首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The difference in the acute phase response of a heat-tolerant and a heat-sensitive Bos taurus breed to a lipopolysaccharide (LPS) challenge when housed at different air temperatures (Ta) was studied. Angus (ANG; heat-sensitive; n = 11; 306 ± 26 kg BW) and Romosinuano (RO; heat-tolerant; n = 10; 313 ± 32 kg BW) heifers were transported from the USDA Agricultural Research Service SubTropical Agricultural Research Station in Florida to the Brody Environmental Chambers at the University of Missouri, Columbia. Heifers were housed in stanchions in 4 temperature-controlled environmental chambers. Initially, Ta in the 4 chambers was cycling at thermoneutrality (TN; 18.5°C–23.5°C) for a 1-wk adjustment period, followed by an increase in 2 of the 4 chambers to cycling heat stress (HS; 24°C–38°C) for 2 wk. On day 19, heifers were fitted with jugular catheters and rectal temperature (RT) recording devices. On day 20, heifers were challenged with LPS (0.5 μg/kg BW; 0 h), sickness behavior scores (SBSs) were recorded, and blood samples were collected at 0.5-h intervals from −2 to 8 h and again at 24 h relative to LPS challenge at 0 h. Serum was isolated and stored at −80°C until analyzed for cortisol and cytokine concentrations. A breed by Ta interaction (P < 0.001) was observed for RT such that the post-LPS average RT in RO heifers housed at TN was lower than the RT of all other treatment groups (P < 0.001), whereas ANG heifers housed at HS had greater post-LPS average RT than all other treatment groups (P < 0.001). In response to LPS, HS increased SBS after LPS in RO heifers compared to RO heifers housed at TN (P < 0.001), whereas HS decreased SBS after LPS in ANG heifers compared to ANG heifers housed at TN (P = 0.014). The cortisol response to LPS was greater in TN than in HS heifers (P < 0.01) and was also greater in RO than in ANG heifers (P = 0.03). A breed by Ta interaction (P < 0.01) was observed for tumor necrosis factor-α (TNF-α) concentration such that HS increased post-LPS serum concentrations of TNF-α in ANG heifers compared to ANG heifers housed at TN (P = 0.041), whereas HS decreased post-LPS concentrations of TNF-α in RO heifers compared to RO heifers housed at TN (P = 0.008). A tendency (P < 0.06) was observed for a breed by Ta interaction for IL-6 concentrations such that RO heifers had greater post-LPS concentrations of IL-6 than ANG heifers when housed at HS (P = 0.020). A breed by Ta interaction was observed for interferon-γ (IFN-γ; P < 0.01) concentrations such that HS decreased post-LPS concentrations of IFN-γ in ANG heifers compared to ANG heifers housed at TN (P < 0.001), and HS increased post-LPS concentrations of IFN-γ in RO heifers compared to RO heifers housed at TN (P = 0.017). These data indicate differences in the acute phase response between the heat-tolerant RO and heat-sensitive ANG heifers under different Ta which may aid in elucidating differences in productivity, disease resistance, and longevity among cattle breeds.  相似文献   

2.
The severity of host response to some disease agents differs between sexes and this dimorphism has been attributed to the immunomodulating effects of steroid hormones. Our objective was to determine in heifers whether the phase of estrous cycle affected immune response mediators after endotoxin challenge (LPS, 2.5 μg/kg BW, i.v.). Sixteen beef heifers (426 ± 9 kg) were reproductively synchronized with the two-injection protocol of dinoprost tromethamine (Lutalyse®, Pfizer) to establish diestrus and estrus stages of the estrous cycle. Heifers were challenged with LPS on day 3 (E, estrus; n = 8) or day 10 (D, diestrus, n = 8) after the last i.m. injection of Lutalyse®. In all heifers, plasma concentrations of tumor necrosis factor-α (TNF-α) peaked 2 h after LPS treatment (P < 0.01) and returned to basal level by 7 h. However, the integrated TNF-α response (area under the time × concentration curve, AUC) was greater in E than in D (P < 0.05). Plasma concentrations of nitrate + nitrite (NOx, an estimate of NO production) increased (P < 0.01) in all heifers at 7 and 24 h after LPS; plasma NOx AUC after LPS was greater in E than D (P < 0.01). Plasma xanthine oxidase activity (XO, a mediator of superoxide production) responses were also greater in E than D (P < 0.05). A companion LPS challenge study in steers validated that the protocol for and use of Lutalyse® did not affect any of the immune parameters studied in heifers in response to LPS. Results indicate that the underlying physiological attributes of the estrus and diestrus phases of the estrous cycle constitute a major source of variability in the magnitude of proinflammatory response to bacterial toxins like LPS.  相似文献   

