首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Reproductive performance is steadily increasing within the pork industry; logically, amino acid requirements need to be redefined for sows producing larger litters. The objective of this study was to determine the threonine requirement of the high-producing lactating sow and to determine the effect of lysine on this requirement. A total of 419 PIC C-15 sows were assigned randomly to treatment within parity groups (1, 2, and 3+) and gestation treatment at d 110 of gestation. Lactation diets were formulated to contain 0.80% total lysine (tLYS) with 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, or 0.65% total threonine (tTHR) or 1.06% tLYS with 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, or 0.70% tTHR. Litters were standardized to a minimum of 11 piglets within 48 h after farrowing, and sows had free access to feed throughout lactation (lactation length = 20.1 +/- 0.1 d). Sow ADFI exceeded expectation, averaging 6.90, 7.40, and 7.20 kg/d for Parities 1, 2, and 3+, respectively. Daily tLYS intake was 58 g/d (47 g of apparent ileal digestible lysine [dLYS] per day) and 74 g/d (59 g dLYS/d) for the low- and high-lysine group, respectively. Lysine intake did not affect sow or litter performance (P > 0.10). Sows gained an average of 4.8 kg in lactation. Using regression analysis, BW gain was maximized at 0.54% tTHR for all parity groups (quadratic; P < 0.05). Litter weaning weight (67.1, 67.9, and 66.2 kg for Parities 1, 2, and 3+, respectively) and litter weight gain (2.49, 2.53, and 2.44 kg/d for Parities 1, 2, and 3+, respectively) were maximized at 0.53% tTHR using regression analysis, for all parity groups (quadratic; P < 0.05). Based on regression analysis, plasma urea nitrogen on d 10 and 18 was minimized at 0.54% tTHR (P < 0.05). Lysine levels in excess of 58 g of tLYS/d did not benefit sow or litter performance. The requirement for threonine to minimize sow tissue mobilization was 37, 40, and 38 g tTHR/d (28, 30, and 30 g of apparent ileal digestible threonine [dTHR] per day) for Parities 1, 2, and 3+ sows, respectively. The threonine required to maximize litter performance was 36, 39, and 38 g of tTHR/d (28, 30, and 29 g of dTHR/d) for Parities 1, 2, and 3+ sows, respectively. Alternatively, the requirement can be expressed as 14.3 g tTHR (11.8 g dTHR) per kilogram of litter gain.  相似文献   

2.
This study evaluated the effect of feeding level and protein content in feed in first- and second-parity sows during the first month of gestation on sow BW recovery, farrowing rate, and litter size during the first month of gestation. From d 3 to 32 after the first insemination, sows were fed either 2.5 kg/d of a standard gestation diet (control, n = 49), 3.25 kg/d (+30%) of a standard gestation diet (plus feed, n = 47), or 2.5 kg/d of a gestation diet with 30% greater ileal digestible AA (plus protein, n = 49). Feed intake during the experimental period was 29% greater for sows in the plus feed group compared with those in the control and plus protein groups (93 vs. 72 kg, P < 0.05). Sows in the plus feed group gained 10 kg more BW during the experimental period compared with those in the control and plus protein groups (24.2 ± 1.2 vs. 15.5 ± 1.2 and 16.9 ± 1.2 kg, respectively, P < 0.001). Backfat gain and loin muscle depth gain were not affected by treatment (P = 0.56 and P = 0.37, respectively). Farrowing rate was smaller, although not significantly, for sows in the plus feed group compared with those in the control and plus protein groups (76.6% vs. 89.8 and 89.8%, respectively, P = 0.16). Litter size, however, was larger for sows in the plus feed group (15.2 ± 0.5 total born) compared with those in the control and plus protein groups (13.2 ± 0.4 and 13.6 ± 0.4 total born, respectively, P = 0.006). Piglet birth weight was not different among treatments (P = 0.65). For both first- and second-parity sows, the plus feed treatment showed similar effects on BW gain, farrowing rate, and litter size. In conclusion, an increased feed intake (+30%) during the first month of gestation improved sow BW recovery and increased litter size, but did not significantly affect farrowing rate in the subsequent parity. Feeding a 30% greater level of ileal digestible AA during the same period did not improve sow recovery or reproductive performance in the subsequent parity.  相似文献   

3.
Different floor space allowances for dry, pregnant sows in pens were evaluated to determine the impacts of space on sow performance, productivity, and body lesions during 2 consecutive farrowings. Treatment groups of 5 sows/pen were assigned to 1.4, 2.3, or 3.3 m(2) of floor space/sow or of 5 sows in individual stalls (1.34 m(2)). The experiment consisted of 6 replications (blocks 1 to 6), and within each block measurements were recorded for 2 consecutive pregnancies and farrowings. A total of 152 sows were measured at 1 farrowing, and 65 of those sows were measured at the successive farrowing (n = 217 records). Performance traits were BCS, BW, backfat (BF), days until rebred, and proportion culled. Litter traits were number of piglets born alive, male:female ratio, and proportions of stillborn, mummified, or dead piglets after birth. Litter performance measures were mean piglet BW and gain and litter BW. Lesion scores were assessed for several body regions. There were treatment and parity effects and interactions for several traits. An interaction of space treatment and parity occurred for sow mean BW, d-110 BW, BF, litter size, and litter and piglet BW and gain, with most effects in parity 2, 3, and 4 sows. Space affected sow mean (P < 0.001) and d-110 BW (P < 0.05) and mean BF and adjusted BF (P < 0.001); sows in pens at 相似文献   

