suggesting the presence of second mutations. A point mutation found at the beginning of the AAD of one avrXa7 allele was reconstructed in the wild type gene; this mutant exhibited partial loss of avirulence and aggressiveness. Our data suggest that adaptation of X. oryzae pv. oryzae to Xa7 rice fields involves not only alterations in avrXa7, but may include changes in other gene family members resulting from recombination between family members.  相似文献   

14.
15.
Xanthomonas oryzae pv. oryzae (X. o. pv. oryzae) T7174 is virulent on rice cultivar IR24 and avirulent on IR-BB2. From recent reports, some virulence and avirulence factors of plant pathogenic bacteria are transferred to plant cells through the hrp-dependent type III secretion system. In this study, we investigated the involvement of hrp genes in the compatible and the incompatible interactions between rice and X. o. pv. oryzae after co-inoculation with hrpXo mutants derived from T7174 and virulent strains. Growth of the mutants, named 74ΔHrpXo and 76ΔHrpXo, was repressed in IR24 when the mutants were applied alone. However, growth of the mutants was complemented by co-inoculation with virulent strains. Growth of bioluminescent hrpXo mutant 76ΔHrpXo in IR24 and its growth in IR-BB2 after co-inoculation with T7133, which is virulent on both cultivars, was equally complemented, as detected by bioluminescence from the mutant. On the other hand, only partial complementation of growth of T7174L76, which is a bioluminescent and pathogenic derivative of T7174, by T7133 was observed in IR-BB2. Thus, growth of the hrpXo mutant of X. o. pv. oryzae was complemented by virulent strains in both susceptible and resistant rice leaves with the parental strain. Received 21 July 2000/ Accepted in revised form 26 October 2000  相似文献   

16.
A transposon mutant library was constructed from the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) KACC10331 by Tn5 transposon mutagenesis. The susceptible rice cultivar Milyang 23 was inoculated with a total of 24 540 mutants resistant to kanamycin and 67 avirulent or reduced‐pathogenicity mutant strains were selected for study. Southern hybridization verified that 84 mutant strains had single‐copy insertions and their single‐transposon insertion sites were identified by sequencing analysis combined with thermal asymmetric interlaced (TAIL)‐PCR. The single‐transposon‐tagged sequences of 21 mutant strains belonged to pathogenicity‐related genes previously reported in Xanthomonas species, while the other 46 single‐transposon‐tagged sequences included diverse functional genes encoding, five cell‐wall‐degrading enzymes, three fimbrial and flagella assembly regulators, five regulatory proteins, 15 metabolic regulators and 18 hypothetical proteins, which were identified as novel pathogenicity genes of Xoo.  相似文献   

17.
水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae,Xoo)侵染寄主水稻,引起水稻白叶枯病(bacterial leaf blight,BLB)。病原菌主要依赖hrp基因簇编码的Ⅲ型分泌系统(Type Ⅲ secretion system,T3SS)将效应蛋白(T3SS effectors,T3SEs)注入水稻细胞中,激发水稻的抗(感)病性。同源性搜索结果显示,植物病原黄单胞菌中已鉴定的一些毒性基因在Xoo的代表菌株PXO99A中保守存在。为了明确这些毒性基因对hrp基因表达调控的影响,本研究利用pK18mob-W介导的定点突变方法,成功获得了14个毒性基因的突变体;在突变体中,利用hrp∶∶gusA融合表达体系,通过GUS活性定量测定检测了hrpG、hrpX和hrpB1的启动子活性;通过荧光定量PCR技术,检测了这3个基因的mRNA水平。结果显示,双组分调控系统ColR/ColS、RpfC/RpfG和转录调控子Clp负调控hrpG和hrpB1的表达;Trh和Xrv A通过HrpG-HrpX途径正调控hrpB1的表达;HpaR1和Fur不依赖于HrpG仅通过HrpX正调控hrpB1的表达。这些调控关系的鉴定为解析水稻黄单胞菌hrp调控网络提供了新的线索。  相似文献   

18.
Rice blast disease, caused by the fungus Magnaporthe oryzae, is a major threat to worldwide rice production. Plant basal resistance is activated by virulent pathogens in susceptible host plants. OsNPR1/NH1, a rice homolog of NPR1 that is the key regulator of systemic acquired resistance in Arabidopsis thaliana, was shown to be involved in the resistance of rice to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae and benzothiadiazole (BTH)-induced blast resistance. However, the role of OsNPR1/NH1 in rice basal resistance to blast fungus M. oryzae remains uncertain. In this study, the OsNPR1 gene was isolated and identified from rice cultivar Gui99. Transgenic Gui99 rice plants harbouring OsNPR1-RNAi were generated, and the OsNPR1-RNAi plants were significantly more susceptible to M. oryzae infection. Northern hybridization analysis showed that the expression of pathogenesis-related (PR) genes, such as PR-1a, PBZ1, CHI, GLU, and PAL, was significantly suppressed in the OsNPR1-RNAi plants. Consistently, overexpression of OsNPR1 in rice cultivars Gui99 and TP309 conferred significantly enhanced resistance to M. oryzae and increased expression of the above-mentioned PR genes. These results revealed that OsNPR1 is involved in rice basal resistance to the blast pathogen M. oryzae, thus providing new insights into the role of OsNPR1 in rice disease resistance.  相似文献   

19.
 异柠檬酸脱氢酶(isocitrate dehydrogenase,IcdH)催化异柠檬酸转化成α-酮戊二酸,参与碳代谢途径末端的三羧酸(tricarboxylic acid,TCA)循环。然而,编码异柠檬酸脱氢酶基因是否参与水稻条斑病菌(Xanthomonas oryzae pv. oryzicola,Xoc)的致病性,我们并不清楚。为了阐明IcdH的作用,通过同源重组技术获得了Xoc的icdH基因缺失突变体(RΔicdH),并对该突变体进行了相关功能研究。研究表明:该突变体不能利用苹果酸、丙酮酸和柠檬酸,在寄主水稻上的生长能力和致病力相对于野生型均显著降低,其游动性也显著减弱; 功能互补子恢复RΔicdH的上述表型至野生型水平; Real-time PCR结果显示,六碳单糖、蔗糖、苹果酸、丙酮酸与柠檬酸能显著诱导icdH基因的转录表达;与水稻细胞互作时icdH基因受诱导表达,并受HrpX和HrpG负调控。这些结果说明:icdH基因是Xoc获取碳源和在寄主水稻上具有致病性所需的。  相似文献   

20.
wxoE and wxoF, two genes in the lipopolysaccharide (LPS) biosynthesis cluster I of Xanthomonas oryzae pv. oryzae (Xoo) that have not been characterized, were mutated by transposon insertion. Transposon mutants of wxoE and wxoF were nonpathogenic to rice. In LPS analysis on SDS-PAGE, Low mobility bands regarded as LPS O-antigen complex were observed in wild-type strain KACC10859 and mutant wxoD, but not in LPS profiles of wxoA, wxoB, wxoC, wxoE and wxoF mutants. In addition, exopolysaccharide (EPS) production from wxoE and wxoF mutant strains were dramatically reduced. WxoE protein showed enzymatic activity resembling that of cystathionine γ-lyase and specificity to cystathionine substrates. WxoF showed significant homology with methyltransferases that may function in the methylation of sugars in LPS biochemical modifications. Western blot analysis demonstrated WxoF is located in membrane and the lps genes involving wxoE and wxoF in cluster I are cotranslated in an operon that is dependent on a promoter with a polar fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号