3.
Study objectives were to determine the effects of rapamycin (Rapa) on biomarkers of metabolism and inflammation during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 32; 63.5 ± 7.2 kg body weight [BW]) were blocked by initial BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and Rapa (n = 8; TNRapa), 3) HS control (n = 8; HSCon), or 4) HS and Rapa (n = 8; HSRapa). Following 6 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (10 d), pigs were fed ad libitum and housed in TN conditions (21.3 ± 0.2°C). During P2 (24 h), HSCon and HSRapa pigs were exposed to constant HS (35.5 ± 0.4°C), while TNCon and TNRapa pigs remained in TN conditions. Rapamycin (0.15 mg/kg BW) was orally administered twice daily (0700 and 1800 hours) during both P1 and P2. HS increased rectal temperature and respiration rate compared to TN treatments (1.3°C and 87 breaths/min, respectively; P < 0.01). Feed intake (FI) markedly decreased in HS relative to TN treatments (64%; P < 0.01). Additionally, pigs exposed to HS lost BW (4 kg; P < 0.01), while TN pigs gained BW (0.7 kg; P < 0.01). Despite marked changes in phenotypic parameters caused by HS, circulating glucose and blood urea nitrogen did not differ among treatments (P > 0.10). However, the insulin:FI increased in HS relative to TN treatments (P = 0.04). Plasma nonesterified fatty acids (NEFA) increased in HS relative to TN treatments; although this difference was driven by increased NEFA in HSCon compared to TN and HSRapa pigs (P < 0.01). Overall, circulating white blood cells, lymphocytes, and monocytes decreased in HS compared to TN pigs (19%, 23%, and 33%, respectively; P ≤ 0.05). However, circulating neutrophils were similar across treatments (P > 0.31). The neutrophil-to-lymphocyte ratio (NLR) was increased in HS relative to TN pigs (P = 0.02); however, a tendency for reduced NLR was observed in HSRapa compared to HSCon pigs (21%; P = 0.06). Plasma C-reactive protein tended to differ across treatments (P = 0.06) and was increased in HSRapa relative to HSCon pigs (46%; P = 0.03). Circulating haptoglobin was similar between groups. In summary, pigs exposed to HS had altered phenotypic, metabolic, and leukocyte responses; however, Rapa administration had limited impact on outcomes measured herein.  相似文献   

4.
The effects of in utero heat stress (IUHS) range from decreased growth performance to altered behavior, but the long-term impact of IUHS on postnatal innate immune function in pigs is unknown. Therefore, the study objective was to determine the effects of early gestation IUHS on the immune, metabolic, and stress response of pigs subjected to an 8 hr lipopolysaccharide (LPS) challenge during postnatal life. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cyclic 26 to 36 °C) conditions from days 6 to 59 of gestation, and then TN conditions (20.9 ± 2.3 °C) from day 60 of gestation to farrowing. At 12 wk of age, 16 IUHS and 16 in utero thermoneutral (IUTN) pigs were selected, balanced by sex and given an intravenous injection of LPS (2 µg/kg BW mixed with sterile saline [SAL] and injected at 2 µL/kg BW) or SAL (2 µL/kg BW). Body temperature was monitored every 30 min, and blood was obtained at 0, 1, 2, 3, 4, 6, and 8 hr following the LPS challenge. Blood samples were analyzed for glucose, insulin, non-esterified fatty acids (NEFA), cortisol, and cytokine concentrations. In addition, white blood cell counts were determined at 0 and 4 hr. Hour 0 data were used as covariates. Body temperature was increased (P < 0.01) in LPS (40.88 ± 0.08 °C) vs. SAL (39.83 ± 0.08 °C) pigs. Eosinophils tended to be decreased overall (P = 0.09; 43.9%) in IUHS vs. IUTN pigs. Glucose concentrations were reduced overall (P = 0.05; 5.9%) in IUHS vs. IUTN pigs. The NEFA concentrations tended to be greater (P = 0.07; 143.4%) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs tended to have greater (127.4%) circulating NEFA concentrations compared with IUTN-SAL and IUHS-SAL pigs. Cortisol was increased (P = 0.04) in IUHS-LPS compared with IUTN-LPS pigs at 3 hr (21.5%) and 4 hr (64.3%). At 1 hr, tumor necrosis factor α was increased (P = 0.01; 115.1%) in IUHS-LPS compared with IUTN-LPS pigs. Overall, interleukin-1β (IL-1β) and interleukin-6 (IL-6) were greater (P < 0.04; 281.3% and 297.8%, respectively) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs had increased IL-1β and IL-6 concentrations compared with IUTN-SAL and IUHS-SAL pigs. In summary, IUHS altered the postnatal cytokine, metabolic, and physiological stress response of pigs during postnatal life, which may have negative implications toward the innate immune response of IUHS pigs to pathogens.  相似文献   

