首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporus rhinocerus, and Wolfiporia cocos, on calcium and magnesium absorption was evaluated in ovariectomized (OVX) rats fed with sclerotial DF based and low Ca (0.3%) diets for 14 days. The animals in the W. cocos DF diet group possessed significantly (p < 0.05) higher levels of cecal total short-chain fatty acids (204 mumol/g of cecal content) and had an acidic pH (5.88) in their cecum when compared with those of the cellulose control group. Such an acidic environment was found to promote the ionization of the unabsorbed Ca and Mg in their cecum, which in turn significantly (p < 0.05) increased the concentrations of cecal soluble Ca (2.56-fold) and Mg (1.22-fold). Besides, the apparent Ca and Mg absorptions of the W. cocos DF group were also significantly (p < 0.05) enhanced (Ca, 16.5%; Mg, 15.3%) together with significantly (p < 0.05) higher serum Ca (3.61 mmol/L) and Mg (1.07 mmol/L) levels when compared with those of the cellulose control group. These data suggest that ingestion of W. cocos DF could improve the overall Ca and Mg absorptions of the OVX rats fed a low Ca diet. The potential use of sclerotial DFs as a functional food ingredient for enhancing mineral absorption is also discussed.  相似文献   

2.
The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.  相似文献   

3.
Preparation of three novel dietary fibers (DFs) from mushroom sclerotia, namely, Pleurotus tuberregium, Polyporous rhinocerus, and Wolfiporia cocos, by a scale-up modified AOAC procedure using industrial enzymes was investigated. A remarkably high level of total dietary fiber (TDF) ranging from 81.7 to 96.3% sample dry matter (DM), in which a content of nonstarch polysaccharide (NSP) ranging from 86.6 to 94.3% sclerotial TDF DM, was obtained from the three sclerotia. All sclerotial DFs were rich in beta-glucan (the glucose residue ranged from 89.7 to 94.5% NSP DM) with a very low level of resistant glycogen (ranged from 3.77 to 3.94% sclerotial TDF DM). All three novel sclerotial DFs also exhibited similar, if not better, physicochemical and functional properties (pH, color, water binding capacity, oil holding capacity, and emulsifying properties) as those of barely DF control and commercial DF-rich ingredients. The potential use of the three mushroom sclerotial DFs as a new beta-glucan type DF-rich ingredient in the food industry was discussed.  相似文献   

4.
The proximate composition of sclerotia of Pleurotus tuber-regium, Polyporus rhinoceros, and Wolfiporia cocos, together with the yield, purity, monosaccharide profile, and microstructure of their insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) fractions prepared from AOAC enzymatic-gravimetric methods were investigated and compared. All three sclerotia were typical carbohydrate rich sclerotia [ranging from 90.5 to 98.1% dry matter (DM)] with an exceptionally low amount of crude lipid content (ranging from 0.02 to 0.14% DM). Besides, all three sclerotia possessed substantial amounts of IDF (ranging from 77.4 to 94.6% DM) with notably high levels of nonstarch polysaccharides (NSP) (89.9-92.2% DM) in which glucose was the predominant sugar residue (90.6-97.2% of NSP DM). On the contrary, both the yield (only ranging from 1.45 to 2.50% DM) and the amount of NSP (ranging from 22.4 to 29.6% DM) of the three sclerotial SDF fractions were very low. Scanning electron micrographs showed fragments of interwoven hyphae and insoluble materials in the three sclerotial IDF fractions, but only an amorphous structure of soluble materials was observed in the SDF fractions. The potential use of these fiber preparations was discussed.  相似文献   