4.
In a field trial conducted on a commercial swine farm, lean-genotype sows (n = 485) were fed diets containing 0 or 10% supplemental fat as either medium-chain triglyceride or choice white grease from d 90 of gestation until weaning (15.5 d). Effects on standard sow and litter production traits were examined together with assessment of sow body condition using live ultrasound. Daily feed intake during lactation was 10% higher in sows consuming diets without added fat (7.2 vs 6.5 kg; P < 0.01); however, lactation ME (23.9 Mcal/d) and digestible lysine (54 g/d) intakes were unaffected (P > 0.10). Sows supplemented with fat were 4 kg heavier on d 109 of gestation (220 vs 224 kg; P < or = 0.01), 1 d after farrowing (210 vs 214 kg; P < or = 0.01), and at weaning (210 vs 214 kg; P < or = 0.01). Expressed as overall gain, this amounted to a 23% increase (0.66 vs 0.86 kg/d; P < or = 0.01) and was accompanied by a 49% increase in backfat (0.82 vs 1.68 mm; P < or = 0.03) from d 90 to farrowing. Changes in sow weight (-0.01 kg/d) and backfat (+4.2 mm) over lactation were minimal and were not affected by fat supplementation (P > or = 0.10). Longissimus muscle area at weaning was slightly greater (44.96 vs 46.2 cm2) in sows consuming fat than in control sows (P < or = 0.05), but changes in longissimus muscle area were not significant from d 90 to weaning (P > or = 0.10). Gestation length, pigs born alive, average birth weight, survival (d 3 to weaning), and days to estrus were not affected by diet (P > 0.10). However, supplemental fat increased pig ADG (192 vs 203 g/d; P < 0.01) and average pig weaning weight (4.3 vs 4.5 kg) at 15.5 d (P < or = 0.02). No differences between the two fat sources were detected. This large-scale study demonstrated that supplemental fat during gestation and lactation effectively improved sow condition and improved suckling pig performance without affecting energy intake during lactation, implying improved efficiency of sow energy utilization.  相似文献   

5.
The objective of this experiment was to determine the impact of supplemental dietary fat on total lactation energy intake and sow and litter performance during high ambient temperatures (27 ± 3°C). Data were collected from 337 mixed-parity sows from July to September in a 2,600-sow commercial unit in Oklahoma. Diets were corn-soybean meal-based with 7.5% corn distillers dried grains with solubles and 6.0% wheat middlings and contained 3.24 g of standardized ileal digestible Lys/Mcal of ME. Animal-vegetable fat blend (A-V) was supplemented at 0, 2, 4, or 6%. Sows were balanced by parity, with 113, 109, and 115 sows representing parity 1, 2, and 3 to 7 (P3+), respectively. Feed disappearance (subset of 190 sows; 4.08, 4.18, 4.44, and 4.34 kg/d, for 0, 2, 4, and 6%, respectively; P < 0.05) and apparent caloric intake (12.83, 13.54, 14.78, and 14.89 Mcal of ME/d, respectively; P < 0.001) increased linearly with increasing dietary fat. Gain:feed (sow and litter BW gain relative to feed intake) was not affected (P = 0.56), but gain:Mcal ME declined linearly with the addition of A-V (0.16, 0.15, 0.15, and 0.14 for 0, 2, 4, and 6%, respectively; P < 0.01). Parity 1 sows (3.95 kg/d) had less (P < 0.05) feed disappearance than P2 (4.48 kg/d) and P3+ (4.34 kg/d) sows. Body weight change in P1 sows was greater (P < 0.01) than either P2 or P3+ sows (-0.32 vs. -0.07 and 0.12 kg/d), whereas backfat loss was less (P < 0.05) and loin depth gain was greater (P < 0.05) in P3+ sows compared with P1 and P2 sows. Dietary A-V improved litter ADG (P < 0.05; 1.95, 2.13, 2.07, and 2.31 kg/d for 0, 2, 4, and 6% fat, respectively) only in P3+ sows. Sows bred within 8 d after weaning (58.3, 72.0, 70.2, and 74.7% for 0, 2, 4, and 6%, respectively); conception rate (78.5, 89.5, 89.2, and 85.7%) and farrowing rate (71.4, 81.4, 85.5, and 78.6%) were improved (P < 0.01) by additional A-V, but weaning-to-breeding interval was not affected. Rectal and skin temperature and respiration rate of sows were greater (P < 0.002) when measured at wk 3 compared with wk 1 of lactation, but were not affected by A-V addition. Parity 3+ sows had lower (P < 0.05) rectal temperature than P1 and P2 sows, and respiration rate was reduced (P < 0.001) in P1 sows compared with P2 and P3+ sows. In conclusion, A-V improved feed disappearance and caloric intake, resulting in improved litter weight gain and subsequent reproductive performance of sows; however, feed and caloric efficiency were negatively affected.  相似文献   