5.
Our primary objective of this experiment was to evaluate potential genetic differences between two diverse Bos taurus breeds [Angus (AG) and Romosinuano (RO)] in response to an endotoxin challenge. Eighteen steers (n = 9 steers/breed; 299.4 ± 5.2 kg BW) were acclimated to environmentally controlled chambers maintained at thermoneutrality (19.7 °C) and then fitted with indwelling jugular catheters and rectal temperature (RT) recording devices 1 d before the endotoxin challenge. The next day, blood samples were collected at 30-min intervals from −2 to 8 h, and RT was measured continuously at 1-min intervals throughout the study. At time 0, all steers received an intravenous bolus injection of lipopolysaccharide (LPS; 2.5 μg/kg BW). Serum samples were stored at −80 °C until analyzed for cortisol, proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and interferon gamma (IFN-γ)], and acute phase proteins (serum amyloid A, acid soluble protein, ceruloplasmin, and α-acid glycoprotein). Rectal temperatures increased in both breeds within 1 h after LPS, with RO producing a greater increase in RT than AG steers (P < 0.001). Serum cortisol and TNF-α increased (P < 0.01) in both breeds within 1 h after the LPS challenge. For cortisol, an overall breed effect (P < 0.02) was detected, such that AG steers had a higher cortisol response than RO steers. A breed × time interaction (P < 0.01) was observed for TNF-α, such that the response was delayed and extended in the RO steers compared with the AG steers. At 2 and 2.5 h after LPS, TNF-α concentrations were greater (P < 0.03) in RO steers than in AG steers. For IL-1β, a breed × time interaction (P < 0.04) was also observed. At 3 h after LPS, IL-1β concentrations were greater (P < 0.01) in RO steers than in AG steers. Serum IL-6 and IFN-γ increased (P < 0.01) in a similar manner in both groups after the LPS challenge. These data show differences in the innate immune response between two diverse Bos taurus breeds which may provide insight about differences observed in productivity, heat tolerance, disease resistance, and longevity among cattle breeds.  相似文献   

6.
Metabolic adaptations to heat stress in growing cattle   总被引:1,自引:0,他引:1  
To differentiate between the effects of heat stress (HS) and decreased dry matter intake (DMI) on physiological and metabolic variables in growing beef cattle, we conducted an experiment in which a thermoneutral (TN) control group (n = 6) was pair fed (PF) to match nutrient intake with heat-stressed Holstein bull calves (n = 6). Bulls (4 to 5 mo old, 135 kg body weight [BW]) housed in climate-controlled chambers were subjected to 2 experimental periods (P): (1) TN (18 °C to 20 °C) and ad libitum intake for 9 d, and (2) HS (cyclical daily temperatures ranging from 29.4 °C to 40.0 °C) and ad libitum intake or PF (in TN conditions) for 9 d. During each period, blood was collected daily and all calves were subjected to an intravenous insulin tolerance test (ITT) on day 7 and a glucose tolerance test (GTT) on day 8. Heat stress reduced (12%) DMI and by design, PF calves had similar nutrient intake reductions. During P1, BW gain was similar between environments and averaged 1.25 kg/d, and both HS and PF reduced (P < 0.01) average daily gain (-0.09 kg/d) during P2. Compared to PF, HS decreased (P < 0.05) basal circulating glucose concentrations (7%) and tended (P < 0.07) to increase (30%) plasma insulin concentrations, but neither HS nor PF altered plasma nonesterified fatty acid concentrations. Although there were no treatment differences in P2, both HS and PF increased (P < 0.05) plasma urea nitrogen concentrations (75%) compared with P1. In contrast to P1, both HS and PF had increased (16%) glucose disposal, but compared with PF, HS calves had a greater (67%; P < 0.05) insulin response to the GTT. Neither period nor environment acutely affected insulin action, but during P2, calves in both environments tended (P = 0.11) to have a blunted overall glucose response to the ITT. Independent of reduced nutrient intake, HS alters post-absorptive carbohydrate (basal and stimulated) metabolism, characterized primarily by increased basal insulin concentrations and insulin response to a GTT. However, HS-induced reduction in feed intake appears to fully explain decreased average daily gain in Holstein bull calves.  相似文献   

7.
The importance of polyunsaturated fatty acids (PUFAs) within the different biological functions of animals has been widely recognized. In this study, exercise and PUFAs supplementation effects on serum triglycerides, total cholesterol, and nonesterified fatty acids (NEFAs) concentration were evaluated in athletic horses. Two sport horse types (10 Italian saddle jumpers and 10 Thoroughbreds) were equally divided into two groups. Jumpers and Thoroughbred experimental groups (AJ and AT) received 4-week PUFAs supplementation and control groups (BJ and BT) received no dietary supplement. Before starting the PUFAs supplementation (T0) and at the end of the experimental period (T4), horses were subjected to simulated events. From each subject, blood samples were collected every 7 days at rest, before and after the first test (T0R and T0PE), and before and after the second test (T4R and T4PE). Higher triglycerides and NEFA concentrations at T0PE and T4PE than T0R and T4R in both groups were found as a result of exercise (P < .005), but lower triglycerides and NEFA concentrations at T4PE in group AJ than group BJ (P < .05) and in group AT (P < .005) than group BT were found as a result of PUFAs supplementation. Effects of PUFAs supplementation was highlighted by the statistically significant lower triglycerides and NEFA concentrations found at T4PE than T0PE in groups AJ (P < .05) and AT (triglycerides: P < .05; NEFAs: P < .0001).  相似文献   

