首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to investigate the effect of melatonin on activation, growth and morphology of bovine primordial follicles, as well as on stromal cells density in ovarian tissues after in vitro culture. Ovarian fragments were cultured in α‐MEM+ alone or supplemented with melatonin (250, 500, 1,000 or 2,000 pM) for a period of six days. Non‐cultured and cultured tissues were processed for histological analysis; according to developmental stages, follicles were classified as primordial or growing follicles. These follicles were further classified as morphologically normal or degenerated. Ovarian stromal cell density was also evaluated. The percentages of primordial and developing follicles, as well as those classified of normal follicles, were compared by Fisher's exact test, and the differences were considered significant when p < .05. The results showed that the presence of 1,000 and 2,000 pM melatonin in culture medium promoted a reduction in the percentage of primordial follicles and an increase in the percentage of development follicles, when compared to follicles cultured in control medium. On the other hand, the presence of 250 or 500 pM melatonin did not show a significant effect on the percentage of primordial and developing follicles. Besides that, the presence of 500, 1,000 and 2,000 pM melatonin maintained the percentage of normal follicles similar to those seen uncultured control. Moreover, tissues cultured in presence of 1,000 pM melatonin showed a higher percentage of normal follicles when compared to follicles cultured in the presence of 250 pM melatonin. It was observed a similar profile of stromal density in both uncultured tissues and those cultured in vitro in the presence of melatonin. In conclusion, melatonin (1,000 and 2,000 pM) promotes bovine primordial follicles activation and maintains the stromal cell density during in vitro culture of ovarian cortical tissue.  相似文献   

2.
This study evaluates the effects of ascorbic acid and its interaction with follicle-stimulating hormone (FSH) on the morphology, activation, and in vitro growth of caprine preantral follicles. Ovarian fragments were cultured for 1, 7, or 14 d in minimum essential medium (MEM) containing ascorbic acid (50 or 100 μg/mL), FSH (50 ng/mL), or both of these substances. Ovarian tissue that was either fresh (control) or cultured for 1, 7, or 14 d was processed for histological and ultrastructural evaluation. The results showed that after 14 d of culture, medium supplemented with 50 μg/mL of ascorbic acid alone or combined with FSH showed higher rates of follicular survival compared with MEM. After 7 d of culture, FSH, ascorbic acid at 50 μg/mL with or without FSH, and ascorbic acid at 100 μg/mL increased the percentage of follicular activation compared to fresh control. In addition, FSH alone significantly increased the percentage of growing follicles after 14 d. The combination of 50 μg/mL of ascorbic acid and FSH promoted a significant increase in oocyte and follicular diameter after 7 d of culture. Ultrastructural and fluorescent analysis confirmed the integrity of follicles cultured with 50 μg/mL of ascorbic acid and FSH after 14 d. In conclusion, the combination of 50 μg/mL of ascorbic acid and FSH maintained follicular integrity and promoted follicular activation and growth after long-term in vitro culture of caprine preantral follicles.  相似文献   

3.
This study aims to investigate the effects of follicle stimulating hormone (FSH) and fibroblast growth factor-2 (FGF-2) on the survival and growth of caprine preantral follicles. Ovarian tissues were cultured for 1, 7, 14, 21 or 28 days in medium supplemented with FSH (FSH-2d or FSH-7d, i.e., with replacement of the culture medium every 2 or 7 days, respectively) or FSH + FGF-2 (replacement of the medium every 2 days). Non-cultured (control) and cultured ovarian fragments were processed for histological and ultrastructural analysis. After 28 days of culture, the media supplemented with FSH-2d was the most effective in maintaining the percentage of normal follicles and in promoting follicular growth. Furthermore, both treatments with FSH increased the percentage of the primary follicles. However, ultrastructural studies did not confirm follicular integrity from 14 days of culture onward. In conclusion, culturing tissue for up to 7 days in medium containing FSH alone or combined with FGF-2 maintains caprine preantral follicle integrity and promotes their growth in vitro.  相似文献   

