首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Wax esters (WE) in copepods constitute huge natural marine lipid resources, which can contribute as future lipid source in formulated diets in aquaculture, and thereby reduce the pressure on use of marine resources at higher trophic levels. The present study was undertaken to investigate factors affecting WE digestibility, including production of bile and lipases in Atlantic salmon fed diets containing high proportions of oil derived from copepods. Individually tagged postsmolt Atlantic salmon (initial weight 250 g) were distributed into three dietary groups in triplicate tanks and fed either a fish oil supplemented diet or diets where 50% or 100% of the fish oil was replaced with oil extracted from Calanus finmarchicus . WE accounted for 30.7% or 47.7% of the lipids in these latter diets, respectively. Over the 100 day feeding period, the salmon fed the fish oil diet displayed a significantly higher specific growth rate (SGR; 0.74) than fish fed the 100% Calanus oil diet (SGR; 0.67). The apparent digestibility coefficient of total lipid and total fatty acids was significantly higher in salmon fed the fish oil and the mixed diet compared to fish fed the pure Calanus oil diet. However, the fish appeared to enhance the lipid digestive capacity by increasing bile volume and the lipolytic activity. It is concluded that the digestion of WE in Atlantic salmon is poorer than for triacylglycerols. However, the digestive capacity is increased by elevating the bile content and lipase activity. At very high levels however, WE of lipid between 37.5% and 47.7%, are there no more compensation and WE utilisation decreases.  相似文献   

2.
Alternative marine resources from lower trophic levels could partly cover the rapidly increasing needs for marine proteins and oils in the future. The North Atlantic calanoid copepod, Calanus finmarchicus, has a high level of lipids rich in n‐3 fatty acids. However, these animals have wax esters as the main lipid storage component rather than triacylglycerol (TAG). Although these esters are considered difficult to digest by many fish, is it well known that juvenile Atlantic salmon (Salmo salar) feed on zooplankton species. It is therefore possible that the capacity to utilize these lipids should be well developed in salmonids. Nonetheless, salmon hydrolyse wax esters slower than TAG and absorb fatty alcohols slower than fatty acids. However, salmon have several adaptations to digest diets rich in wax esters. These includes increased feed conversion, higher production of bile and higher activity of lipolytic enzymes in the midgut. Atlantic salmon has been shown to feed and grow on diets with a medium amount of wax esters (30% of the lipid) with results comparable to fish maintained on fish oil diets. Ingestion of higher level of wax esters (50% of the lipid) cause, however, poorer lipid digestibility and growth, so that optimal utilization of wax esters in Atlantic salmon is closer to 30% than 50% of the dietary lipid.  相似文献   

3.
Copepod oil (CO) from the marine zooplankton, Calanus finmarchicus, is a potential alternative to fish oils (FOs) for inclusion in aquafeeds. The oil is composed mainly of wax esters (WE) containing high levels of saturated fatty acids (SFAs) and monounsaturated fatty alcohols that are poorly digested by fish at low temperatures. Consequently, tissue lipid compositions may be adversely affected in salmon‐fed CO at low temperatures. This study examined the lipid and FA compositions of muscle and liver of Atlantic salmon reared at two temperatures (3 and 12 °C) and fed diets containing either FO or CO, supplying 50% of dietary lipid as WE, at two fat levels (~330 g kg?1, high; ~180 g kg?1, low). Fish were acclimatized to rearing temperature for 1 month and then fed one of four diets: high‐fat fish oil (HFFO), high‐fat Calanus oil (HFCO), low‐fat fish oil (LFFO) and low‐fat Calanus oil (LFCO). The fish were grown to produce an approximate doubling of initial weight at harvest (220 days at 3 °C and 67 days at 12 °C), and lipid content, lipid class composition and FA composition of liver and muscle were determined. The differences in tissue lipid composition between dietary groups were relatively small. The majority of FA in triacylglycerols (TAG) in both tissues were monounsaturated, and their levels were generally higher at 3 °C than 12 °C. Polyunsaturated fatty acids (PUFA), particularly (n‐3) PUFA, predominated in the polar lipids, and their level was not significantly affected by temperature. The PUFA content of TAG was highest (~26%) in the muscle of fish fed the HFCO diet at both temperatures. Tissue levels of SFAs were lower in fish‐fed diets containing HFCO than those fed HFFO, LFFO or LFCO, particularly at 3 °C. The results are consistent with Atlantic salmon being able to incorporate both the FA and fatty alcohol components of WE into tissue lipids but, overall, the effects of environmental temperature on tissue lipids were more pronounced in fish fed the CO diets than FO diets.  相似文献   