5.
The effect of edible seaweeds [nori (Porphyra tenera) and wakame (Undaria pinnatifida)] on the modulation of colonic microbiota was studied in adult male Wistar rats. Each alga was fed to rats as the only source of dietary fiber and compared with cellulose. After 12 days, animals were sacrificed and cecal contents used as inoculum to ferment lactulose, citrus pectin, cellulose, nori, and wakame in vitro. Dietary treatment did not affect food intake or food efficiency, yet alga caused a significant increase in cecal weight. Nori and wakame were poorly fermented by the cellulose inoculum, with intermediate substrate degradation (76 and 57% for nori and wakame, respectively) and low metabolism to short-chain fatty acids (SCFA) (30% fermentability compared with lactulose). Cecal contents from rats fed nori and wakame showed a reduced ability to ferment all of the studied substrates compared with the cellulose inoculum, causing a reduction in SCFA production and dry matter disappearance. Only nori induced a bacterial adaptation that brought about a higher fermentation of this substrate. The different behaviors of the two algae could be due to their distinct chemical compositions. In conclusion, nondigestible components of edible seaweeds modified the metabolic activity of intestinal microflora, leading to a reduction of its fermentative capacity.  相似文献   

6.
Rye bran and aleurone, wheat bran and aleurone, and oat bran and cell wall concentrate were compared in their in vitro gut fermentation patterns of individual phenolic acids and short-chain fatty acids, preceded by enzymatic in vitro digestion mimicking small intestinal events. The formation of phenolic metabolites was the most pronounced from the wheat aleurone fraction. Phenylpropionic acids, presumably derived from ferulic acid (FA), were the major phenyl metabolites formed from all bran preparations. The processed rye, wheat, and oat bran fractions contained more water-extractable dietary fiber (DF) and had smaller particle sizes and were thus more easily fermentable than the corresponding brans. Rye aleurone and bran had the highest fermentation rate and extent probably due to high fructan and water-extractable arabinoxylan content. Oat samples also had a high content of water-extractable DF, β-glucan, but their fermentation rate was lower. Enzymatic digestion prior to in vitro colon fermentation changed the structure of oat cell walls as visualized by microscopy and increased the particle size, which is suggested to have retarded the fermentability of oat samples. Wheat bran was the most slowly fermentable among the studied samples, presumably due to the high proportion of water-unextractable DF. The in vitro digestion reduced the fructan content of wheat samples, thus also decreasing their fermentability. Among the studied short-chain fatty acids, acetate dominated the profiles. The highest and lowest production of propionate was from the oat and wheat samples, respectively. Interestingly, wheat aleurone generated similar amounts of butyrate as the rye fractions even without rapid gas production.  相似文献   

7.
The bioavailability and stability of organic phosphorus (P) in the soil may be affected by exogenous phytase (EPase) activity and distribution, but remain poorly understood. The distribution of EPase activity and hydrolysis ability of EPase on organic P in soil solid‐liquid phases was investigated. The EPase addition to soil suspension (1:20, w/v) from three soil types (red soil, brown soil, and cinnamon soil) under three treatments (untreated soil, removing clay from soil, and removing organic matter from soil) with different characters in the solution and solid phases was assayed. The results showed that the disappearance pattern of EPase activity from solution was similar for all soils, whereas the enzyme activity on the solid phase was dependent on soil types and treatments with the greatest in red soil and untreated soil. When EPase was added to soils, the adsorption ratio of organic matter and clay was 10 to 25% and 3 to 7%, respectively, with sorption capacity of organic matter being significantly (p < 0.05) stronger than that of clay. Additionally, soil dehydrogenase activity, which is the indicator of overall soil microbial activities, increased after EPase addition and the two enzymes showed significant negative relation in the soil suspension and solution. At the same time, the organic P decreased significantly (p < 0.05) after the addition of EPase in the soil solid, which had a varied rate under –40% after incubating 192 h, whereas organic P in the solution phase increased significantly (p < 0.05). This study demonstrated that organic matter had a strong protective and adsorptive effect on EPase effectiveness and microbes mightbe directly affect EPase longevity and decay. This finding suggests that EPase activity in the solid phase played a more important role in organic P hydrolysis.  相似文献   