4.
The aim of the present study was to investigate the effects of fibroblast growth factor-10 (FGF-10) on the survival, activation (transition from primordial to primary follicles), and growth of goat preantral follicles cultured in vitro. Pieces of ovarian cortex were cultured for 1 and 7 d in the absence or presence of FGF-10 (0, 1, 10, 50, 100, and 200 ng/mL). Noncultured and cultured tissues were processed and analyzed by histology, transmission electron microscopy, and viability testing. Results showed that after 7 d, a greater percentage (79.9%) of morphologically normal follicles (containing an oocyte with regular shape and uniform cytoplasm, and organized layers of granulosa cells without a pyknotic nucleus) was observed when cultured with 50 ng/mL of FGF-10 when compared with other concentrations of FGF-10 (0 ng/mL, 67.3%; 1 ng/mL, 68.2%; 10 ng/mL, 63.3%; 100 ng/mL, 64.4%; 200 ng/mL, 52.7%). Ultrastructural analyses and viability testing using fluorescent markers confirmed the follicular integrity of FGF-10 (50 ng/mL)-treated fragments after 7 d of culture. After 7 d, all FGF-10 concentrations reduced the percentage of primordial follicles and increased the percentage of developing follicles. In the presence of 50 ng/mL of FGF-10, follicles increased in diameter after 7 d of culture when compared with other concentrations tested. In conclusion, this study demonstrates that FGF-10 maintains the morphological integrity of goat preantral follicles and stimulates the growth of activated follicles in culture. The culture conditions identified here contribute to the understanding of the factors involved in goat early follicular development.  相似文献   

5.
We investigated the effect of the leukaemia inhibitory factor (LIF) alone or in association with FSH on the in vitro culture (IVC) of caprine preantral follicles. Preantral follicles >200 μm in size were isolated and cultured for 18 days in basic medium either alone (control) or supplemented with LIF (10 or 50 ng/ml) in the absence or presence of FSH. Every 6 days, follicular survival, growth and antrum formation were evaluated. At the end of the culture period, the oocytes underwent in vitro maturation (IVM), and their viability and chromatin configuration were assessed. Follicles of the control group and those cultured in 10 ng/ml LIF maintained the structural integrity (particularly the preservation of the basement membrane) when compared to the oocytes cultured in 50 ng/ml LIF, regardless the presence of FSH. In the absence of FSH, the percentage of antrum formation after 18 days of culture in the 50 ng/ml LIF group was significantly lower than in either the control group or the 10 ng/ml LIF group. However, this effect was not observed in the presence of FSH. The rate of resumption of meiosis was significantly higher in the 50 ng/ml LIF group in the absence of FSH in comparison with the control and 10 ng/ml LIF groups. Metaphase II was observed only when follicles were cultured in a combination of FSH and 50 ng/ml LIF. In conclusion, LIF alone does not interfere with antral formation and oocyte growth, but at concentration of 50 ng/ml and combined with FSH, it promotes oocyte maturation.  相似文献   

6.
The present study aimed to analyze different methods of mechanical isolation of buffalo preantral follicles (Experiment I), in vitro culture of isolated follicles in different groups of culture medium over collagen gel matrix (Experiment II) and subsequent in vitro development and survival of isolated preantral follicles (PFs) (Experiment III). In Experiment I, ovarian cortical pieces were separated and PFs isolated by different mechanical methods. In Experiment II, isolated follicles were divided into three groups and cultured in TCM-199 having 10% FBS, 1% ITS, and 20 ng/ml EGF (Group A, control), addition of 0.5 μg/ml FSH (Group B) or FSH + 100 ng/ml IGF-I (Group C). Follicles were incubated at 38.5 °C in 5% CO2 with maximum humidity. In Experiment III, based on the outcome of Experiment I and II, PFs were cultured from those isolation method and treatment group, showing better growth and developmental pattern to analyze the impact of growth factors on in vitro growth of follicles in long term culture. It was found that micro-dissected PFs showed higher survival rate and growth after 15 days of culture compared to PFs isolated by other methods. Follicles cultured with FSH + IGF-1 on collagen gel matrix, showed significantly (P < 0.05) higher survival rate and mean diameter of follicles on day 15 of culture compared to control. In summary, it has been shown that isolation of follicles by micro-dissection has advantages over other methods, being relatively simple, inexpensive and less harmful to follicles. Micro-dissected buffalo PFs maintained the architecture, showed antrum formation in presence of FSH and IGF-I over the collagen gel matrix.  相似文献   