4.
Against a background of decreasing availability of fish oils for use in aquaculture, the present study was undertaken to examine whether a wax ester-rich oil derived from the calanoid copepod Calanus finmarchicus, could be used effectively by Atlantic salmon when supplied in their diet. Individually tagged Atlantic salmon of initial weight around 500 g were divided into replicate tanks of two dietary groups and fed either a fish oil supplemented diet, or an experimental diet coated with Calanus oil. Wax esters accounted for 37.5% of the lipids in the Calanus oil diet but were absent from the fish oil diet in which triacylglycerols (TAG) were the major lipid class. Over the feeding period (140 days) the salmon fed fish oil displayed a greater increase in length, but there was no significant difference between the two groups in weight gained. The specific growth rates (0.75) and the feed conversion ratio of fish fed the two diets were similar throughout the study. No differences were observed in the apparent digestibility coefficients (ADC) of fish fed Calanus oil or fish oil. The ADC of fatty acids decreased with chain length and increased with unsaturation. Long-chain alcohol utilization showed a similar tendency although there was a notable difference in that saturated long-chain alcohols were utilized better than the comparable fatty acid homologue. In fecal lipid of fish fed Calanus oil, the content of 16:0 alcohol decreased in both the free long-chain alcohol and wax ester fractions, while the corresponding fatty acid increased in the feces of both dietary groups of fish. In contrast, the proportion of the 22:1n−11 alcohol increased in both fecal wax esters and free long-chain alcohol fractions whereas 22:1n−11 fatty acid displayed no accumulation. The observed patterns of fatty acid and long-chain alcohol compositions in fecal lipid compared to those of the initial dietary lipid are consistent with the digestive lipases of salmon preferentially hydrolyzing esters containing polyunsaturated fatty acid (PUFA) moieties. The wax esters of Calanus oil contained substantial amounts of the n−3 PUFA, 20:5n−3 and 22:6n−3, that were effectively deposited in muscle and liver tissues. No major differences were seen in either lipid content/lipid classes or in gross fatty acid composition of these tissues between the two dietary groups. It is concluded that that Atlantic salmon in seawater can effectively utilize diets in which a major lipid component is derived from zooplankton rich in wax ester without any detrimental change in growth or body lipid composition. This finding gives support to the use of lipid from zooplankton from high latitudes as an alternative or as a supplement to fish oil and a provider of long-chain n−3 PUFA in diets for use in salmon aquaculture.  相似文献   

5.
To study how hepatic lipid turnover and lipid transport may be affected by complete replacement of dietary fish oil (FO) with a vegetable oil blend (VO) from start feeding until the adult stages, Atlantic salmon (Salmo salar L.) were fed either 100% FO‐ or 100% VO‐based diets (55% rapeseed oil, 30% palm oil and 15% linseed oil) from start feeding until 22 months. Liver and plasma lipoprotein lipid class levels and lipoprotein fatty acid composition were analysed through the seawater phase, whereas liver fatty acid composition, plasma cholesterol, triacylglycerol (TAG) and protein levels were analysed through both freshwater and seawater stages. Further, enzyme activity of liver fatty acid synthetase (FAS), NADH‐isocitrate dehydrogenase, malic enzyme, glucose‐6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase and expression of the gene Peroxisome proliferator‐activated receptor γ (PPARγ) was analysed during both fresh water and seawater stages through the experiment. Dietary VO significantly increased salmon liver TAG and hence total liver lipid stores after 14 and 22 months of feeding. Further, after 22 months of feeding, plasma lipid levels and plasma low‐density lipoprotein (LDL) levels were significantly decreased in VO‐fed salmon compared with FO‐fed fish. The same trend, although not statistically significant, was seen for plasma very low‐density lipoprotein (VLDL). The activity of FAS was generally low throughout the experiment with the VO group having significantly lower activity after 16 months of feeding. The expression of PPARγ in livers increased prior to seawater transfer followed by a decrease, and then another increase towards the final sampling (22 months). Dietary vegetable oil replacement had no impact on PPARγ expression in salmon liver. In summary, liver TAG stores, plasma lipid and LDL levels were affected by dietary vegetable oil replacement in Atlantic salmon during a long–term feeding experiment. Current results indicate that high dietary vegetable oil inclusion increase hepatic TAG stores and decrease plasma lipid levels possible through decreased VLDL synthesis.  相似文献   

