首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Eighty four soil samples collected from southeastern Norway were analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. The total Cd, pH, exchangeable K and Ca, dithionite-extractable Mn, available P and fine sand (0.2–0.02 mm) contents were the principal factors related to the extractable Cd, with some inter-extractant variations. Cadmium extracted by NH4NO3, NH4OAc, HCl and CaCl2 decreased with increasing soil pH, but the Cd extracted by all the extractants increased with increasing total Cd, exchangeable K and Ca, available P, and Mn-oxide contents in the soils. The Cd concentrations in plants were significantly related to the extractable Cd, exchangeable Ca and Mg, pH, Mn-oxides and organic matter content.  相似文献   

2.
Abstract

In the present study we evaluate the feasibility of using untreated industrial sewage sludge by liming before use as a fertilizer, produced in Pakistan. In a pots experiment, limed industrial sewage sludge (LSW) and non-limed sewage sludge (NLSW), were amended with soil separately and grown sorghum. After maturity, the sorghum grains were analysed for total contents of potentially toxic metals (TPTM), As, Cd, Cr, Cu, Ni, Pb and Zn. The proportion of different mobility fractions of each element in LWS and NLSW, a modified BCR sequential extraction procedure (Community Bureau of Reference) and single extractions with mild extractants (deionized water and CaCl2) were used. In LSW, the availability of most of the elements under study was reduced, probably due to the increased pH of soil, while this was the reverse in the cases of Cd and Cu, their mobility was slightly increased by lime-treated sludge. The sorghum grains grown in LSW have low level As, Cr, Ni, Pb and Zn as compared to grains grown in NLSW, except Cu and Cd, which, however, never exceeded legal limits. Thus the research showed that liming, by augmenting soil alkalinity, allows a safe agricultural use even of industrial sludge, which is environmentally hazardous for its great content of heavy metals.  相似文献   

3.
Abstract

The development of a method using a chelating resin to assess heavy metal mobility in soil and the first results obtained from a pot experiment with sewage sludge additions were studied. The resin was Chelex 100 with the calcium (Ca)‐form of the resin proving to be best suited for the extraction. The efficiency of recovery of the heavy metals from an aqueous solution ranged from 81.2% for cadmium (Cd) to 102% for copper (Cu) within 24 hours. For heavy metal extractions from a soil sample, a 96 hour extraction period was found to be optimum. The extracted heavy metal portion was comparable with the results obtained with an ammonium acetate (NH4AOc) extraction. Total heavy metal contents in the substrate of the pot experiment did not show a significant influence due to the sewage sludge treatments, although considerable amounts of heavy metals were added by the sewage sludge. This effect can be both due to the incomplete recovery of heavy metals by an aqua regia extraction and leaching losses of these elements from the pots. Rape (Raphanus sativus L.) plants did not have any heavy metal contents which might indicate a high availability in soil, with the Cd and Cr contents in the rape biomass being partly lower in the sewage sludge‐treated pots than in the control plants; however, zinc (Zn) uptake slightly increased with increasing sewage sludge treatments. The Chelex 100 extraction procedure was correlated with Cd plant uptake, while the NH4AOc extraction procedure was better related to the Zn uptake by rape plants.  相似文献   

4.
Abstract

Alum shale and till soils overlying alum shale bedrock were analysed for aqua regia and NH4OAc/EDTA extractable Pb, Cu, Zn, Ni, Mn and Cd. The means of these determinations were compared with those of Norwegian, Finnish and Swedish non-alum shale soils. Alum shale soils seemed to contain higher amounts of both total and easily extractable Cu, Zn, Ni and Cd. Total Pb content also seemed to be higher in the alum shale soils. The relative availability of Cd, Ni and Mn, expressed as the ratio of NH4OAc/EDTA to aqua regia extractable, was found to be greater than that of Pb, Cu and Zn in the alum shale and till soils.  相似文献   

5.
Abstract

Effects of long-term use of phosphate fertilizers on extractable soil Cd in relation to its concentrations in plants were investigated. “Paired” soil samples were collected from newly and long-term cultivated fields and analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. Plant samples were also collected and analyzed for Cd. Significant differences in extractable Cd by all the extractants except NH4NO3 were observed between the newly and long-term cultivated soils. The Cd concentrations in plants were not increased by the elevated extractable Cd. Although significant relationships were observed between plant Cd and extractable soil Cd, none of the extractants used alone gave a good assessment of plant-available Cd for all the samples used in this study.  相似文献   