6.
Four experiments involving 265, 410, 894, and 554 sows (Exp. 1 to 4, respectively) were conducted to determine the effect of spray-dried plasma (SDP) at 0 or 0.25% (Exp. 1 and 2) and 0 or 0.50% (Exp. 3 and 4) in lactation diets on average daily feed disappearance (FD), sum of sow BW, fetal and placental loss from d 110 gestation to weaning (SWL), litter size at weaning, litter weight at weaning, and average days from weaning to first estrus (WEI). Experiments 1, 3, and 4 were conducted during summer months, and Exp. 2 was conducted during fall to winter months. Experiment 1 used only parity 1 and parity 2 sows and Exp. 4 used only mature (>2 parities) sows, whereas Exp. 2 and 3 used all parity groups. Sows fed SDP in Exp. 1 had increased (P < 0.01) FD and a tendency for reduced (P = 0.06) SWL and WEI (P = 0.06). Sows fed SDP in Exp. 2 had a tendency for increased (P = 0.09) sow BW at weaning and reduced (P = 0.09) SWL, whereas other variables were not different between diets. Parity 1 and 2 sows fed SDP in Exp. 3 had increased (P < 0.01) FD, but mature sows fed SDP had reduced (P = 0.02) FD. Pig survival and litter size at weaning for all parity groups was not different between diets. The WEI for parity 1 sows fed SDP was reduced (P = 0.02) and tended to be reduced (P = 0.10) for mature sows fed SDP, but was not different between diets for parity 2 sows. More parity 1 sows fed SDP were detected (P = 0.01) in estrus 4 to 6 d after weaning, and fewer were detected (P < 0.01) in estrus 6 d after weaning compared with control parity 1 sows. In Exp. 4, FD was reduced (P < 0.01) for mature sows fed SDP; however, litter weight and average pig BW at weaning was increased (P < 0.01) with more (P < 0.01) marketable pigs (pig BW > 3.6 kg) weaned per litter. Relatively low dietary levels of SDP (0.25 to 0.50%) fed to parity 1 sows farrowed during summer months increased lactation FD and reduced WEI. Mature sows fed SDP during summer months consumed less lactation feed without compromising WEI, but had an increased litter weight, average pig BW, and number of marketable pigs at weaning.  相似文献   

7.
Gilts (n = 208) were used to evaluate the effect of lysine (protein) intake over three parities on lactation and subsequent reproductive performance. Sows were assigned randomly to one of five experimental diets at each farrowing. The five corn-soybean mealbased lactation diets contained increasing concentrations of total lysine (.60, .85, 1.10, 1.35, and 1.60%) and CP (14.67, 18.15, 21.60, 25.26, and 28.82%). Other amino acids were provided at a minimum of 105% of the NRC (1988) ratio to the lysine requirement. Sows had ad libitum access to their assigned diets from parturition until weaning (19.5+/-.2 d postpartum). All sows were fed a common gestation diet (14% CP and .68% lysine) from weaning to next farrowing. Litter size was standardized by d 3 postpartum to 10 pigs in parity 1 and 11 pigs in parity 2 and 3. Increasing dietary lysine (protein) linearly decreased (P<.05) voluntary feed intake of parity 1 (from 5.4 to 4.6 kg/d), 2 (from 6.5 to 5.8 kg/d), and 3 sows (from 6.8 to 6.2 kg/d). With the increase of dietary lysine (protein) concentration during lactation, litter weight gain responded quadratically (P<.05) in all three parities. Maximal litter ADG was 2.06, 2.36, and 2.49 kg/d in parities 1, 2, and 3, respectively, which occurred at about 44, 55, and 56 g/d of lysine intake for parity 1, 2, and 3 sows, respectively. Increasing dietary lysine (protein) had no effect (P>.1) on sow weight change, weaning-to-estrus interval, and farrowing rate in all three parities and no effect on backfat change in parity 2 and 3, but tended to increase backfat loss linearly (P<.1) in parity 1. A linear decrease of second litter size (total born, from 11.7 to 10.1, P<.1; born alive, from 11.0 to 8.9, P<.01) was observed when dietary lysine (protein) increased during the first lactation. Lysine (protein) intake during the second lactation had a quadratic effect on third litter size (P<.05; total born: 13.3, 11.2, 11.6, 11.9, and 13.6; born alive: 11.8, 10.1, 10.3, 11.2, and 12.4). However, fourth litter size was not influenced by lysine (protein) intake during the third lactation. These results suggest that the lysine (protein) requirement for subsequent reproduction is not higher than that for milk production. Parity influences the lysine (protein) requirement for lactating sows and the response of subsequent litter size to previous lactation lysine (protein) intake.  相似文献   