6.
The substitution of fish oil with wax ester‐rich calanoid copepod‐derived oil in diets for carnivorous fish, such as Atlantic salmon, has previously indicated lower lipid digestibility. This suggests that the fatty alcohols (FAlc) present in wax esters may be a poorer substrate for intestinal enzymes than the fatty acids (FA) in triacylglycerol (TAG), the major lipid in fish oil. The hypothesis tested was that the possible lower utilization of dietary FAlc by salmon enterocytes is at the level of uptake and that subsequent intracellular metabolism was identical to that of FA. A dual‐labelled FAlc–FA metabolism assay was employed to determine simultaneous FAlc and FA uptake and relative utilization in enterocytes isolated from pyloric caeca of Atlantic salmon fed either a diet supplemented with fish oil or wax ester‐rich Calanus oil. The diets were fed for 10 weeks before caecal enterocytes from each dietary group were isolated and incubated with equimolar mixtures of either [1‐14C]16:0 FA and [9,10(n)‐3H]16:0 FAlc, or [1‐14C]18:1n‐9 FA and [9,10(n)‐3H] 18:1n‐9 FAlc. Uptake was measured after 2 h with relative utilization of labelled FAlc and FA calculated as a percentage of uptakes. Differences in uptake were observed, with FA showing higher uptake than FAlc, and 18:1 chains a higher uptake than 16:0. A proportion of unesterified FAlc was possibly recovered in the cells, but the majority of FAlc was recovered in lipid classes such as TAG and phospholipids indicating substantial conversion of FAlc to FA followed by esterification. However, incorporation of FA and FAlc into esterified lipids was higher when derived from FA than from FAlc. Twenty‐five to fifty percentage of the absorbed 16:0 FA was recovered in TAG fraction of the enterocytes compared with 15–75% of 18:1 FA. Twenty to thirty percentage of the absorbed 16:0 FA was recovered in the phosphatidylcholine fraction of the enterocytes compared with only 5–15% of the 18:1 FA. Less than 15% of the fatty chains taken up by the cells were used for energy production, with significantly higher oxidation of 18:1 in enterocytes from fish fed the fish oil diet compared with the Calanus oil diet. However, overall, dietary copepod oil had little effect on FAlc and FA metabolism. Metabolic modification by elongation and/or desaturation was generally low at 1–5% of the uptake. We conclude that our hypothesis was generally proved in that the uptake of FAlc by salmon enterocytes was lower than the uptake of FA and that subsequent intracellular metabolism of FAlc was similar to that of FA. However, unesterified FAlc was possibly recovered in the cells suggesting that the conversion to FA may not be concomitant with uptake.  相似文献   