6.
Behaviour of heavy metals in soils. 2. Extraction of mobile heavy metals with CaCl2 and NH4NO3 156 soil samples from arable fields, grassland and forest stands were analysed for the CaCl2? and NH4NO3? extractable contents of Cd, Zn, Mn, Cu and Pb. The average amounts of Cd, Zn, Cu and Pb extracted with CaCl2 are higher compared with NH4NO3 whereas the relation for Mn is vice versa. The proportion of the NH4NO3? extractable contents in percent of the CaCl2? extractable contents of Cd, Zn and Pb decrease with increasing pH, whereas the contents of Mn and Cu increase. Inspite of a differing extraction behaviour of the two salt solutions the CaCl2? and NH4NO3? extractable amounts of Cd, Mn, Zn und Pb are highly correlated and can be converted one into another. The mobile (CaCl2, NH4NO3) proportion of the corresponding total, EDTA and DTPA heavy metal contents is in close relation to the pH of the soils. Using CaCl2 solution the threshold pH values for an increasing mobility decrease in the order Cd > Mn > Zn > Cu > Pb, using NH4NO3 as extractant the order is Mn > Cd > Zn > Cu > Pb. In the case of CaCl2 as extractant soluble chloro-Cd-complexes will be formed so that the Cd mobility in soils will be overestimated in most cases.  相似文献   

7.
The bioavailability and plant uptake of heavy metals (HM), as well as finding the most reliable methods for the prediction of availability, continues to be one of the most crucial problems in agricultural and environmental studies. In agricultural soils from two regions in Kosovo, known for its metal pollution, we collected 60 soil and plant samples (wheat, corn, potatoes, and grass). Heavy metals were extracted from soil with aqua regia (pseudototal concentration), NH4OAc‐EDTA (potential bioavailable), and NH4NO3 (mobile fraction), plant samples were digested with HNO3/H2O2 (microwave assisted extraction). The pseudo total content of Cd, Pb, and Zn showed high value in Mitrovice (mean: Cd–2.92, Pb–570.15, and Zn–522.86 mg kg?1), whereas in Drenas region Ni and Cr showed high value with a mean 258.54 and 203.22 mg kg?1. Also, the potential bioavailability and mobile form of these metals were increased in Mitrovice (mean: Cd–1.59, Pb–217.05, Zn–522.86 mg kg?1, respectively Cd–0.17, Pb–0.64, and Zn–15.45 mg kg?1), compared to Drenas. Cd and Pb were elevated in potato tubers (mean Cd–0.48 and Pb–0.85 mg kg?1). The TF was higher for micronutrients (Zn and Cu) than for non‐essential metals (Cd and Pb). Multiple regression analysis showed a good model for prediction of Cd, Pb and Zn content in plant with significance 99.9%, whereas this model was not significant for Cu, Cr, and Ni. Soil pH played a significant role in the content of Cd and Zn in wheat and potato plants. Clay content also showed significance in Cd concentration in wheat and potato plants, while carbon content was significant for Cd in grass plants, as well as for Zn in wheat and grass plants.  相似文献   

8.
The use of earthworms in monitoring soil pollution by heavy metals Total heavy metal contents (HNO3-soluble) and exchangeable fractions (Ca(NO3)2-soluble) of Pb, Zn and Cd were measured in soils, litter layers and earthworms (dry masses) from forest, arable and pasture sites in a transect of the main wind direction and varying distances (1.5, 5.4, 11.4, 15.6 km) to a lead smelter near Bad Ems, Germany. Additionally, cast materials of Lumbricus terrestris-individuals were collected from the surface of the pasture sites. In the observed area total soil contents of Pb and Cd exceeded the C-level and total contents of Zn the B-level of the “Netherland-list”. Heavy metal contents in soils and earthworms decreased with increasing distance to the smelter. Pb showed the best correlation. Correlation between total contents of Pb and Cd in soils and earthworms were significant (rs = 0.66; p < 0.05 and rs = 0.67; p < 0.01, respectively). The uptake of heavy metals by Lumbricus rubellus, L. terrestris and Aporrectodea caliginosa was metal specific rather than species specific with factors of accumulation being <1 (Pb), 2.7–7.6 (Zn) and 19.5–85.5 (Cd). The heavy metal contents of the observed cast materials signified the different transfer of elements from soil material via earthworm individuals to the faeces. In the cast materials the amounts of Pb were high and the amounts of Zn and Cd were low. This indicates a high accumulation rate for Zn and especially for Cd in the tissues of the observed earthworm individuals. The present data support the necessity of ecotoxicological threshold levels.  相似文献   

9.
Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha–1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.  相似文献   