7.
The object of this study was to investigate the role of epidermal growth factor (EGF) and IGF-I in the regulation of preantral follicular growth, antrum formation, and granulosal cell proliferation/ apoptosis. Porcine preantral follicles were manually dissected and cultured for up to 8 d in Waymouth's (Exp. 1) or alpha-minimum Eagle's essential medium (Exp. 2 and 3) supplemented with 10 microg/mL of transferrin, 100 microg/mL of L-ascorbic acid, and 2 mU/mL of ovine FSH, in the presence (Exp. 1 and 3) or absence (Exp. 2) of 7.5% fetal calf serum. According to the experimental protocol, IGF-I (0, 1, 10, or 100 ng/mL; Exp. 1), or IGF-I (50 ng/mL), EGF (10 ng/mL) and EGF+IGF-I (Exp. 2 and 3) were added to the culture media. In Exp. 1, follicles exhibited a concentration-dependent response (P < 0.05) to IGF-I, with the highest rates of granulosal cell proliferation, follicular integrity, and recovery rate of cumulus cell-oocyte complexes and lowest incidence of apoptosis occurring at the highest IGF-I dose. In Exp. 2 serum-free medium, granulosal cell proliferation was low (1 to 5%), irrespective of whether EGF and/or IGF-I were present and cellular apoptosis was increased (P < 0.05) on d 4 and 8 in the EGF+IGF-I group compared with the addition of either factor alone. In Exp. 3, granulosal cell proliferation was high in all follicles cultured in serum-containing medium for the first 3 d, but fell sharply (P < 0.05) on d 4, except in media containing IGF-I. Collectively, EGF and IGF-I increased granulosal cell proliferation, decreased apoptosis, and promoted follicular antrum formation. These results may provide useful information for developing a preantral follicular culture system in which the oocytes are capable of fertilization and embryonic development.  相似文献   

8.
The effects of Morus nigra ethanolic extract, without or with addition of supplements associated or not with FSH, on in vitro culture of ovine secondary follicles were evaluated. In experiment 1, isolated secondary follicles were cultured for 12 days in α‐MEM alone (control) or in different concentrations of M. nigra extract (MN 0.025; 0.05 or 0.1 mg/ml). In experiment 2, culture media were α‐MEM supplemented with BSA, insulin, transferrin, selenium, glutamine, hypoxanthine and ascorbic acid (α‐MEM+) or this medium associated with FSH (α‐MEM+ + FSH), or 0.1 mg/ml M. nigra without supplements (MN 0.1) or supplemented (MN 0.1+) without or with FSH (MN 0.1+ + FSH). In experiment 1, 0.1 mg/ml M. nigra showed the highest percentages (< .05) of normal follicles and fully grown oocytes, besides a higher follicular diameter than α‐MEM and other M. nigra extract concentrations. Moreover, MN 0.1 showed lower (< .05) glutathione (GSH) levels and similar (> .05) mitochondrial activity compared to α‐MEM. In experiment 2, MN 0.1+ + FSH showed similar results (> .05) to α‐MEM+ + FSH for all parameters evaluated, except for the daily growth rate, which was higher (< .05) in MN 0.1+ + FSH. The GSH levels were higher in MEM+ than all treatments. In addition, oocytes from follicles cultured in MN 0.1+ + FSH showed ability to resume meiosis. In conclusion, M. nigra extract (0.1 mg/ml) added by supplements and FSH can be an efficient medium for ovine secondary follicle development.  相似文献   