8.
A total of 335 lactating sows (Landrace × Large White) were used in two experiments to determine the optimum ratio of standardized ileal digestible lysine (SID-Lys) to metabolizable energy (ME) for mixed parity sows during lactation. In Exp. 1, 185 sows (weighing an average of 256.2 ± 6.5 kg and having an average parity of 3.4 ± 0.3) were allocated to one of six experimental diets in a completely randomized block design within parity groups (1, 2, and 3+). The experimental diets were formulated to contain 3.06, 3.16, 3.20, 3.25, 3.30 or 3.40 Mcal/kg of ME and each diet was fed to the sows throughout a 28 day lactation. All diets provided a similar SID-lysine level (0.86%). As a result, the diets provided a SID-Lys:ME ratio of 2.81, 2.72, 2.69, 2.65, 2.61 or 2.53 g/Mcal ME. Sow feed intake was significantly (P < 0.01) affected by the energy content of the diet as well as by sow parity. Using regression analysis, feed intake was shown to be maximized at 3.25, 3.21, 3.21 and 3.21 Mcal/kg of ME for parity 1, 2, 3+ sows and the entire cohort of sows respectively (quadratic; P < 0.01). In addition, the result of feed intake can be expressed as 2.65, 2.69, 2.69 and 2.68 g/Mcal based on analysis of SID-Lys:ME ratio. Litter weight gain was affected by dietary treatment for parity 3+ sows and the entire cohort (P < 0.01). Based on regression analysis, litter weight gain was maximized at 3.25 and 3.24 Mcal/kg of ME for parity 3+ (quadratic; P < 0.01) and the entire cohort (quadratic; P < 0.01). Similarly, the result of litter weight gain could be expressed as 2.65 and 2.66 g/Mcal of SID- Lys:ME ratio. Therefore, 3.25 Mcal/kg of ME was selected for Exp. 2 in which 150 sows (weighing 254.6 ± 7.3 kg and having an average parity of 3.4 ± 0.4) were allocated to one of five treatments in a completely randomized block design within parity (1, 2, and 3+). The experimental diets were formulated to contain 2.1, 2.4, 2.7, 3.0 or 3.3 g/Mcal of SID-Lys:ME ratio with all diets providing 3.25 Mcal/kg of ME. The diets were fed to the sows throughout a 28 day lactation. Sow body weight loss was affected by dietary treatment (parity 3+ sows, P = 0.02; entire cohort, P < 0.01) and by sow parity (P < 0.01). Litter weight at weaning and litter weight gain were affected by dietary treatment for parity 1, 2, 3+ sows and the entire cohort (P < 0.01) as well as by sow parity (P < 0.01). Plasma urea nitrogen (P < 0.01), creatinine (P < 0.01) and non-esterifide fatty acids (P = 0.04) were decreased as the SID-Lys:ME ratio of the diet increased. Insulin-like growth factor-1 (P = 0.02), estradiol (P < 0.01) and luteinizing hormone (P = 0.02) were increased as the SID-Lys:ME ratio in diet increased. Based on a broken-line model, the estimated SID-Lys: ME ratio to maximize litter weight gain was estimated to be 3.05 g/Mcal.  相似文献   

9.
ABSTRACT: A total of 335 lactating sows (Landrace × Large White) were used in two experiments to determine the optimum ratio of standardized ileal digestible lysine (SID-Lys) to metabolizable energy (ME) for mixed parity sows during lactation. In Exp. 1, 185 sows (weighing an average of 256.2 ± 6.5 kg and having an average parity of 3.4 ± 0.3) were allocated to one of six experimental diets in a completely randomized block design within parity groups (1, 2, and 3+). The experimental diets were formulated to contain 3.06, 3.16, 3.20, 3.25, 3.30 or 3.40 Mcal/kg of ME and each diet was fed to the sows throughout a 28 day lactation. All diets provided a similar SID-lysine level (0.86%). As a result, the diets provided a SID-Lys:ME ratio of 2.81, 2.72, 2.69, 2.65, 2.61 or 2.53 g/Mcal ME. Sow feed intake was significantly (P < 0.01) affected by the energy content of the diet as well as by sow parity. Using regression analysis, feed intake was shown to be maximized at 3.25, 3.21, 3.21 and 3.21 Mcal/kg of ME for parity 1, 2, 3+ sows and the entire cohort of sows respectively (quadratic; P < 0.01). In addition, the result of feed intake can be expressed as 2.65, 2.69, 2.69 and 2.68 g/Mcal based on analysis of SID-Lys:ME ratio. Litter weight gain was affected by dietary treatment for parity 3+ sows and the entire cohort (P < 0.01). Based on regression analysis, litter weight gain was maximized at 3.25 and 3.24 Mcal/kg of ME for parity 3+ (quadratic; P < 0.01) and the entire cohort (quadratic; P < 0.01). Similarly, the result of litter weight gain could be expressed as 2.65 and 2.66 g/Mcal of SID-Lys:ME ratio. Therefore, 3.25 Mcal/kg of ME was selected for Exp. 2 in which 150 sows (weighing 254.6 ± 7.3 kg and having an average parity of 3.4 ± 0.4) were allocated to one of five treatments in a completely randomized block design within parity (1, 2, and 3+). The experimental diets were formulated to contain 2.1, 2.4, 2.7, 3.0 or 3.3 g/Mcal of SID-Lys:ME ratio with all diets providing 3.25 Mcal/kg of ME. The diets were fed to the sows throughout a 28 day lactation. Sow body weight loss was affected by dietary treatment (parity 3+ sows, P = 0.02; entire cohort, P < 0.01) and by sow parity (P < 0.01). Litter weight at weaning and litter weight gain were affected by dietary treatment for parity 1, 2, 3+ sows and the entire cohort (P < 0.01) as well as by sow parity (P < 0.01). Plasma urea nitrogen (P < 0.01), creatinine (P < 0.01) and non-esterifide fatty acids (P = 0.04) were decreased as the SID-Lys:ME ratio of the diet increased. Insulin-like growth factor-1 (P = 0.02), estradiol (P < 0.01) and luteinizing hormone (P = 0.02) were increased as the SID-Lys:ME ratio in diet increased. Based on a broken-line model, the estimated SID-Lys:ME ratio to maximize litter weight gain was estimated to be 3.05 g/Mcal.  相似文献   