10.
Abstract

Availability of lead (Pb) and cadmium (Cd) in farmland soils and its distribution in individual plants of dry‐seeded rice were investigated utilizing graphite furnace atomic absorption spectrometry (GFAAS) with a matrix modification technique. Five extractants were compared, and the operating conditions for GFAAS were optimized. The detection limits were 4.2 ng for Pb with the precision of 1.54% and 0.1 ng for Cd with the precision of 2.38%. The contents of the extractable Pb and Cd in soils were determined with the five extractants, and availability of Pb and Cd in farmland soil was discussed. The contents of Pb and Cd in different parts of dry‐seeded rice were lower than those in dry‐seeded rice soil. The contents of Pb and Cd in rice were lower than in other parts. The end top leaves accumulated the highest amounts of Pb and Cd.  相似文献   

11.
A reliable soil test is needed for estimating mercury (Hg) availability to crop plants. In this study, four extraction procedures including 0.1 M hydrochloric acid (HCl), 1 M ammonium acetate (NH4OAc) (pH 7.0), 0.005 M diethylenetriaminepentaacetic acid (DTPA), and 0.1 M calcium chloride (CaCl2) (pH5.0) were compared for their adequacy in predicting soil Hg availability to crop plants of a rice–cabbage–radish rotation system. The amounts of Hg extracted by each of the four procedures increased with increasing equilibrium time. The optimal time required for extraction of soil Hg was approximately 30 min, though it varied slightly among the four extractants. The amounts of Hg extracted decreased with increasing soil/solution ratio, and a soil/solution ratio of 1:5 appeared to be adequate for soil Hg availability tests. The amounts of Hg extracted increased in the order of NH4OAc < CaCl2 < DTPA < HCl in silty loam soil (SLS) soil, and the order was NH4OAc < CaCl2 ≈ DTPA < HCl in yellowish red soil (YRS) soil. Significant positive correlations among the four extractants were obtained in SLS soil. In contrast, the correlations were poor in YRS soil, especially for HCl. There were significant correlations between concentrations of Hg in edible tissue of three plants and the amounts of soil Hg extractable to the four extractants for soil–rice system and soil–radish system, but not for soil–Chinese cabbage system. The 0.1M HCl extraction overall provided the best estimation of soil‐available Hg and could be used to predict phytoavailability of Hg in soil–crop systems.  相似文献   

12.
Abstract

The effect of sewage sludge applications on extractability and uptake by chard and lettuce of soil cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), leaf (Pb), and zinc (Zn) was investigated. Ten different treatments (0, 150, 300, and 500 kg N ha‐1) as mineral fertilizer, and 400, 800, and 1,200 kg N ha‐1 of aerobically and anaerobically‐digested sewage sludges were applied annually to a sandy‐loam soil since 1984. Seven years after the start of the treatments, higher levels of heavy metals were detected in the soil, depending on the type of metal, depth of sampling, type of sludge used, and, especially, rate of application. Following a sequential extraction procedure incorporating 0.1M CaCl2, 0.5M NaOH, and 0.05M Na2EDTA, most of the heavy metals in soil were detected in the Na2EDTA solution and the residual fractions. Large amounts of Cd appeared to be extracted by CaCl2, whereas substantial amounts of Cu and Ni were isolated by NaOH. The effect of treatments on the percentages of the metals found in each fraction depended on the type of metal, sampling depth, sludge used, and application rate. No significant increases were found in the heavy metal contents of chard and lettuce leaves, but some of the treatments resulted in a significant decrease of Cd and Cr levels in lettuce leaves.  相似文献   

13.
In a rural community (Stephanskirchen, Southern Germany) near a waste incineration plant 7 soils, sewage sludge, waste incineration residues, the gutter sediment of a family home, and mosses were sampled to determine the total concentrations of Cd, Pb, Zn and 20 PAHs. Representative samples were used to measure NH4NO3- and EDTA-extractable Cd, Pb, and Zn as well as 20 PAHs in particle size separates (clay, silt, fine and coarse sand). Sites near the main road, hill top, and forested sites contain up to 1.24 mg Cd, 888 mg Pb, and 279 mg Zn per kg. The heavy metal concentrations of the sewage sludge, the gutter sediment, and especially the waste incineration residues are extremely high (up to 57 mg Cd, 3300 mg Pb, and 5700 mg Zn per kg). The extractability of Pb and Zn with NH4NO3 is low (< 5%), that with EDTA is high (up to 71.2% of total Cd, 82.5% of total Pb, and 47.2% of total Zn). The sum concentrations of PAHs range between 0.4 and 470 mg kg?1. The silt has the highest PAH concentrations of the particle size separates. High saturation of organic matter with PAHs in the sand indicates high recent PAH deposition. Selected ratios of single PAHs reveal diesel and gasoline exhausts as main sources for PAH. Principal component and cluster analysis show that the pollutant pattern depends on the Corg concentration and on the time passed since deposition. There is no significant influence of the waste incineration emissions on the heavy metal and PAH concentrations.  相似文献   