9.
The growth hormone (GH) and growth insulin‐like factor‐1 (IGF‐1) act directly upon the regulation and growth in the different phases of preantral follicles. Thus, it is necessary to define their sequentiality until the in vitro preovulatory development. Therefore, the study aimed to assess the effects of a sequential medium containing GH and/or IGF‐1 in the long‐duration in vitro culture of preantral ovarian follicles. Ovarian fragments were cultivated: first half (days 1–7), second half (days 7–14) or during 14 culture days. Treatments were identified as: αMEM+; GH → IGF‐1; IGF‐1 → GH and GH + IGF‐1. The culture was designed in 24‐well plates, in an incubator at 37°C and 5% CO2. The parameters of normality, viability, follicles (primordial/in developing) and follicle diameter were evaluated. In addition, the ultrastructure was confirmed with electron transmission microscopy. The results showed that the culture treated with GH → IGF‐1 kept the follicular normality and the viability until the 14th day of culture and increased both in the follicular development until 7th day and in the follicular diameter until 14th day, when compared to the control. The treatments IGF‐1 → GH and GH + IGF‐1 were not effective in the developing and follicular diameter after 7 days of culture, and also reduced the percentage of viability. It is concluded that the bovine preantral follicles cultured in the sequential medium treated with GH → IGF‐1 improved the follicular development until the first half of the culture and kept these parameters with normality, viability and ultrastructure until the second half of the in vitro culture.  相似文献   

10.
Several successful in vitro culture experiments have used oocyte-cumulus cell-mural granulosa cell complexes (OCGCs) from early antral follicles (0.5–0.7 mm) for the growth of bovine oocytes. However, in studies related to in vitro oocyte maturation and in vitro embryo production, oocyte-cumulus cell complexes (OCCs) that have no mural granulosa cells have been widely used instead of OCGCs. The purpose of this study was to determine whether cumulus cells alone support oocyte growth. First, OCCs and OCGCs were cultured in vitro for 14 days to compare the integrity of the complexes as well as antrum formation. After 14 days, the diameter and meiotic competence of oocytes in OCCs and OCGCs were examined. Oocytes in OCCs grew fully and acquired meiotic competence similar to OCGCs, whereas antrum formation occurred later in OCCs as compared to OCGCs. Subsequently, the effects of follicle stimulating hormone (FSH) on in vitro growth of OCCs were examined for 14 days. When FSH was added to the culture medium, OCCs formed antrum-like structures one day earlier than those cultured without FSH. Oocytes cultured with 1 mIU/ml FSH grew fully and acquired meiotic competence. In contrast, when oocytes were cultured in media containing high concentrations of FSH, some of the OCCs collapsed and the number of degenerated oocytes increased. In conclusion, bovine oocytes in OCCs grow and acquire meiotic competence similar to OCGCs and, 1 mIU/ml FSH supports the development of OCCs and oocyte growth as observed in our culture system.  相似文献   

11.
This study aimed at assessing the effect of different concentrations of the growth factor similar to insulin 1 (IGF‐1) in the development, survival and ultrastructure of the bovine preantral follicles cultured in situ. Fragments of bovine ovarian cortical tissue were cultured during 1 and 7 days in 1 ml of α‐MEM+, supplemented with different concentrations of human recombinant IGF‐1 (0, 30, 70 and 100 ng/ml), in an incubator at 37°C and 5% of CO2 in 24‐well plates with total replacement of the medium every 2 days. Non‐cultured ovarian fragments (control) and ovarian fragments cultured during 1 and 7 days were processed for classic histology, mechanical isolation and electron transmission microscopy (ETM). Parameters such as normality, viability, activation, development, diameter and ultrastructure were evaluated. All statistical analyses were carried out using sas Version 9.2. The results showed that the percentage of follicles morphologically normal in the IGF‐1 30 ng/ml treatment was similar to the fresh control (p > 0.05) both on the day 1 and on the day 7 of in vitro culture. In the viability analysis, the cultured treatments maintained the percentage of viable follicles during the entire culture period (p > 0.05). After 7 days of culture, the IGF‐1 30 ng/ml treatment showed higher percentages of developing follicles (48.33%) than those of the fresh control (22.22%) and the cultured treatments (p < 0.05). Also, after 7 days of culture, IGF‐1 30 ng/ml presented a higher follicular diameter when compared to the control and other concentrations of IGF‐1 tested. Ultrastructurally, the non‐cultured control and IGF‐1 30 ng/ml, after 7 days of culture, showed conserved oocytes, nuclei and organelles. Hence, it is concluded that IGF‐1 30 ng/ml was the most efficient concentration for the development of bovine preantral follicles cultured in vitro.  相似文献   