10.
Multiparous sows (n = 307) were used to evaluate the effects of added dietary L-carnitine, 100 mg/d during gestation and 50 ppm during lactation, on sow and litter performance. Treatments were arranged as a 2 (gestation or lactation) x2 (with or without L-carnitine) factorial. Control sows were fed 1.81 kg/d of a gestation diet containing .65% total lysine. Treated sows were fed 1.59 kg/d of the control diet with a .23 kg/d topdressing of the control diet that provided 100 mg/d of added L-carnitine. Lactation diets were formulated to contain 1.0% total lysine with or without 50 ppm of added L-carnitine. Sows fed 100 mg/d of added L-carnitine had increased IGF-I concentration on d 60 (71.3 vs. 38.0 ng/mL, P<.01) and 90 of gestation (33.0 vs. 25.0 ng/mL, P = .04). Sows fed added L-carnitine had increased BW gain (55.3 vs 46.3 kg; P<.01) and last rib fat depth gain (2.6 vs. 1.6 mm; P = .04) during gestation. Feeding 100 mg/d of added L-carnitine in gestation increased both total litter (15.5 vs. 14.6 kg; P = .04) and pig (1.53 vs 1.49 kg; P<.01) birth weight. No differences were observed in pig birth weight variation. Added L-carnitine fed during gestation increased litter weaning weight (45.0 vs. 41.3 kg, P = .02); however, no effect of feeding L-carnitine during lactation was observed. No differences were observed in subsequent days to estrus or farrowing rate. Compared to the control diet, feeding added L-carnitine in either gestation, lactation, or both, increased (P<.05) the subsequent number of pigs born alive, but not total born. In conclusion, feeding L-carnitine throughout gestation increased sow body weight and last rib fat depth gain and increased litter weights at birth and weaning.  相似文献   

11.
A regional experiment was conducted at 8 experiment stations, with a total of 320 sows initially, to evaluate the efficacy of adding 13.35% ground wheat straw to a corn-soybean meal gestation diet for 3 successive gestation-lactation (reproductive) cycles compared with sows fed a control diet without straw. A total of 708 litters were farrowed over 3 reproductive cycles. The basal gestation diet intake averaged 1.95 kg daily for both treatments, plus 0.30 kg of straw daily for sows fed the diet containing ground wheat straw (total intake of 2.25 kg/d). During lactation, all sows on both gestation treatments were fed ad libitum the standard lactation diet used at each station. Response criteria were sow farrowing and rebreeding percentages, culling factors and culling rate, weaning-to-estrus interval, sow BW and backfat measurements at several time points, and litter size and total litter weight at birth and weaning. Averaged over 3 reproductive cycles, sows fed the diet containing wheat straw farrowed and weaned 0.51 more pigs per litter (P 相似文献   

12.
An experiment was conducted to evaluate feather meal as a source of Val in lactating sow diets. Sows (five farrowing groups; mean parity = 2.34) were allotted to one of two dietary treatments on the basis of ancestry, parity, and weight and date of d 110 of gestation. The treatment diets included 1) corn-soybean meal lactation diet (n = 40) or 2) corn-soybean meal lactation diet with 2.5% feather meal (n = 39). The diets were formulated on an equal Lys basis. All litters were adjusted to 10 pigs within 24 h after farrowing, and all sows weaned at least nine pigs. Sows were bled at 110 d of gestation and at weaning, and serum urea N was determined. Backfat thickness was determined ultrasonically at 110 d of gestation and at weaning. Serum urea N and backfat thickness at d 110 of gestation were used as covariates for serum urea N and backfat thickness at weaning, respectively. The litter response criteria (weaning weight, litter weight gain, and percentage survival) were not affected (P > .10) by feather meal. The sow response criteria (weaning weight, weight loss per day, weaning backfat thickness, change in backfat thickness, ADFI, and days to estrus) were not affected (P > .10) by feather meal. Sows fed feather meal had increased (P < .01) serum urea N and tended (P = .15) to have decreased sow weaning weight. Following the initial analysis of the data, the data set was split into two groups: 1) sows with litters gaining less than 2.17 kg/d (n = 19 and 20 for control and feather meal diets, respectively) and 2) sows with litters gaining more than 2.17 kg/d (n = 21 and 19 for control and feather meal diets, respectively). These two groups were analyzed separately. In sows with litters gaining less than 2.17 kg/d, the litter and sow criteria were not affected (P > .10) by treatment. In sows with litters gaining more than 2.17 kg/d, sow weaning weight was decreased (P < .04) and sow weight loss (P < .02) and serum urea N (P < .01) were increased in sows fed feather meal. Feather meal (as a source of Val) did not improve litter weight gain, but it increased serum urea N.  相似文献   