14.
Abstract

In a field experiment conducted during three years in a sandy‐loam, calcareous soil, one aerobically digested sewage sludge (ASL) and another anaerobically digested sewage sludge (ANSL) were applied at rates of 400, 800, and 1,200 kg N/ha/year, and compared with mineral nitrogen fertilizer at rates of 0, 200, 400, and 600 kg N/ha/year in a cropping sequence of potato‐corn, potato‐lettuce, and potato, the first, second, and third year, respectively. Results showed that the highest values of soil extractable metals were obtained with aqua regia, whereas the lowest levels with DTPA. All metal (Zn, Cu, Cd, Ni, Pb, and Cr) gave significant correlations between metal extracted with the different extractants and metal loading applied with the sludges. The metal extractable ion increased over the control for Zn, Cu, Cd, Ni, Pb, and Cr extracted with DTPA, EDTA (pH 8.6) and 0.1 N HC1, for Zn, Cd, Ni, Pb, and Cr extracted with EDTA (pH 4.65) and AB‐DTPA, and for Zn, Cd, Ni, and Cr extracted with aqua regia. The level of metal‐DTPA extractable resulted highly correlated with that obtained by the other methods, except the Ni‐aqua regia extractable. The soil extractable elements which showed significant correlations with metals in plant were: Zn, Cu, Cd, and Ni in potato leaves, Cd, Ni, and Pb in corn grain, and Zn and Cd for lettuce wrapper leaves. In general, all the chelate based extractants (DTPA, EDTA pH 4.6, EDTA pH 8.6, AB‐DTPA) were equally useful as indicator of plant available metals in the soil amended with sludge.  相似文献   

15.
Abstract

In this study, a new parallel and sequential extraction procedure was proposed to investigate the solubility of metals [cadmium (Cd), zinc (Zn), copper (Cu), and nickel (Ni)] and their association with soil components in naturally metal‐rich soils of Norway. Two different soils, alum shale (clay loam) and moraine (loam), developed on alum shale minerals were used. Each soil had two pH levels. For parallel and successive extractions, H2O, 0.1M NH4OAc (soil pH), 0.3M NH4OAc (soil pH), 1M NH4OAc (soil pH), and 1M NH4OAc (pH 5.0) were used. A significant amount of Cd was extracted by NH4O Ac related to concentration of NH4OAc in the extracting solution. The amounts of Zn, Cu, and Ni extracted by these reagents were almost negligible except with 1M NH4OAc (pH 5.0). Thus these metals were strongly bound to soil components. A seven step sequential extraction procedure was applied to evaluate the association of metals with soil constituents. The extractions were performed sequentially by extracting the soil with reagents having an increasing dissolution strength: 1M NH4OAc (soil pH), 1M NH4OAc (pH 5.0), 1M NH2OH.HCl (in 25% HOAc), 1M NH2OH.HCl (in 0.1M HNO3), 30% H2O2 (in 0.1M HNO3), 30% H2O2 (1M HNO3), and aqua regia. In both soils at both pH levels investigated, appreciable percentages of total Cd (20–50%) were found associated with the NH4OAc extractable fraction (mobile fraction). For Zn, Cu, and Ni, the percentage of total metal extracted with NH4OAc was low (<4%), but it increased significantly by introducing a reducing agent (NH2OH.HCl). The NH2OH.HCl‐extractable fraction was the greatest fraction (>60%) for all four metals examined. These results suggest that among the metals studied, only Cd was easily desorbed from soil and should be considered mobile and potentially bioavailable. Other metals (Zn, Cu, and Ni) were strongly associated with the soil components and should be considered less available to plants. Using the sequential fractionation technique as a measure of availability, mobility and potential bioavailability of these four metals in the alum shale soils were: Cd>Zn>Ni>Cu.  相似文献   

16.
Heavy metals in soil of a sewage sludge experimental field The total amounts of Zn, Cd, Pb, Cu, Cr and Ni were determined in different depths of soils which have obtained sewage sludges in amounts between 180 and 1620 dt dry matter/ha. The elements Zn, Cd. Pb and Cu have been most enriched in the first twenty cm of the soils. The contents of Zn, Cd and Pb in the depth of 40–60 cm also showed a significant increase. The treshold values for Zn and Cd in soils were almost attained respectivly slightly exceeded in the first twenty cm of the soil which has obtained 1440 dt dry matter sewage sludge per ha.  相似文献   