12.
This study investigated the effects of different concentrations of FSH (10, 50, 100 and 200 ng/ml) in supplemented MEM+ on the development of equine pre‐antral follicles that were cultured in vitro for 2 or 6 days. The ovaries (n = 5) from mares in seasonal anoestrus were collected from a local abattoir. Ten ovarian tissue fragments of approximately 3 × 3 × 1 mm were obtained from each animal. The fragments were cultured in situ for 2 days (D2) or 6 days (D6) in MEM+ or MEM+ supplemented with FSH at four different concentrations, establishing the following 11 groups: control (D0); MEM + (D2); MEM + (D6); MEM + 10 ng/ml of FSH (D2); MEM + 10 ng/ml of FSH (D6); MEM + 50 ng/ml of FSH (D2); MEM + 50 ng/ml of FSH (D6); MEM + 100 ng/ml of FSH (D2); MEM + 100 ng/ml of FSH (D6); MEM + 200 ng/ml of FSH (D2); and MEM + 200 ng/ml of FSH (D6). Follicles were observed in only 9.65% (388 of 4,018) of the histological sections. Of the 861 follicles evaluated, 488 were in the primordial stage, and 373 were in various developmental stages; 59.7% were morphologically normal. Regarding the integrity of the pre‐antral follicles, the groups with 100 ng/ml FSH of 2‐days culture as well as 50, 100 and 200 ng/ml FSH of 6‐days culture provided the best results. In conclusion, the in vitro culture of abattoir‐derived equine ovarian fragments presented better morphological integrity when supplemented with FSH for 6 days, in comparison with the MEM culture group. However, no clear effects were observed with FSH regarding the promotion of activation from a primordial to a developing follicle.  相似文献   

13.
The objective of this study was to examine the effects of FSH and LH on oestradiol‐17β and progesterone production by buffalo granulosa cells cultured under serum‐free conditions. Granulosa cells (3 × 105) from small (≤5 mm diameter) follicles were cultured for up to 4 days in 48‐well plates coated with 3.3 μg/cm2 fibronectin in Dulbecco's modified Eagle's medium (DMEM) : nutrient mixture F‐12 Ham (1 : 1 ratio) supplemented with 10?7 m androstenedione, 5 μg/ml human apo‐transferrin and 0.1% bovine serum albumin, in the presence or absence of FSH or LH (0, 1, 2, 4, 8, 16, 32 or 64 ng/ml each). Basal oestradiol‐17β production by granulosa cells from small follicles reduced (p < 0.01) from days 1 to 2 of culture and became undetectable by day 3 and basal progesterone production increased (p < 0.05) from day 1 through day 4 of the culture. Although there was no effect of FSH on day 1 of the culture, FSH at 2, 4, 8 and 16 ng/ml increased (p < 0.05) oestradiol‐17β production by granulosa cells from small follicles on day 2. Progesterone secretion was increased (p < 0.05) by all doses of FSH on all days of culture. All doses of LH had no effect on oestradiol‐17β or progesterone production by granulosa cells from small follicles on any day of the culture. The results of this study demonstrate a serum‐free culture system for buffalo granulosa cells and stimulatory effect of FSH but not LH on steroid hormone production by buffalo granulosa cells under these conditions.  相似文献   