8.
This study aimed to determine whether pig responses to heat stress (HS) were directly due to heat exposure (regardless of feeding level and pattern) or were indirectly due to the reduction of feed intake (FI) and to determine if increasing feeding frequency (splitting heat increments) can improve pig response to HS. A total of 48 pigs (66.1 ± 1.7 kg) were allocated to four groups in three replicates. After 7 d in thermoneutral (TN) conditions (22 °C; period 1 [P1; day −7 to −1]), pigs were placed in either TN or HS (32 °C) conditions for 20 d (period 2 [P2; day 0 to 19]). The diet was provided either ad libitum (AL; 2 distributions/d) or pair-fed (PF8; 8 distributions/d) using HS–AL pigs as the reference group. Thus, the four experimental groups were TN–AL, HS–AL, TN–PF8, and HS–PF8. The daily ration of PF8 pigs was distributed at every 90-min intervals from 0900 to 1930 hours. Data were analyzed using the PROC MIXED procedure with replicate (n = 3), experimental group (n = 4), and their interactions as fixed effects, and the REPEATED statement was used for repeated measures data. Pigs had a similar average daily feed intake (ADFI) during P1 (P > 0.05). In P2, HS–AL and PF8 pigs had lower ADFI (−19%), average daily gain (−25%), and final body weight (−6.1 kg) than TN–AL pigs (P < 0.01). TN–AL pigs had thicker backfat than TN–PF8 pigs (P < 0.05), while the HS pigs had intermediate results. HS pigs had a higher perirenal fat percentage based on the contrast analysis between PF8 pigs (P < 0.05). Thermoregulatory responses of pigs increased with HS exposure but did not differ between HS or between TN groups (P > 0.05). For TN pigs, variation in muscle temperature (Tmuscle) depended on feeding and physical activity, while for HS pigs, Tmuscle gradually increased throughout the day. The Tmuscle of PF8 pigs increased with each additional meal but plateaued earlier for HS–PF8 than TN–PF8 pigs; an increase in Tmuscle per meal was also lower in HS–PF8 than TN–PF8 (P < 0.05). Exposure to HS decreased plasma T3 and T4 (P < 0.05) and increased plasma creatinine (P < 0.05). Between the PF8 groups, HS pigs also had a transient increase in plasma insulin on day 8 (P < 0.05). The effect of HS on FI decreased the growth rate of pigs but there are heat-induced effects, such as altered physiological responses, which might explain the direct HS effects seen in other literature especially in terms of increased adiposity. The increased feed provision frequency in the present study did not improve the HS response of pigs.  相似文献   

9.
The influence of temperament on the alteration of metabolic parameters in response to a lipopolysaccharide (LPS) challenge was investigated. Brahman bulls were selected based on temperament score. Bulls (10 months; 211 ± 5 kg BW; n = 6, 8 and 7 for Calm, Intermediate and Temperamental groups, respectively) were fitted with indwelling jugular catheters to evaluate peripheral blood concentrations of glucose, blood urea nitrogen (BUN), non‐esterified fatty acids (NEFA), insulin, epinephrine and cortisol before and after LPS administration (0.5 μg/kg BW LPS). Feed intake was also recorded. Intermediate bulls consumed more feed than the Temperamental bulls during the challenge (p = 0.046). Pre‐LPS glucose (p = 0.401) and BUN (p = 0.222) did not differ among the temperament groups. However, pre‐LPS insulin (p = 0.023) was lower, whereas pre‐LPS NEFA (p < 0.001), cortisol (p < 0.001) and epinephrine (p < 0.001) were greater in Temperamental than in Calm and Intermediate bulls. Post‐LPS glucose was increased in Calm and Intermediate bulls but not in Temperamental bulls (p < 0.001). Insulin concentrations post‐LPS were greater in Calm than in Intermediate and Temperamental bulls (p < 0.001). Concentrations of NEFA post‐LPS were greater in Temperamental than in Calm and Intermediate bulls (p < 0.001). Serum BUN concentration increased post‐LPS, with values being greater in Calm and Intermediate than in Temperamental bulls (p = 0.012). Collectively, these data demonstrate that animal temperament is related to the metabolic responses of Brahman bulls following a provocative endotoxin challenge. Specifically, Temperamental bulls may preferentially utilize an alternate energy source (i.e. NEFA) to a greater degree than do bulls of Calm and Intermediate temperaments. The use of circulating NEFA from lipolysis may reduce the negative metabolic consequences of an immune response by allowing for a prompt answer to increasing energy demands required during immunological challenge, compared with the time required for glycogenolysis and gluconeogenesis.  相似文献   