17.
Abstract

Eighteen soils from northwestern Switzerland were used to study the value of seven universal extractants (CaCl2; DB‐DTPA; Mehlich 1, 2, and 3; Morgan‐Wolf; and NH4OAc‐EDTA) for predicting plant available potassium (K) as compared to a bioassay (a modified Neubauer test with winter rye). These extractants were evaluated on the basis of K uptake by the bioassay test and the soil K status. In order to create the sufficiency level of exchangeable K for plant growth, soils were treated with 0, 20, 40, 80, and 160 mg K/kg of soil. The range of K uptake by the bioassay tests was between 89.2 and 403.0 mg/kg of soil for the control pots, and 136.6 to 495.8 for the K treatments with optimal conditions for plant growth. The average amounts of K extracted by the seven universal extractants, in ascending order, were: CaCl2 < Morgan‐Wolf < Mehlich 1 < Mehlich 2 < NH4OAc‐EDTA < Mehlich 3 < DB‐DTPA. The highest simple correlation with K uptake versus the bioassay test was obtained with the DB‐DTPA (r = 0.89) extractant and the lowest with the Mehlich 1 (r = 0.53) extractant. The DP‐DTPA, NH4OAc‐EDTA and Mehlich 3‐K procedures showed an advantage over K procedures based on water soluble and exchangeable K pools in the investigated soils in order to predict the amount of plant‐available K. A simple regression and the Cate‐Nelson graphic method offer the possibility of assessing the soil‐K status using K values obtained by these universal extractants and to calibrate them against K forms as follows: exchangeable, water soluble, and non‐exchangeable.  相似文献   

18.
The effects of different concentrations of cadmium (Cd) (0, 3, 30, and 100 mg.kg‐1) and different fertilizers on the yield and quality of tomato (Lycopersicon esculentum Mill cv. Marmande) fruits were evaluated in a calcareous soil (Haploxeroll calcic). Two types of fertilizer were applied, one organic with the addition of sewage sludge and other inorganic with amounts of nitrogen (N), phosphorus (P), and potassium (K) equivalent to those due to the sewage sludge incorporation. Plants fertilized with sewage sludge produced the highest yield. Very little difference was found in fruit quality due to fertilization and the presence of Cd had no significant effect on yield and quality of fruit.  相似文献   

19.
Sequential extractions were used on soils from a long-term experiment treated with either metal-contaminated sewage sludge or inorganic fertilizers between 1942 and 1961. The four extracts employed were CaCl2, NaOH, EDTA and aqua regia. These showed that large increases in the proportions of Pb, Cu, Zn, Ni and Cd in at least one of the first three fractions occurred during the first 10 years of sewage sludge additions. Cr always remained predominantly in the aqua regia-soluble fraction. For 30 years after this, including a period of more than 20 years after application of sludges to the field had ceased, there was very little change in the percentage of each metal extracted by each reagent. Although the ‘residual’ (aqua regia-soluble) and EDTA fractions usually contained the largest amounts of metals in either sludge- or fertilizer-treated soils, there were clear differences between the metals: Pb represented the largest fraction of any metal extracted by EDTA, Cu of any metal extracted by NaOH and Cd of any metal extracted by CaCl2. The same extractions were made of the sewage sludges that were applied to the field, and the distributions of the metals differed from those found in the treated soils. It was particularly apparent that more Pb and Cu was present as the ‘residual’ (aqua regia) fraction in sludges than in the soils.  相似文献   

20.
在红壤自然状况下,模拟了施肥沟,对红壤不同污泥施肥处理的N素释放特性进行了研究。试验结果表明,干污泥配比在10%~20%时,碱解氮、铵态氮和硝态氮累计释放量分别为:25.71%~33.48%,9.57%~14.85%和4.08%~7.65%。堆肥污泥配比在20%~33%时,其累计释放量分别为13.55%~15.65%,2.03%~4.23%和3.11%~5.37%。干污泥处理的释放量大于堆肥污泥处理的释放量,释放过程变化较堆肥污泥剧烈,铵态氮和硝态氮均有明显峰值,铵态氮最大含量532.98±10 mg/kg,释放量最大达10.95%;硝态氮含量最大为149.2±14 mg/kg,释放量最大时为3.32%。无论是从氮的肥效角度,还是氮释放的环境风险角度考虑,污泥堆肥处理后施肥方式均优于干污泥处理施肥方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号