7.
This study assessed refined canola oil (CO) as a supplemental dietary lipid source for juvenile fall chinook salmon, Oncorhynchus tshawytscha, parr with respect to possible effects on their growth and osmoregulatory performance and body composition. Diets with equal protein ( 57%) and lipid ( 19%) content (dry weight basis) were supplemented with lipid from either anchovy oil (AO) or CO with AO so that CO comprised 0 (0CO), 11% (11CO), 22% (22CO), 33% (33CO), 43% (43CO) or 54% (54CO) of the dietary lipid content. Triplicate groups of juvenile chinook salmon were fed their prescribed diets for 104 days in freshwater (FW) and 31 days in seawater (SW) after a 4-day transition period. Dietary fatty acid compositions reflected the different proportions of AO and CO in the supplemental lipid. Diet treatment had no effect on fish growth, feed intake, feed efficiency, protein utilization, fish mortality or terminal whole body water and ash percentages. Whole body lipid percentages were higher in 11CO and 43CO fish than in 33CO fish and in 11CO fish versus 22CO fish. Whole body protein percentages were highest in 33CO, 43CO and 54CO fish and lowest in 0CO and 22CO fish. Terminal whole body fatty acid compositions were influenced strongly by the dietary fatty acid compositions. Haematocrit and muscle water percentages were not affected consistently and plasma Na+ and Cl concentrations were unaffected by diet treatment in FW or 24-h seawater challenges during FW residency. Also, diet treatment had no effect on the physiological parameters after SW residency. We conclude that dietary treatment had no effect on fish growth performance under our experimental conditions. Also, the dietary inclusion of CO neither facilitated nor impaired the transfer of chinook salmon parr to seawater. Thus, CO was found to be an excellent and cost-effective source of supplemental dietary lipid for culture of juvenile fall chinook salmon during freshwater residency.  相似文献   

8.
Bile salt‐dependent lipase (BSDL) is assumed to be the predominant lipid hydrolase in fish digestive tracts where it hydrolyses dietary triacylglycerols (TAG), sterol esters (SE) and wax esters (WE). BSDL is known to hydrolyse TAG at much faster rates than SE and WE in both fish and mammals. An assay for BSDL has previously been developed for rainbow trout (Oncorhynchus mykiss). However, this setup may not be valid in other fish species. Accordingly, the present study aimed at optimizing previous assays in rainbow trout for use on intestinal luminal contents of Atlantic salmon (Salmo salar L.). Crude intestinal extracts from midgut were desalted before the assay and concentrated bile salts supplemented. In general, the rank order for the degree of hydrolysis in Atlantic salmon was TAG > WE > SE. The optimal assay conditions were determined as being 100 μg protein, 125 μm lipid substrate and 20 mM bile salt (taurocholate) during the 4 h of incubation. Atlantic salmon and rainbow trout of 1500 g showed similar lipolytic activity, while salmon smolts of 300 g showed a significantly lower activity. Furthermore, the inhibition of intestinal lipase activities, especially triacylglycerol hydrolase and sterol ester hydrolase, observed in trout intestinal extracts at bile salt concentrations around 10 mm , was not observed in salmon. This could indicate that the activities in these two salmonids may display different enzyme biochemistry.  相似文献   

9.
Arctic charr (Salvelinus alpinus L.) were fed either a commercial diet or six experimental test diets containing coconut oil and different polyunsaturated fatty acids (PUFA) at a level of 1% by dry weight. Best growth rates were observed with the commercial diet, worst with diet containing coconut oil with no PUFA. An increase in hepatic lipid, hepatic sterol esters and muscular moisture content, and a decrease in muscular lipid was generally found in fish fed the test diets compared to those maintained on the commercial diet.Phosphatidylcholine was the dominant polar lipid (PL) class in all tissues examined. Extensive modification of dietary saturated fatty acids into 18:1 (n-9) was observed in tissue triacylglycerols (TAG) of fish fed test diets. No changes occurred with the commercial diet.Dietary PUFA were essentially incorporated unchanged into tissue TAG of all fish in the present study. PUFA composition of hepatic phospholipids was significantly influenced by that contained in the diets. However both 18:2 (n-6) and 18:3 (n-3) in the test diets were extensively elongated and desaturated prior to incorporation into PL. The (n-9) PUFA content was always higher in liver of fish fed the test diets. When 18:2 (n-6) and 18:3 (n-3) were supplied together, the level of (n-3) PUFA exceeded those of (n-6) PUFA. Muscle PL were less influenced by diet than liver. In muscle (n-3) PUFA were always the predominant PUFA irrespective of diet. Only low amounts of (n-9) PUFA were found. It is suggested that (n-3) PUFA are the prime essential fatty acids for Arctic charr, and that they are used in preference to (n-6) PUFA for elongation, desaturation and incorporation into PL. The results suggest that the quantitative requirement of Arctic charr for EFA is may be higher than that of other salmonids.  相似文献   