10.
We examined whether progesterone (P4)-induced suppression of LH release in cattle can be overcome by an increased dose of exogenous gonadotropin-releasing hormone (GnRH) or pretreatment with estradiol (E2). In Experiment 1, postpubertal Angus-cross heifers (N = 32) had their 2 largest ovarian follicles ablated 5 d after ovulation. Concurrently, these heifers were all given a once-used, intravaginal P4-releasing insert (CIDR), and they were randomly assigned to be given either prostaglandin F (Low-P4) or no treatment (High-P4) at follicle ablation, and 12 h later. Six days after emergence of a new follicular wave, half of the heifers in each group (n = 8) were given either 100 or 200 μg of GnRH i.m. Plasma luteinizing hormone (LH) concentrations were higher in the Low- vs High-P4 groups, and in heifers given 200 vs 100 μg of GnRH (mean ± SEM 15.4 ± 2.2 vs 9.1 ± 1.2, and 14.8 ± 2.1 vs 9.8 ± 1.4 ng/mL, respectively; P ≤ 0.01). Ovulation rate was higher (P = 0.002) in the Low-P4 group (15/16) than in the High-P4 group (6/16), but it was not affected by GnRH dose (P = 0.4). In Experiment 2, heifers (n = 22) were treated similarly, except that 5.5 d after wave emergence, half of the heifers in each group were further allocated to be given either 0.25 mg estradiol benzoate i.m. or no treatment, and 8 h later, all heifers were given 100 μg GnRH i.m. Both groups treated with E2 (Low- and High-P4) and the Low-P4 group without E2 had higher peak plasma LH concentrations compared to the group with high P4 without E2 (12.6 ± 1.8, 10.4 ± 1.8, 8.7 ± 1.3, and 3.9 ± 1.2 ng/mL, respectively; (P < 0.04)). However, E2 pretreatment did not increase ovulation rates in response to GnRH (P = 0.6). In summary, the hypotheses that higher doses of GnRH will be more efficacious in inducing LH release and that exogenous E2 will increase LH release following treatment with GnRH were supported, but neither significantly increased ovulation rate.  相似文献   

11.
The temporal pattern and sex effect of immune and stress hormone responses to a lipopolysaccharide (LPS) challenge were assessed using a pig model. Secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 increased in a time-dependent manner following LPS infusion. There was also a time-dependent increase in secretion of the stress-related hormones cortisol, epinephrine (E), and norepinephrine (NE) following LPS, with peak concentrations attained within 30 min. The magnitude of the TNF-α and IL-1β responses were both positively associated (P < 0.05) with the magnitude of cortisol response following LPS, whereas serum IL-1β and IL-6 were positively correlated with the magnitude of E and NE responses following LPS. Acute-phase protein production was also time-dependently increased following LPS. The concentration of immune cells in circulation was decreased (P < 0.05) at 5.5 h post-LPS and negatively correlated with pro-inflammatory cytokine production. By 24 h post-LPS, immune cell counts increased (P < 0.05) and were positively associated with both pro-inflammatory cytokine and stress hormone production. The amplitude of pro-inflammatory cytokine response following LPS was affected (P < 0.05) by sex classification; however, the magnitude of elevated cytokine concentrations was not. The magnitude of the NE response, but not of the E and cortisol responses, to LPS was influenced by sex (P < 0.05). Similar to the pro-inflammatory cytokines, the magnitude of exposure to the stress hormones following LPS was not influenced by sex. The production of serum amyloid A (SAA) was influenced by sex, with barrows producing more SAA than gilts at 24 h post-LPS (P < 0.05). Collectively, these results demonstrate sex-specific, concomitant temporal changes in innate immune- and stress-related hormones.  相似文献   

12.
The objective of this study was to determine the effect of evaporative cooling and dietary supplemental Zn source on blood metabolites, insulin and mineral concentrations, and milk mineral concentrations following intramammary lipopolysaccharide (LPS) infusion. Seventy-two multiparous Holstein cows were assigned to one of four treatments with a 2 × 2 factorial arrangement. Treatments included two environments: with or without evaporative cooling using fans and misters over the freestall and feedbunk, and two dietary sources of supplemental Zn: 75 mg/kg of dry matter (DM) supplied by Zn hydroxychloride (inorganic Zn; IOZ) or Zn hydroxychloride (35 mg of Zn/kg of DM) + Zn–Met complex (ZMC; 40 mg of Zn/kg of DM). A subset of cows (n = 16; 263 ± 63 d in milk) was infused with 10 μg of LPS or a saline control in the left or right rear quarters on day 34 of the environmental treatment. Individual milk samples collected from LPS-infused quarters at −4, 0, 6, 12, 24, 48, 72, 96, and 144 h relative to infusion were analyzed for minerals. Blood samples were collected at the same time with an additional sample collected at 3 h post-infusion to analyze glucose, nonesterified fatty acids (NEFA), insulin, and minerals. Cooling by time interactions (P ≤ 0.07) were observed for plasma glucose, NEFA, and serum insulin. Compared with cooled cows, non-cooled cows had lower concentrations of plasma glucose except at 3 h following intramammary LPS infusion, greater serum insulin at 3 and 12 h, and lower plasma NEFA at 24 and 48 h after infusion. Relative to cooled cows, non-cooled cows tended (P = 0.07) to have lower serum K concentration and had lower (P < 0.01) serum Zn 6 h following infusion (cooling by time interaction: P < 0.01). Relative to ZMC cows, IOZ cows had greater (P ≤ 0.09) concentrations of plasma Se, skim milk Na and Se, and skim milk Na to K ratio. Regardless of treatment, intramammary LPS infusion reduced (P < 0.01) serum or plasma concentrations of Ca, Mg, Zn, Fe, and Se, but increased (P < 0.01) their concentration in skim milk. In conclusion, deprivation of cooling resulted in more rapid and prolonged insulin release and influenced the systemic and mammary mineral metabolism during mammary inflammation induced by LPS of lactating dairy cows. Dietary supplementation of Zn–Met complex reduced blood and milk Se concentrations compared with cows fed Zn from an inorganic source.  相似文献   