13.
A total of 104 sows of different parities were studied. They were fed four diets with different phosphorus (P) levels during gestation for two reproductive cycles, while the same diet was fed during lactation. The aim was to decrease the total P level in the diet during gestation and to evaluate the effect on sow performance. The gestation treatments were low P (LP-; 3.7 g P/kg feed), low P with phytase (LP+, Ronozyme P; 765 FTU/kg feed), medium P (MP; 4.5 g P/kg feed) and high P (HP; 6.0 g P/kg feed). Daily feed allowances were 2.6 kg during gestation and 9.2 kg during lactation. Number of born piglets and piglet mortality were higher (p < 0.05) in the LP treatments than in the MP and HP treatments. No difference (p > 0.05) in the numbers of live-born piglets, piglet birthweights, sow weights or piglet weight gains was found between the treatments. Phosphorus level in sow milk was the highest (p < 0.05) in the MP treatment, while no effects (p > 0.05) of treatment were found on milk Ca levels, P and Ca levels in serum of sows and piglets, nor on the analysed mineral, fat and protein contents of piglets. The estimated average requirement of P for the entire gestation period was 4.4-4.5 g/day. In conclusion, a reduction of dietary total P content during gestation did not result in negative effects on sow or piglet performance. This suggests that it should be possible to lower the dietary P content for gestating sows, compared with earlier recommendations, and thereby reduce the environmental P pollution.  相似文献   

14.
One hundred fifty-three gilts were maintained in three breeding groups and fed gestation-lactation diets supplemented with either 0 (control), 1.65 or 6.62 mg of supplemental folic acid/kg of diet for two consecutive parities. Serum folate concentrations of sows were linearly (P less than .05) increased by dietary additions of folic acid during both gestation and lactation, but serum glucose and urea concentrations were unaffected by treatment. Serum folate concentrations decreased from breeding to d 60 and 90 of gestation and then increased through lactation for all treatments. Number of pigs born and live pigs at birth, d 14 and d 21 were quadratically (P less than .05) increased by folic acid additions. Average pig weights were similar among treatments (P greater than .10) on both d 0 and 14 of lactation but were less (P less than .01) than the other treatment groups on d 21 for pigs from sows fed the 1.65 mg/kg treatment. Litter weights were quadratically (P less than .01) increased on d 0 and d 14 by folic acid supplementation. Sow weight gain and backfat thickness loss were unaffected by treatment during gestation (P greater than .06); sow weight loss and backfat thickness loss increased quadratically with increasing level of folic acid during lactation (P less than .06 and .05, respectively). More control sows exhibited estrus by d 7 postweaning than sows receiving folic acid supplementation in parity I (P less than .05); however, no differences (P greater than .10) were detected among treatments by d 14, nor were any differences observed by d 7 in parity II. Conception rate was unaffected by folic acid additions. Dietary folic acid supplementation improved sow reproductive performance by increasing the number of pigs born alive.  相似文献   

15.
An experiment was conducted to determine the effects of ad libitum access to feed and water and the option to mix feed and water, all in the same feeder, on the performance of multiparous lactating sows. Feed and water were made available to sows using a self-fed wet/dry (SFWD) or a hand-fed (HF) feed-water system. In the SFWD system, feed and water were dropped into a common trough area of the feeder. The sow determined when and how much of each was dropped. With feed falling onto the flat area of the bottom of the SFWD feeder trough and water falling into the shallow bowl area, and with the 2 areas seamlessly connected, the sow also determined the wetness of the feed consumed. In the HF system, sows were given dry feed twice daily in a J-shaped feeder that was independent of the sow's water source. Sows (n = 114) were assigned to treatments based on parity and genotype. Total feed disappearance per sow during lactation (20 +/- 0.2 d) was greater (P < 0.01) with the SFWD system than with the HF system (120 vs. 110 +/- 4.1 kg, respectively). The SFWD sows had greater (P < 0.01) BW gains during lactation than HF sows (6.2 vs. 0.6 +/- 1.85 kg, respectively). Backfat depth change during lactation did not differ (P = 0.37) between treatments. Likewise, percentage of sows displaying estrus by d 11 post-weaning did not differ (P = 0.51). Piglet weaning BW was greater (P < 0.01) with the SFWD system than with the HF system (6.63 vs. 6.12 +/- 0.22 kg, respectively). Sow average daily water intake and total feed wastage during lactation did not differ (P > 0.66) between treatments. However, sows with the SFWD system wasted less water (P < 0.01) than those with the HF system (15 vs. 232 +/- 12 L, respectively). From a commercial swine production perspective, the difference in waste water volume would result in a significant variation in costs associated with manure storage and distribution. In conclusion, use of a SFWD feed-water system in lactation, which provides sows choices of when to eat, how much to eat, and if dry feed should be mixed with water during consumption, enhances sow appetite, improves litter growth performance, and wastes less water than a HF feed-water system.  相似文献   