10.
A growth experiment was conducted to investigate the effects of replacement of fish meal (FM) by meat and bone meal (MBM) in diets on the growth and body composition of large yellow croaker (Pseudosciaena crocea). Six isonitrogenous (43% crude protein) and isoenergetic (20 kJ g− 1) diets replacing 0, 15, 30, 45, 60 and 75% FM protein by MBM protein were formulated. Each diet was randomly allocated to triplicate groups of fish in sea floating cages (1.0 × 1.0 × 1.5 m), and each cage was stocked with 180 fish (initial average weight of 1.88 ± 0.02 g). Fish were fed twice daily (05:00 and 17:30) to apparent satiation for 8 weeks. The water temperature ranged from 26.5 to 32.5 °C, salinity from 32 to 36‰, and dissolved oxygen content was approximately 7 mg l− 1 during the experimental period. Survival decreased with increasing dietary MBM and the survival in the fish fed the diet with 75% protein from MBM was significantly lower than other groups (P < 0.05). There were no significant differences in specific growth rate (SGR) among the fish fed the diets with 0 (the control group), 15, 30 and 45% protein from MBM. However, SGR in the fish fed the diets with 60 and 75% protein from MBM were significantly lower than other groups (P < 0.05). No significant differences in feeding rate were observed among dietary treatments. The digestibility experiment showed that the apparent digestibility coefficients (ADC) of dry matter, protein, lipid and energy of MBM were significantly lower compared with those of FM (P < 0.05). Essential amino acid index was found to be correlated positively with SGR in the present study, suggesting that essential amino acid balance was important. Body composition analysis showed that the carcass protein and essential amino acids were not significantly affected by dietary MBM. The lipid and n-3 highly unsaturated fatty acid (n-3 HUFA) in fish muscle, however, significantly decreased with increasing dietary MBM. These results showed that 45% of FM protein could be replaced by MBM protein in diets of large yellow croaker without significantly reducing growth. It was suggested that the reduced growth with higher MBM was due to lower digestibility and imbalance of essential amino acids.  相似文献   

11.
Recent studies in terrestrial animals have shown that feeding the oxidized lipids led to a reduction in triacylglycerols (TAG) and total cholesterol (TC) in liver and plasma. However, limited information is available on the effect of oxidized lipids on lipid metabolism in fish. In this study, four diets containing 0 g kg?1 (control: fresh fish oil), 30 g kg?1 (low‐oxidized oil, LOO), 60 g kg?1 (medium‐oxidized oil, MOO) and 90 g kg?1 (high‐oxidized oil, HOO) graded oxidized oil levels with the same dietary lipid level were fed to channel catfish for 86 days. The tissue lipid metabolism and fatty acid composition of the fish were investigated after this period. The results showed that plasma and liver concentrations of TAG and TC decreased with increasing dietary oxidized oil level (< 0.05). Decreasing liver lipoprotein lipase and hepatic lipase activities were observed with increasing dietary oxidized fish oil inclusion (< 0.05). The liver C22:6n?3 concentrations significantly decreased with increasing dietary oxidized oil level (< 0.05), while muscle lipid had a high proportion of polyunsaturated fatty acids. It suggests that the adverse effects of dietary oxidized oil may be induced by inhibiting lipid metabolism enzymes and, consequently, inhibition of cholesterol homoeostasis and fatty acid synthesis.  相似文献   