13.
This study examined the effects of road transportation on metabolic and immunological responses in dairy heifers. Twenty Holstein heifers in early pregnancy were divided into non‐transported (NT; n = 7) and transported (T; n = 13) groups. Blood was collected before transportation (BT), immediately after transportation for 100 km (T1) and 200 km (T2), and 24 h after transportation (AT). The T heifers had higher (P < 0.05) blood cortisol and non‐esterified fatty acid concentrations after T1 and T2 than did NT heifers. By contrast, the T heifers had lower (P < 0.05) serum triglyceride concentrations after T1 and T2 than had the NT heifers. The serum cortisol and triglyceride concentrations returned (P > 0.05) to the BT concentrations at 24 h AT in the T heifers. The granulocyte‐to‐lymphocyte ratio and the percentage of monocytes were higher (P < 0.05) after T2 in the T heifers than in the NT heifers, suggesting that transportation stress increased the numbers of innate immune cells. T heifers had higher (P < 0.01) plasma haptoglobin concentrations than NT heifers 24 h AT. In conclusion, transportation increased cortisol secretion and was correlated with increased metabolic responses and up‐regulation of peripheral innate immune cells in dairy heifers.  相似文献   

14.
Bovine growth hormone (bGH) gene polymorphism of leucine (Leu)-threonine (Thr) (allele A), valine (Val)-Thr (allele B), and Val-methionine (Met) (allele C) at codons 127 and 172 was shown to relate with carcass trait variations in Japanese Black cattle. In this study, 10-mo-old Japanese Black heifers with growth hormone (GH) genotypes AA, AB, BB, AC, BC, and CC (N = 141) were compared for basal GH, insulin-like growth factor-1 (IGF-1), insulin, ghrelin, glucose, and nonesterified fatty acid (NEFA) concentrations. Growth hormone release was also measured as response to growth hormone–releasing hormone (GHRH) (0.4 μg/kg body weight [BW]) using 18 heifers with GH genotypes AA, BB, and CC (n = 6 for each group). The genotype AA heifers showed the greatest BW among genotypes (P < 0.05). Genotype AC, BC, and CC heifers showed greater GH concentrations than genotype AA, AB, or BB heifers, in which genotype CC heifers had the highest concentrations (P < 0.05). However, IGF-1 concentrations did not significantly differ. The genotype AA and BB heifers had a greater GH release at 60 min following GHRH injection than did the genotype CC heifers. The area under the curve (AUC; P < 0.07) and incremental area (IA; P < 0.08) of GH responses to the GHRH challenge tended to be the highest in the genotype AA heifers and the lowest in the genotype CC heifers. In conclusion, GH gene polymorphism altered GH, which may have contributed to differences in BW and carcass traits among genotypes.  相似文献   

15.
Increased secretion of prostaglandin F2α (PGF2α) within the uterus because of uterine inflammation can cause luteolysis and result in early embryonic loss. Supplementation with polyunsaturated fatty acids (PUFAs) has been shown to influence PG production in many species, although the effects on the mare remain unknown. The present study aimed to determine fatty acid uptake in equine endometrial explants and evaluate their influence on PG secretion and expression of enzymes involved in PG synthesis in vitro. Equine endometrial explants were treated with 100 μM arachidonic acid, eicosapentaenoic acid, or docosahexaenoic acid and then challenged with oxytocin (250 nM) or lipopolysaccharide (LPS; 1 μg/mL). Production of PGF2α and PG E2 (PGE2) was measured, and mRNA expression of enzymes involved in PG synthesis was determined with quantitative real-time PCR. Media concentrations of PGF2α and PGE2 were higher (P < 0.0001) from endometrial explants challenged with oxytocin or LPS compared with controls despite which fatty acid was added. Only DHA lowered (P < 0.0001) media concentrations of PGF2α and PGE2 from explants. Endometrial explants stimulated with oxytocin had increased expression of PG-endoperoxide synthase 1 (PTGS1; P < 0.02), PG-endoperoxide synthase 2 (PTGS2; P < 0.001), PG F2α synthase (PGFS; P < 0.01), PG E2 synthase (PGES; P < 0.01), and phospholipase A2 (PLA2; P < 0.005) compared with controls and regardless of fatty acid treatment; whereas stimulation with LPS increased expression of PTGS2 (P < 0.004), PGFS (P < 0.03), PGES (P < 0.01), and PLA2 (P < 0.01) compared with controls and regardless of fatty acid treatment. Treatment with PUFAs, specifically DHA, can influence PG secretion in vitro through mechanisms other than enzyme expression.  相似文献   