8.
Mushroom dietary fiber or nonstarch polysaccharides (NSPs) that were soluble in hot alkali and belonged to the beta-glucan type were isolated from the sclerotia of an edible mushroom, Pleurotus tuber-regium. The mushroom NSPs were further separated into a number of fractions [hot alkali extracts (HAEs)] with weight-average molecular weights (M(w)) ranging from 1 x 10(4) to 42.2 x 10(4). The HAE fractions [with M(w) of (5.8-17.1) x 10(4)] administered intraperitoneally at a dose of 20 mg/kg of body weight to BALB/c mice implanted with solid tumor Sarcoma 180 were found to be effective in inhibiting tumor proliferation with an inhibition ratio of > or =50%. In vitro experiments using human tumor cell lines HL-60 and HepG2 had shown that HAE fractions with M(w) of (5.8-42.2) x 10(4) also had antiproliferative activity at three different concentrations (50, 100, and 200 microg/mL) toward the tumor cell lines tested. All HAE fractions did not inhibit the growth of a normal kidney cell line (Vero) from monkey. It is therefore postulated that the antitumoral effect of NSPs from the sclerotia of P. tuber-regium is probably host-mediated and cytocidal.  相似文献   

9.
Onion tissues of three varieties were evaluated for dietary fiber (DF) composition. Insoluble (IDF) and soluble (SDF) dietary fibers were subjected to acid hydrolysis, and the resultant neutral sugars, uronic acids, and Klason lignin were quantified. Brown skin exhibited the highest total dietary fiber (TDF) content (65.8%) on a dry matter basis, followed by top (48.5%) and bottom (38.6%), IDF being the main fraction found. The SDF:IDF ratio decreased from inner to outer tissues. Brown skin and outer leaves byproducts appear to be the most suitable sources of DF that might be used in food product supplementation. The chemical composition reveals that cellulose and pectic polysaccharides were the main components of onion DF in all tissues, although differences between them were noticed. An increase in the uronic acids/neutral sugars ratio from inner to outer tissues was found, suggesting that the galactan side chain shows a DF solubilization role.  相似文献   

10.
The concentration of cellulose in plant material greatly affects the decomposition rate of plant-derived litter and hence carbon availability. The disappearance of pure cellulose in soil was studied as a measure of plant decomposition and carbon turnover. Our objective was to understand the effect of various cellulose concentrations and plant material added to soil and collected during different seasons, on cellulase concentrations under laboratory conditions (e.g. constant soil moisture and incubation temperature). The percentage of recovery of the enzyme in the control soil and in samples amended with known amounts of cellulose powder was estimated. Several methods for estimating soil cellulase concentrations/activity are available, most based on the determination of released reducing sugars. The method used in this study is based on the cleavage of a cellulose-azure substrate by cellulase to spectrophotometrically detectable fragments. Our results showed a significant correlation (p<0.05) between cellulose concentration and cellulase levels in soil, which varied along the study period. When pure cellulose was added to the soil, cellulase was detected after 7 days of incubation, whereas when plant material was added to the soil, cellulase was detected after 14 days. The recovery of cellulase from soil was also found to be seasonally dependent. The method of cellulase determination used in this study was simple, safe and rapid. From the results presented in this study, it can be assumed that there are seasonally dependent factors that affect the existence and concentration of cellulase in soils of the arid Negev Desert, in addition to organic matter, water and temperature.  相似文献   