14.
Goat preantral follicles were cultured to investigate the effects of insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on the in vitro growth and viability of oocytes. Preantral follicles were isolated mechanically and enzymatically (using collagenase and DNase) from prepuberal goat ovaries. The working medium was composed of Defined Eagle's Minimum Essential Medium (DMEM) supplemented with HEPES (20 mM), 10% fetal calf serum (FCS), hypoxanthine (2 mM), dibutyryl cyclic adenosine 3',5'-monophosphate (dbcAMP) (2 mM), penicillin (75 ng/ml) and streptomycin (50 ng/ml). The culture medium consisted of the working medium with follicle stimulating hormone (FSH) (100 ng/ml) and hydrocortisone (40 ng/ml) added. In the experiment, goat preantral follicles were cultured for 9 days in the culture medium and in the culture medium supplemented with either IGF-I (100 ng/ml), EGF (50 ng/ml), bFGF (50 ng/ml) or IGF-I (100 ng/ml)+EGF (50 ng/ml). The results indicated that IGF-I (100 ng/ml) effectively maintained the survival of oocytes and promoted their growth; EGF (50 ng/ml) enhanced the survival rate of oocytes but had a negative effect on oocyte growth; bFGF (50 ng/ml) stimulated oocyte survival but had no obvious effect on their growth while IGF-I (100 ng/ml) and EGF (50 ng/ml) in combination had a greater effect on both survival and growth rate of oocytes than IGF-I or EGF alone. The supplementation of IGF-1 and EGF to the culture medium is recommended in the culture of goat preantral follicles.  相似文献   

15.
The purpose of the present study was to investigate the development of follicles and incidence of apoptosis in vitrified neonatal mouse ovaries cultured in vitro in the presence of leukemia inhibitory factor (LIF). The vitrified and non-vitrified ovaries of 1-week-old mouse were cultured in the presence or absence of LIF for 7 days. At the beginning and at the end of culture period in each ovary of all groups of study the mean area and the development of ovarian follicles were analyzed; moreover, the incidence of apoptosis was assessed by transmission electron microscopy, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) method, DNA laddering and caspase-3/7 activity technique. The hormonal assay was done on the conditioned media collected during culture period. The proportion of preantral follicles and the levels of hormones increased in all cultured groups and it was significantly higher in LIF treated groups than in their control (P < 0.001). The ultrastructural characteristics of cell death, DNA fragmentation and TUNEL positive signals were prominent in vitrified cultured ovaries. The level of caspase-3/7 activity was higher in vitrified cultured ovaries.  相似文献   

16.
The objective of this study was to determine whether preantral follicles cultured in vitro for 7 days within ovine ovarian cortical strips could be isolated at the secondary follicles (SF) and grown until antral stage during an additional 6 days period of in vitro culture in the presence of aqueous extract of Justicia insularis. Fresh ovarian fragments from 16 adult sheep were fixed for histological analysis (Control 1) or in vitro cultured individually in α‐MEM+ supplemented with 0.3 mg/ml J. insularis (Step 1) for 7 days. Part of the fragments then were fixed for histological analysis (in vitro culture group). Remaining fragments were exposed stepwise to increasing trehalose concentrations before immediate isolation of SF and viability assessment (Control 2) or after 6 days of culture in α‐MEM++ supplemented with 0.3 mg/ml J. insularis (Step 2). In Step 1, percentage of follicular activation was 80%. In Step 2, a significant increase (p < 0.05) in follicular diameter and antrum formation within 6 days in vitro culture of isolated follicles was achieved. The total antioxidant capacity from both steps significantly increase (p < 0.05) from day 2 to day 6. Confocal analysis of oocytes showed 57.14% oocytes with homogeneous distribution and 42.86% with peri‐cortical distribution. In conclusion, SF can be successfully isolated from sheep ovarian cortex after 7 days of culture and are capable of surviving and forming an antral cavity if cultured in vitro for an additional 6 days in the presence of 0.3 mg/ml J. insularis.  相似文献   

17.
The expression of melatonin type 1 (MT1) and FSH (FSHR) receptors in caprine ovaries and the effects of these hormones on the in vitro development of isolated pre‐antral follicles were evaluated. Follicles (≤200 μm) were cultured for 12 days in α‐MEM (control) or melatonin (100 or 1000 pg/ml) or sequential melatonin medium (100 pg/ml: from day 0 to day 6; 1000 pg/ml: from day 6 to day 12; experiment 1) and in control or sequential FSH (100 ng/ml from day 0 to day 6; 500 ng/ml from day 6 to day 12) or sequential melatonin or this latter plus sequential FSH (experiment 2). MT1 and FSHR expressions were observed in granulosa cells from secondary and antral follicles. The oocytes from primordial and primary follicles also express FSHR. Sequential melatonin increased the percentage of normal follicles and oocyte recovery compared with the control or melatonin (1000 pg/ml) at day 12. In experiment 2, all the treatments increased the normal follicles and growth compared with the control. In conclusion, this study demonstrated the presence of MT1 and FSHR in caprine ovaries. The addition of increased concentrations of melatonin (sequential medium) or FSH can be used to promote the in vitro development of caprine pre‐antral follicles.  相似文献   