16.
Fall born Angus x Hereford heifers were allotted to treatments at 9 mo of age to achieve the following growth rates: 1) fed to gain 1.36 kg/d (n = 10; HGAIN); and 2) fed to gain 0.23 kg/d for 16 wk, then fed to gain 1.36 kg/d (n = 9; LHGAIN). Growth hormone (GH), insulin-like growth factor-1 (IGF-I), insulin, glucose, nonesterified fatty acids (NEFA), and progesterone were quantified in twice weekly blood samples until onset of puberty. Body weight, hip height, and pelvic area were recorded every 28 d. Frequent blood samples (n = 8 heifers/treatment) were collected every 14 d, commencing on day 29 of treatment until onset of puberty to evaluate secretion of luteinizing hormone (LH) and GH. The HGAIN heifers were younger (369 d; P < 0.001), were shorter at the hip (115 cm; P < 0.05) and had smaller pelvic area (140 cm2; P < 0.10), but body weight (321 kg) did not differ at puberty compared with LHGAIN heifers (460 d; 119 cm; 155 cm2; 347 kg, respectively). The HGAIN heifers had greater (P < 0.05) concentrations of LH, IGF-I, and insulin in serum and glucose in plasma during the first 84 d of treatment than LHGAIN heifers, whereas LHGAIN heifers had greater (P < 0.05) concentrations of GH in serum and NEFA in plasma than HGAIN heifers. On Day 68 of treatment, HGAIN heifers had less mean GH (P < 0.01) and greater (P < 0.05) LH pulse frequency than LHGAIN heifers, whereas LH pulse amplitude and mean LH did not differ (P > 0.10) between treatments. Treatment did not influence secretion of LH and GH at 1 and 3 wk before puberty. Mean GH concentrations in serum and GH pulse amplitude in all heifers were greater (P < 0.05) 2 to 9 d (12.9 and 40.7 ng/ml, respectively) than 16 to 23 d (10.4 and 20.0 ng/ml, respectively) before puberty. Nutrient restriction decreased LH pulse frequency and delayed puberty in beef heifers. Furthermore, dramatic changes in mean concentration and amplitude of GH pulses just before puberty in beef heifers may have a role in pubertal development.  相似文献   

17.
Two experiments were conducted to evaluate feedlot performance, lactational characteristics, and carcass composition and quality of heifers and the performance of their calves in a single-calf heifer (SCH) system. In Exp. 1, 13 [10 lactating (L) and 3 nonlactating (NL)] prenatally androgenized (PA) heifers, born to cows implanted with testosterone propionate (TP) and 19 (13 L and 6 NL) control (C) heifers, born to nonimplanted cows, were used. Heifers were calved and the pairs were placed in feedlot pens to evaluate the effects of PA on feedlot performance and lactation. Heifers were fed an 85% concentrate diet and fed to a compositional endpoint of 1.1 cm of subcutaneous fat cover, at which point calves were weaned and heifers slaughtered approximately 12 h later. The NL heifers consumed 17.0% less (P<0.01) dry matter and were 30.8% more (P<0.01) efficient in feed conversion. When calf performance was included, overall feed efficiency of L heifers was 26.9% greater (P<0.05; 0.151 vs 0.119) than that of the NL feedlot heifers. Prenatal androgenization had no effect on heifer performance. Four percent fat-corrected milk yield averaged 7.79 and 5.62 kg/d for PA and C heifers, respectively. The NL heifers had 11.0% greater (P<0.01) marbling score and yield grades were 3.77 and 3.03 (P<0.05) for NL and L heifers, respectively. Livers (P<0.01) and kidneys (P<0.05) as a percentage of shrunk weight were heavier for L heifers than for NL heifers. Two carcasses were classified as hard-boned (C-maturity) and 74% received a USDA Choice grade. The L heifers tended (P<0.10) to have lower taste panel tenderness scores; however, shearforce was similar (P=0.81) for L and NL heifers. In Exp. 2, 24 Angus × Holstein heifers were utilized in the single-calf heifer system, similar to Exp. 1. Calves were weaned from their dam between d 64 and 89 postpartum. Heifers that had their calves early weaned (EW) gained 44.2% faster (P<0.01) and consumed 10.8% less (P<0.05) DM than L heifers. The EW heifers were 60.0% more (P<0.01) efficient than L heifers. However, when calf performance was included with heifer performance, L heifers were 23.7% more (P<0.05) efficient than EW heifers. The EW heifers had 18.9% heavier (P<0.01) hot carcasses than L heifers. Backfat thickness was 1.07 and 0.66 cm (P<0.01) for the EW and L heifers.  相似文献   