12.
We evaluated the effect of a diet containing insect meal and insect oil on nutrient utilization, tissue fatty acid profile and lipid metabolism of freshwater Atlantic salmon (Salmo salar). Insect meal and insect oil from black soldier fly larvae (Hermetia illucens, L.; BSF), naturally high in lauric acid (12:0), were used to produce five experimental diets for an eight‐week feeding trial. 85% of the dietary protein was replaced by insect meal and/or all the vegetable oil was replaced by one of two types of insect oil. A typical industrial diet, with protein from fishmeal and soy protein concentrate (50:50) and lipids from fish oil and vegetable oil (33:66), was fed to a control group. The dietary BSF larvae did not modify feed intake or whole body lipid content. Despite the high content of saturated fatty acids in the insect‐based diets, the apparent digestibility coefficients of all fatty acids were high. There was a decrease in liver triacylglycerols of salmon fed the insect‐based diets compared to the fish fed the control diet. This is likely due to the rapid oxidation and low deposition of the medium‐chain fatty acid lauric acid.  相似文献   

13.
To compare the rates of digestion and absorption of individual fatty acids, Arctic charr, Salvelinus alpinus (L.), were fed isoenergetic diets containing 40 g kg?1 coconut oil, and various combinations of 10 g kg?1 of polyunsaturated fatty acids (PUFA) (18:2n-6 or 18:3n-3) and monounsaturated fatty acids (MONO) (20:1n-9 or 22:1n-9) in the form of free fatty acids (FFA) or triacylglycerol (TAG). The average lipid digestibility for all diets measured by use of the chromic oxide method in the pyloric caeca area, midgut and hindgut were 72%, 83% and 88%, respectively, showing that lipid digestion and absorption occur mainly in the pyloric caeca area, but also extend throughout the intestinal tract. Analyses of digesta present in the intestinal segments suggest the predominance of non-specific lipolytic activity producing primarily FFA and glycerol from dietary TAG. Comparisons of the fatty acid composition of the lipid classes in the digesta showed that the utilization of dietary TAG was dependent both on the rate of release of the individual fatty acids from TAG, and their subsequent rate of absorption. When supplied as either FFA or TAG, the levels of PUFA (18:2n-6 or 18:3n-3) in the digesta were very low, indicating almost complete utilization. Both MONO used (20:1n-9 or 22:1n-9) were absorbed less efficiently than PUFA, but the rate of release from TAG seemed to be rate limiting only for 22:1n-9, which accumulated in the digesta. The rates of absorption of 20:1n-9 and 22:1n-9 when fed as FFA were the same. Comparisons of the levels of fatty acids in the dietary coconut oil TAG with those of the digesta lipids showed that 12:0 was a good substrate for intestinal lipase and was quickly absorbed. The lipolysis of 14:0 and 16:0 was intermediate while the longer-chain 18:0 appeared very resistant to digestion and was a major component of TAG, diacylglycerols and monoacylglycerols present in particularly the hindgut digesta. The absorption of 18:0 also appeared to be very low. The results suggest that PUFA are released very rapidly from dietary TAG by intestinal lipases in Arctic charr, and are specifically absorbed compared with long-chain saturated and monounsaturated fatty acids. The rate of lipolysis may be the rate-limiting step in the digestion of very long chain monounsaturated fatty acids such as 22:1n-9, while both the rate of lipolysis and absorption may be rate limiting for long-chain saturated fatty acids such as 18:0.  相似文献   

14.
Ten-week experiment was carried out on Japanese sea bass (5.87 ± 0.02 g) to study the effects of replacement of fish oil with six alternative lipid sources: pork lard, PL; beef tallow, BT; poultry fat, PF; soybean oil, SO; corn oil, CO; and a mixed-fat (MF: tallow, 60%; soy oil, 20%; fish oil, 20%) on growth performance and fatty acid (FA) composition in fillet and liver. Seven isoenergetic and isonitrogenous experimental diets were formulated, containing 10% of added lipid. Fish oil was used in control diet, which was substituted by 50% with the alternative lipid sources in the other six diets.