11.
This study reports the evaluation of chemical composition of a Black Vistula and White Vistula streams’ waters taking into consideration both geological conditions of the stream’s catchment area and different water’ level related to seasonal variations in particular catchment ecosystem (high stage: beginning of the vegetation period; medium stage: vegetation period; low stage: final time of vegetation period). The complex data matrix (744 observations), obtained by the determination of major inorganic analytes (Cl?, NO3 ?, SO4 2?, NH4 +, Na+, K+, Ca2+, Mg2+) in water samples by ion chromatography was treated by linear discriminant analysis and non-parametrical testing. In case of both streams obtained results indicate presence of two discriminant functions (DFs). The data variance explained by DFs is as follows: Black Vistula stream—first DF: 93.5%, second DF: 6.5%; White Vistula stream—first DF: 66.3%, second DF: 33.7%. In case of Black Vistula stream first DF allows distinction of medium, high and low waterstage related samples while second DF between high/low and medium water stage related samples. In case of White Vistula stream first DF allowed to distinguish between medium/high and low water stage related samples while second DF between medium and high water level samples. In case of both streams, the most informative DFs were related to geological conditions of investigated catchments (contents of Cl?, Na+, K+, Mg2+, Ca2+, SO4 2?), while the second to nutrient biocycle (mainly NH4 + and NO3 ?) related to slope’s exposition and inclination.  相似文献   

12.
水磷耦合对小麦耗水特性和子粒产量的影响   总被引:3,自引:1,他引:2  
在低磷地力、沙质壤土条件下,选用强筋小麦品种济麦20,设置全生育期不灌水(W0),灌底墒水+拔节水+开花水,每次灌水30 mm (W1)、60 mm(W2)、90 mm (W3) 4个灌溉处理;每个灌溉处理下设置不施磷(P0)、施P2O5105 kg/hm2(P1)、210 kg/hm2(P2)3个施磷量处理,研究了水磷耦合对麦田耗水特性、产量及水分利用率的影响。结果表明,1)在同一磷素水平下,随灌水量增加,小麦总耗水量增大,降水量和土壤供水量占耗水量的比例降低。综合考虑耗水量、产量、收获指数、水分利用率等指标,最优处理为P1W2处理,其次为P1W1处理,其总耗水量分别为435.5 mm、366.0 mm,灌水量、降水量和土壤供水量占耗水量的比例分别为41.3%、39.3%、19.3%和24.6%、46.8%、28.6%;开花至成熟阶段的耗水量占小麦全生育期耗水量的36.9%~43.3%,此阶段两处理的日耗水量、耗水模系数分别为4.6 mm、3.6 mm和42.3%、39.3%。2)施用磷肥,各处理的干物质积累量增加,子粒产量表现为W2、W3W1W0,W2、W3处理之间差异不显著;与不施磷肥的处理比较,显著提高了土壤供水量占总耗水量的比例。3)收获指数和水分利用率均为W1W2W3,P2水平下W1、W2、W3处理的收获指数和水分利用率均低于P1水平。以上结果表明,在本试验条件下,施磷(P2O5)105 kg/hm2(P1)、灌水180 mm(W2)的处理获得高产和较高的水分利用率;施磷(P2O5)105 kg/hm2(P1)、灌水90 mm(W1)的处理获得较高的产量,水分利用率显著高于上述处理,耗水量则显著低于上述处理,可供生产中水资源不足的情况下参考。  相似文献   

13.
  目的  研究果园土壤有机碳库及生化性质对小麦秸秆还田配施不同纤维素降解细菌的响应特点。  方法  以豫北碱性果园土壤为研究对象,采用室内培养法,以不添加麦秸及纤维素降解菌为对照(CK),研究仅添加麦秸(S)及麦秸分别配施尼氏芽孢杆菌(Bacillus nealsonii,S + B)、科恩氏菌(Cohnella,S + C)、灿烂类芽孢杆菌(Paenibacillus lautus,S + P)处理对土壤有机碳含量、酶活性、速效养分含量及盐碱性的影响。  结果  培养100 d内有机碳矿化速率呈现先升高后下降的趋势,且与一级动力学模型高度拟合。麦秸配施纤维素降解菌处理的土壤有机碳矿化速率、累计矿化量及潜在可矿化碳含量均高于S处理。S + B处理的土壤总有机碳、微生物量碳、水溶性有机碳和易氧化有机碳含量分别比S处理提高10.14%、35.53%、26.27%和24.34%。麦秸配施纤维素降解菌提高土壤碳库管理指数和土壤酶活性,其中S + B处理的纤维素酶、碱性磷酸酶及脱氢酶活性均显著高于S处理。与仅添加麦秸相比,麦秸配施纤维素降解菌显著增加土壤速效氮、磷、钾及可交换性镁含量,降低可交换钙含量和pH值。土壤速效氮、磷及微生物量碳是影响有机碳矿化的主要因素。  结论  麦秸配施纤维素降解菌显著提高土壤有机碳库活度及含量,改善土壤生化性质,以尼氏芽孢杆菌的促进作用相对较高。  相似文献   