16.
This study was conducted to determine the effect of reduced lactation length and supplemental milk replacer (MR) during high ambient temperatures. Thirty nine primiparous and 100 multiparous sows (PIC, Franklin, KY, C-22) were used in a 2 x 2 x 2 factorial arrangement of treatments. Treatments consisted of two lactation room temperatures (21 degrees C [TN] and 32 degrees C [HOT]), two lactation lengths (14 or 19 d), and two parity groups (primiparous, multiparous). Pigs were either: 1) sow-reared to 19 d or 2) sow-reared to 14 d, and then reared to 19 d with MR after sow removal. All sows were fed the same diet (1.07% lysine, 3,366 kcal of ME/kg). Sows were weighed and ultrasound for backfat thickness (BF) and longissimus muscle area (LMA) within 6 h after farrowing and at the time of sow removal (d 14 or 19). Pigs were individually weighed at weaning (d 19) and after a 47-d nursery period (d 66). Heat stress increased sow weight loss (-13.35 kg, P < 0.01) and decreased sow feed intake (4.63 kg/d, P < 0.01) during lactation compared with sows in TN (+4.5 kg and 7.5 kg/d, respectively). Early weaning (d 14) during heat stress decreased maternal weight loss (-10.1 vs. -16.6 kg, P < 0.01). Primiparous sows lost more BF in both environments (-2.60 vs. -1.56 mm, P < 0.05), and both parity groups lost more BF (-3.35 vs. -2.3 mm, P < 0.10) and LMA (-1.82 vs. -0.77 cm2, P < 0.05) when lactating for 19 d in the HOT environment than those lactating for 14 d. Pigs nursing primiparous and multiparous sows in the HOT environment and provided MR had heavier individual 19-d weights (7.37 and 8.12 kg/ pig, respectively) than those nursing to 19 d (5.57 and 6.04 kg/pig, P < 0.01). Milk replacer decreased the difference normally observed in 19-d weights between primiparous and multiparous sow-reared pigs in TN. Pigs fed MR in both environments and nursing multiparous sows had improved weight gains in the nursery compared with pigs nursing sows to 19 d (428 vs. 406 g/d, respectively; P < 0.01), or reared by primiparous sows (444 vs. 390 g/d , respectively; P < 0.01). Sow weaning on d 14 in the HOT environment decreased the wean-to-estrus interval in primiparous sows (22.8 vs. 9.2 d, P < 0.10). This study shows the benefit of early weaning in combination with milk replacer to preserve the sow and to restore pig weaning weights and nursery end weights under heat stress.  相似文献   

17.
The objective of this study was to investigate whether nursing a large number of piglets has negative effects on lactation and postweaning performance of primiparous sows and whether a greater lactation feed intake can prevent possible negative effects. Data were recorded on 268 ad libitum-fed sows of three genotypes (G1, G2, and G3) in an experiment where litter size was standardized to 8, 11, or 14 piglets during a 4-wk lactation. Compared to G1 and G2, G3 sows were heavier (P < 0.05) and leaner (P < 0.05) at weaning of their litters, lost similar amounts of BW and backfat, and their piglets grew faster (P < 0.05). Compared to G1, feed intake during lactation was higher for G3 sows (P < 0.05), and their risk of a prolonged weaning-to-estrus interval was lower (P < 0.01). Daily feed intake by sows was not affected by litter size in G1 and G3, but it was quadratically affected in G2 (P < 0.05), with a maximum at 10.8 piglets. Backfat loss of the sows increased linearly with litter size (P < 0.05) in G1 and G3. In G2, backfat loss increased only at litter sizes > 9.8 piglets (P < 0.01). Body weight loss of the sow and litter weight gain increased linearly with litter size (P < 0.001). Per extra piglet nursed, sows had a 23% (P < 0.01) higher probability of a prolonged weaning-to-estrus interval. A higher daily feed intake during lactation reduced tissue loss of the sow, increased litter weight gain (P < 0.01), and reduced the probability of a prolonged weaning-to-estrus interval (by 42% per extra kilogram; P < 0.01). Sows with a lower daily body weight loss during first lactation had a larger second litter (1.28 piglets/kg; P < 0.01), and their probability of a prolonged weaning-to-estrus interval was reduced by 61% per kilogram (P < 0.001). With increasing litter size, it is therefore recommended to reduce body weight loss during lactation by stimulating daily feed intake and by genetic selection.  相似文献   

18.
Brangus cows (n = 29) were used in three experiments to evaluate the effects of parity (multiparous vs. primiparous) and potential genetic merit for milk production (high vs. low) on forage intake during late gestation, early lactation, and late lactation. Cows were selected for milk production based on their sire's EPD for milk production (MEPD). Cows had ad libitum access to (130% of previous 2-d average intake) low-quality hay (5.3% CP and 76% NDF), and cottonseed meal was supplemented to ensure adequate degradable intake protein. All females were adapted to diets for at least 7 d, and individual intake data were collected for 9 d. During the lactation trials, actual milk production was determined using a portable milking machine following a 12-h separation from calves. During late gestation, multiparous cows consumed 24% more (P = 0.01) forage DM (kg/d) than primiparous cows; however, parity class did not influence forage intake when intake was expressed relative to BW. Furthermore, MEPD did not influence forage intake during late gestation. During early lactation, multiparous cows produced 66% more (P < 0.001) milk than primiparous cows, and high MEPD tended (P = 0.10) to produce more milk than low MEPD. Multiparous cows consumed 19% more (P < 0.0001) forage DM than did primiparous cows when expressed on an absolute basis, but not when expressed on a BW basis. High-MEPD cows consumed 8% more (P < 0.05) forage DM than did low-MEPD cows. During late lactation, multiparous cows produced 84% more milk than primiparous cows, although MEPD did not influence (P = 0.40) milk yield. In addition, multiparous cows consumed 17% more (P < 0.01) forage DM per day than primiparous cows, but when intake was expressed relative to BW, neither parity nor MEPD influenced forage DMI during late lactation. Milk yield and BW explained significant proportions of the variation in forage DMI during early and late lactation. Each kilogram increase in milk yield was associated with a 0.33- and 0.37-kg increase in forage DMI for early and late lactation, respectively. Results suggest that multiand primiparous cows consume similar amounts of low-quality forage DM, expressed per unit of BW, during late gestation and lactation. Selecting beef cows for increased genetic merit for milk production increases forage DMI during early lactation.  相似文献   