Weight gain (WG), specific growth rate (SGR), Feed conversion ratio (FCR) feed intake and hepatosomatic index (HSI) of fish fed the experimental diets were not significantly different (P > 0.05). Protein efficiency ratio (PER) in fish fed the PF diet were significantly lower than those of fish fed SO and CO diets. Significant differences in carcass moisture and lipid contents of carcass and liver were observed among fish fed the dietary treatments. Generally, the fatty acid composition of fish fillets and livers reflected the dietary FA composition.  相似文献   


15.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

16.
Evaluation of vegetable oils and poultry fat digestibility is the first step to elicit their use in aquafeeds. This work aimed at determining apparent digestibility coefficients (ADCs) of energy, lipids and fatty acids of oil sources for pacu, a widely farmed neotropical Characin. A semipurified, omnivorous fish diet (344.2 g kg?1 crude protein; 18.16 MJ kg?1 gross energy) was used as reference diet. Test diets were obtained by adding 2 g kg?1 chromium III oxide and replacing 15 g kg?1 reference diet with fish, soybean, colza, corn and flaxseed oils and poultry fat. Juvenile pacu (64 ± 10.8 g; 14.6 ± 1.1 cm) were fed to apparent satiety, four times a day, and then transferred to cylindrical–conical aquaria for collection of faeces by sedimentation (n = 3). Apparent digestibility coefficients of energy and lipids were high for all tested oils (> 0.05); ADCs of saturated fatty acid (SFA) were lower than monounsaturated fatty acids (MUFA) and polyunsaturated fatty acid (PUFA). Essential fatty acids (18:2n‐6 and 18:3n‐3) had high ADC (>93%), colza oil and poultry fat yielding the lowest ADC for 18:2n‐6 (= 0.01) and 18:3n‐3 (< 0.01), respectively. Corn oil, soybean oil and flaxseed oil were interesting sources of 18:2n‐6 and 18:3n‐3 dietary fatty acids for pacu.  相似文献   

17.
This study was conducted to confirm the essentiality of dietary n-3 highly unsaturated fatty acids (n-3 HUFA) and to investigate the effects of dietary lipid sources on growth performance, liver, and blood chemistry in juvenile Japanese flounder. Three replicate groups of fish (average weighing 3.0 g) were fed experimental diets containing lauric acid ethyl ester, soybean oil, soybean and linseed oils mixture, and squid liver oil as lipid sources for 13 wk. No significant difference was observed in survival among all groups ( P >0.05). Weight gain, feed efficiency and protein efficiency ratio of fish fed the squid liver oil diet containing high n-3 HUFA level were significantly higher than those of fish fed the other diets ( P 0.05). Saturated and monounsaturated fatty acids of liver polar and neutral lipid fractions in fish fed the diet containing lauric acid tended to increase compared to those of the other groups. Fish fed the diets containing soybean and/or linseed oils, which contained high contents of 18:2n-6 and 18:3n-3, respectively, showed the highest contents of 18:2n-6 and 18:3n-3 in both lipid fractions of the liver ( P 0.05). Significantly higher content of n-3 HUFA was observed in both lipid fractions of the liver from fish fed the diet containing squid liver oil than for fish fed the other diets ( P 0.05). Total cholesterol, glucose, and glutamic-oxaloacetic acid transaminase in plasma were significantly affected by dietary lipids ( P 0.05). Histologically, the liver of fish fed the diet containing squid liver oil had a clear distinction between nuclear and cytoplasm membranes; however, cytoplasm of fish fed the diets containing lauric acid and soybean oil was shrunken, and the hepatic cell outline was indistinguishable. It is concluded that the dietary n-3 HUFA is essential for normal growth, and that the dietary lipid sources affect growth performance, liver cell property, and blood chemistry in juvenile Japanese flounder.  相似文献   