18.
Trace minerals are known to play important roles in early embryo development. The study objective was to determine effects of trace mineral source on heifer reproductive performance. Beef heifers (n = 129) were randomly assigned to one of two treatments. From weaning through breeding, all heifers were individually fed a basal diet supplemented with cobalt (Co), copper (Cu), manganese (Mn), and zinc (Zn) either from organic sources (COMP; Cu, Mn, and Zn amino acid complexes and Co glucoheptonate; Availa-4, Zinpro Corporation, Eden Prairie, MN) or inorganic sources (INORG; Cu, Mn, and Zn hydroxychlorides; Intellibond C, M, and Z, Micronutrients, Indianapolis, IN) and Co as CoSO4. Blood samples and a reproductive tract score (RTS) were collected to determine pubertal status. All animals were synchronized and artificially inseminated. Pregnancy status was determined by lymphocyte gene expression, circulating concentrations of pregnancy-associated glycoproteins (PAGs), and by transrectal ultrasonography after artificial insemination. Embryonic loss was defined as when a previously pregnant animal was subsequently diagnosed not pregnant. Data were analyzed using the MIXED procedure in SAS. Puberty (P = 0.44), pelvic area (P = 0.74), RTS (P = 0.49), and estrus expression (P = 0.82) were not influenced by treatment. There was no effect of treatment (P = 0.37) or treatment by time (P = 0.19) on pregnancy, but there was a tendency (P = 0.13) for decreased embryonic loss among COMP heifers (27 ± 6%) compared to INORG heifers (38 ± 6%). There was a treatment by pregnancy status by time interaction (P < 0.01) on circulating PAG concentrations with PAG concentrations tending (P = 0.08) to be greater on day 25 among heifers in the COMP treatment compared to heifers in the INORG group. In summary, source of trace mineral did not affect puberty, RTS, pelvic area, or overall pregnancy success, but feeding complexed trace minerals tended to increase circulating PAG concentrations and embryo survival.  相似文献   

19.
20.
Temperamental cattle tend to yield carcasses of poorer quality, and Brahman cattle are reportedly more temperamental than non-indicus cattle breeds. A potential link between temperament and product quality may be mitochondrial activity. We hypothesized that mitochondrial measures would be greater in temperamental compared with calm heifers and that the relationships between temperament and mitochondria would persist as heifers age. Serum cortisol and skeletal muscle (longissimus thoracis [LT] and trapezius [TRAP]) mitochondrial profiles and antioxidant activities were quantified from the same calm (n = 6) and temperamental (n = 6) Brahman heifers at 8, 12, and 18 mo of age. Data were analyzed using a mixed model ANOVA in SAS (9.4) with repeated measures. Serum cortisol was greater in temperamental compared with calm heifers throughout the study (P = 0.02). Mitochondrial volume density (citrate synthase [CS] activity) increased over time (P < 0.0001) but was similar between temperament and muscle groups. Mitochondrial function (cytochrome c oxidase activity) was greatest in the temperamental LT at 8 mo of age (P ≤ 0.0006), greatest in the temperamental TRAP at 18 mo of age (P ≤ 0.003), and did not differ by temperament at 12 mo of age. Integrative (relative to tissue wet weight) mitochondrial oxidative phosphorylation capacity with complex I substrates (PCI), PCI plus complex II substrate (PCI+II), noncoupled electron transfer system capacity (ECI+II), and E with functional complex II only (ECII) were greater in the TRAP than LT for calm heifers at all ages (P ≤ 0.002), but were similar between muscle groups in temperamental heifers. Overall, calm heifers tended to have greater intrinsic (relative to CS activity) PCI and flux control of PCI+II (P ≤ 0.1) than temperamental heifers, indicating greater utilization of complex I paired with greater coupling efficiency in calm heifers. Within the LT, integrative PCI+II was greater (P = 0.05) and ECI+II tended to be greater (P = 0.06) in temperamental compared with calm heifers. From 8- to 18-mo old, glutathione peroxidase (GPx) activity decreased (P < 0.0001) and superoxide dismutase activity increased (P = 0.02), and both were similar between muscle groups. The activity of GPx was greater in temperamental compared with calm heifers at 8 (P = 0.004) but not at 12 or 18 mo of age. These results detail divergent skeletal muscle mitochondrial characteristics of live Brahman heifers according to temperament, which should be further investigated as a potential link between temperament and product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号