19.
The effects of high ambient temperature and level of dietary heat increment on sow milk production and piglet performance over a 28-d lactation were determined in 59 multiparous crossbred Large White x Landrace pigs kept at a thermoneutral (20 degrees C) or in a hot (29 degrees C) constant ambient temperature. Experimental diets fed during lactation were a control diet (NP; 17.6% CP) and two low-protein diets obtained by reduction of CP level (LP; 14.2% CP) or both reduction of CP and addition of fat (LPF; 15.2% CP); the NE:ME ratio was 74.3, 75.6, and 75.8% for NP, LP, and LPF diets, respectively. All diets provided 0.82 g of digestible lysine/MJ of NE, and ratios between essential AA and lysine were above recommendations. Creep feed was provided after d 21 of lactation. Reduction of CP level did not influence (P > 0.10) milk production, milk composition, or piglet performance. Despite higher nursing frequency (39 vs 34 sucklings per day), milk production decreased (P < 0.01) from 10.43 to 7.35 kg/d when temperature increased from 20 to 29 degrees C. At d 14, DM (18.6 vs 18.1%) and energy (4.96 vs 4.75 MJ/kg) contents in milk tended (P = 0.09) to be higher in sows kept at 29 degrees C. Over the 28-d lactation, piglet BW gain and BW at weaning decreased (P < 0.01) from 272 to 203 g/d and 9.51 to 7.52 kg, respectively, when temperature increased from 20 to 29 degrees C. Daily creep feed intake over the 4th wk of lactation was higher (P < 0.01) at 29 degrees C than at 20 degrees C (388 vs 232 g/litter, respectively), which was reflected in a greater increase in BW gain between wk 1 to 3 and wk 4 at the higher temperature (147 vs 130%); BW gain between weaning and d 14 postweaning was higher (P < 0.05) for piglets originating from sows kept at 29 degrees C (280 vs 218 g/d). In connection with their lower growth rate, DM (31.2 vs 33.0%), protein (15.5 vs 16.0%), lipid (12.3 vs 13.9%), and energy (8.39 vs 9.09 kJ/g) contents in weaned, slaughtered piglets were lower (P < 0.01) at 29 than at 20 degrees C. In conclusion, modification in the CP:NE ratio in order to decrease dietary heat increment did not affect milk production and piglet performance in thermoneutral or hot climatic conditions. Our results confirm the negative effect of high ambient temperatures on milk yield and emphasize the importance of creep feed supply to improve pre- and postweaning growth of piglets in these conditions, especially when weaning occurs after 3 wk of age.  相似文献   

20.
A cooperative study involving six experiment stations and 236 crossbred litters was conducted to determine the effect of nominal nipple drinker water flows of 700 mL/min and 70 mL/min (actual = 701 and 76 mL/min, respectively) during winter (November through February; 124 litters) and summer (June through August; 112 litters) seasons on performance of lactating sows and their litters. Within a season, sows were paired according to expected farrowing date and assigned at random to crates. Water flow rate treatments were assigned at random to sows within pairs. Sows were housed in farrowing crates from d 109 of gestation until either d 21 (two stations) or d 28 of lactation (four stations). Within 24 h after farrowing, litters were adjusted to contain 8 to 12 piglets. Sow feed intake (SFI) and litter weight (LW) were recorded weekly. Sow weights were recorded at d 109 of gestation, d 0, and d 21 of lactation. Sows lactating beyond 21 d were also weighed on d 28. Analysis of covariance was applied to sow weight change, average daily SFI, and LW data where litter size after crossfostering was the covariate. Average ambient temperature 30 cm above the floor at 0830 and 1600 was 24.6 +/- 0.15 degrees C and 29.4 +/- 0.14 degrees C, respectively, during summer and 20.7 +/-0.13 degrees C and 21.8 +/- 0.11 degrees C during winter trials. Restricted drinker water flow rate decreased SFI (P < 0.01; 4.59 vs. 3.94 kg/d, respectively, for 700 and 70 mL/min) and increased BW loss (P < 0.01; 0.56 vs 0.89 kg/d, respectively for 700 and 70 mL/min) but did not affect litter size (P > 0.87) or LW (P > 0.89) during the first 21 d of lactation. During d 22 to 28, the 70 mL/min flow decreased SFI (P < 0.01; 5.02 vs. 4.47 kg/d respectively, for 700 and 70 mL/min). Over the 21-d lactation period, the 70 mL/min treatment depressed (P < 0.01) SFI more during the winter (5.12 vs. 4.24 kg/d for 700 and 70 mL/ min, respectively) than during the summer (4.05 vs 3.65 kg/d for 700 and 70 mL/min, respectively). Season affected SFI (P < 0.01; 4.68 vs. 3.85 kg/d, respectively, for winter and summer), sow weight loss (P < 0.001; 0.46 vs 0.83 kg/d, respectively, for winter and summer), and LW at 21 d (P < 0.05; 52.8 vs. 49.6 kg, respectively, for winter and summer) but not (P > 0.96) the number of pigs per litter. Results of this study suggest that ample access to drinking water and controlling ambient temperature during summer months are essential for sow and litter performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号