18.
The influence of dietary cholesterol (CHOL) and short-chain fatty acids (SCFA; sodium salts of acetic, propionic and butyric acid, 5:5:2 w/w/w) on growth, organ indices, macronutrient digestibility, and fatty acid composition of Atlantic salmon Salmo salar was investigated. Salmon (initial average weight 0.7 kg) held in seawater (7°C) for 175 days were fed one of six diets: 1, without CHOL/SCFA supplement; 2, with 0.5% SCFA; 3, with 2.0% SCFA; 4, with 1.0% CHOL; 5, with 1.0% CHOL and 0.5% SCFA; 6, with 1.0% CHOL and 2.0% SCFA.
Neither SCFA nor CHOL supplements had any significant effects on specific growth rate (SGR), mortality, apparent digestibility coefficients (ADC) of macronutrients, total lipid content. Hepatosomatic index (HSI) was slightly increased in salmon fed the CHOL supplement ( P  < 0.05). Hepatic CHOL concentration, but not the hepatic CHOL pool, was significantly increased ( P  < 0.001) by dietary CHOL supplementation.
The fatty acid compositions of fillet and gut tissues were not influenced by dietary treatment, while significant effects of CHOL supplements were observed in faeces and liver. Less saturated fatty acids and more mono- and poly-unsaturated fatty acids were excreted with faeces in salmon fed CHOL supplements. Salmon fed CHOL supplements significantly reduced the relative concentration of hepatic palmitic acid (C16 : 0), arachidonic acid (C20 : 4 n-6) and docosahexaenoic acid (C22 : 6 n-3), while the contents of oleic acid (C18 : 1 n-9) and eicosenoic acid (C20 : 1 n-9) were significantly increased. SCFA did not influence the observed effects of dietary CHOL.
The present study shows that dietary CHOL supplements profoundly altered excretion and liver metabolism of individual fatty acids in salmon. The impact of this alteration on physiological performance has not been elucidated.  相似文献   

19.
A feeding trial of 84 days was carried out to evaluate the effects of olive cake (OC) on growth, feed utilization, digestibility of nutrient, haematological values and some blood chemistry parameters of juvenile hybrid tilapia (Oreochromis niloticus × Oreochromis aereus). Four diets were prepared including OC at levels of 0, 120, 240 and 360 g kg?1. Twenty fish per tank (initial weight 8.58 ± 0.09 g) were randomly distributed into 200‐L fibreglass tanks. Final body weight and specific growth rate of fish fed with diets OC12 were not significantly different compared to fish fed with the control diet. The best feed conversion rate and protein efficiency rate were obtained from the fish fed with the control and OC12 diets. Growth performance, feed conversion rate and protein efficiency rate of fish fed diets with OC incorporation levels of more than 12 per cent tended to decrease significantly (P < 0.05) compared to the control and OC12 diet groups. The apparent digestibility coefficients (ADC) of dry matter significantly decreased (P < 0.05) with the increase of dietary OC levels, whereas the ADC of protein was not affected by dietary treatment. The ADC of lipid of fish fed with control and OC12 diets were significantly (P < 0.05) higher than those of fish fed with OC24 and OC36 diets. Mean corpuscular haemoglobin, cholesterol and triglycerides were affected by dietary OC level. The findings of this study show that OC can be incorporated to diets of juvenile hybrid tilapia up to 120 g kg?1 without any adverse effect on fish growth and feed utilization.  相似文献   

20.
The efficacy of using cottonseed oil (CSO) as a fish oil (FO) substitute in gilthead seabream (Sparus aurata) juveniles feed was evaluated. Fish (BWi 4.0 ± 2.9 g) were fed one of four isoproteic (~48% CP) and isolipidic (~18% L) diets for 9 weeks. Added oil was either FO (control diet, CTRL) or CSO, replacing 50% (CSO50 diet), 60% (CSO60 diet) and 70% (CSO70 diet) of dietary FO. Results indicated that FO replacement by CSO up to 60% level had no detrimental effects on growth or nutritive utilization and composition in fish muscles. Higher CSO intake (CSO70 diet, 56 g kg?1) led to a 16% reduction in weight gain, 14% in feed utilization (FCR) and 57% in muscle n‐3 long‐chain polyunsaturated fatty acids (lc PUFA) as compared with CTRL and to abundant accumulation of lipid within the hepatocytes. Use of CSO altered fatty acid (FA) profiles of muscle and liver. Data suggested utilization of linoleic acid (LOA) by fish and retain of docosahexaenoic acid (DHA) in muscles. Therefore, limits of CSO inclusion as the main source of supplementary dietary lipid, with no negative effects on fish performance or nutritive composition and utilization in muscles, are: 40–48 g kg?1 feed for gilthead seabream juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号