18.
To completely avoid ice crystal formation and thus get a higher survival rate, vitrification methods have been commonly used for cryopreservation of oocytes and embryos. However, currently used vitrification methods for oocytes and embryos are not suitable for the cryopreservation of preantral follicles (PFs). In the present study, stainless steel mesh was fabricated into mini mesh cups to vitrify isolated PFs. Moreover, isolated follicles were encapsulated and then subjected to vitreous cryopreservation to facilitate in vitro culture/maturation of follicles after warming. The results showed that the percentages of viable follicles did not differ significantly between the vitrification group and fresh group soon after warming (81.25% vs. 85.29%, P>0.05) and after a 7-day culture period (77.78% vs. 83.33%, P>0.05). No difference in mean follicular diameter was observed between cryopreserved and fresh follicles when cultured in vitro. Transmission electron microscopic analysis revealed that vitreous cryopreservation could maintain the ultrastructure of follicles in alginate beads. In conclusion, the present vitrification method could efficiently cryopreserve isolated human ovarian follicles encapsulated by calcium alginate, which could be put into immediate use (in vitro culture/ maturation) after warming. However, more follicles and some detailed biochemical analyses are required to further investigate the effects of vitrification on the long-term growth of human encapsulated PFs.  相似文献   

19.
The objective of this study was to evaluate different concentrations of growth hormone (GH) on the development of bovine preantral follicles cultured included in the ovarian tissue (in situ) on the rates of morphologically normal, viable, primordial and developing follicles, as well as the oocyte and follicle diameter and ultrastructural analysis. Ovarian fragments collected from cows with no cross‐breeds defined were cultured in situ for 1 and 7 days in minimal essential medium (α‐MEM+) supplemented with different concentrations of recombinant human GH (0, 10, 25, 50 ng/ml). The ovarian fragments non‐cultured (control) and cultured were processed for classic histology, mechanical isolation and electron transmission microscopy (MET). The parameters underwent anova (Tukey′s and Dunnett′s tests) and chi‐square test (χ2). After 7 days of culture, the treatment with 50 ng/ml GH showed no differences with fresh control (p > 0.05) and had greater effectiveness than in the 0, 10 and 25 ng/ml GH concentrations of the morphologically normal follicles. Regarding the primordial follicles, a reduction was observed in the 50 ng/ml GH concentration concomitant with the significant increase in developing follicles, differing from both the fresh control and the other GH concentrations tested. In addition, 50 ng/ml GH showed a larger follicle and oocyte diameter when compared to the other treatments cultured. Similar structures were ultrastructurally observed in the control group, 50 ng/ml GH. Follicles cultured in 10 ng/ml GH showed nuclear invagination, vacuoles and lesioned basal membrane. Hence, it is concluded that 50 ng/ml GH is the most effective concentration for the development of preantral follicles cultured in situ.  相似文献   

20.
This study verified the in vitro effects of IGF-1, FSH or both on caprine preantral follicle development and mRNA levels encoding IGF-1, IGFR-1 and FSHR. Secondary follicles were cultured for six days with FSH, IGF-1 or IGF-1+FSH. The results showed that IGF-1 and/or FSH addition did not influence follicular development for six days. The interaction between IGF-1 and FSH increased the mRNA levels of IGF-1 and FSHR, and FSH increased the expression of the IGFR-1 mRNA. Thus, IGF-1 and/or FSH increased IGF-1, IGFR-1 and FSHR mRNA levels in in vitro cultured caprine secondary follicles, but they did not influence their development after six days of in vitro culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号