14.
生物耕作对蔬菜田土壤养分及酶活性的影响   总被引:1,自引:0,他引:1  
通过在上海市崇明岛西部设置的长期定位试验,探讨生物耕作对菜田土壤养分及酶活性的影响。3年结果表明,与免耕处理相比,生物耕作有助于土壤养分含量增加,其中土壤有机质、 全氮、 全磷最高增幅分别为1822%、 1745%和1332%,速效氮、 速效磷和速效钾最高增幅分别为125.0%、 432.5%和21.3%,最高值多出现在生物耕作两年和三年时,差异显著(P0.05)。同时,随生物耕作年限的增加,05 cm土层过氧化氢酶、 脲酶、 蔗糖酶和蛋白酶活性均呈增加趋势,最高增幅分别为27.78%、 951.11%、 16.11%和420.00%,分别出现在生物耕作的第三年和第二年,且差异显著(P0.05)。此系统中过氧化氢酶活性与有机质、 全磷、 速效氮、 速效磷、 速效钾和含水量等呈显著正相关,与土壤pH值呈显著负相关(P0.05), 有机质等是土壤酶活性主要影响因子,它们单独或是综合影响酶活性; 生物耕作时间对酶活性直接影响力大小顺序为过氧化氢酶活性蔗糖酶活性脲酶活性蛋白酶活性,直接通径系数为分别为1.353、 1.070、 0.421和0.110,其主要通过有机质和速效氮正向影响酶活性。  相似文献   

15.
阔叶幼林取代杉木林后的土壤肥力研究   总被引:1,自引:0,他引:1  
研究了3种阔叶混交幼林的土壤肥力,并将其肥力特征与杉木幼林进行对比研究。3种林分的立地条件相似常绿阔叶混交林1由12种观赏树种组成,常绿阔叶混交林2由7种速生乡土阔叶树种组成,常绿阔叶混交林3由12种阔叶树种组成。结果表明,各林地的土壤呈强酸性。常绿阔叶混交林1的土壤有机质、全氮和有效磷含量居各林地之首,其余的养分含量也大于或近似于杉木林地;常绿阔叶混交林2的全磷、全钾、有效氮、有效钾含量在4种林分中最高,有机质、全氮和有效磷含量也较高,说明这两种阔叶混交林有效地改善了土壤养分状况。常绿阔叶混交林3的土壤有机质、全氮和有效氮含量大于杉木林地,但是全磷、全钾、有效磷、有效钾含量小于后者。常绿阔叶混交林地1和常绿阔叶混交林地2的细菌、真菌和放线菌数量大于杉木林地,脲酶、磷酸酶、过氧化氢酶活性也较高,表明这2种阔叶混交林显著地改善了林地肥力。  相似文献   

16.
A gravimetric method to determine heavy fractions of total petroleum hydrocarbons (TPH) in soils is reported. The method was adapted and calibrated by modifying previous standard methods published, incorporating energy and cost savings where possible. Artificially contaminated soils with different organic matter content, and aged in stationary mode for a period of 8 months were used for calibration. Insufficient solvent evaporation was identified as the most prevalent and largest positive interference in the gravimetric detection. To overcome this, while minimizing the need for heating, a combination of three 10-min rotary evaporator steps and 30 min of vacuum in a desiccator were applied, for a total solvent volume of 60 ml. Hexane was chosen as the extraction solvent and a 40–60 min treatment in an ultrasound bath of 260 W was found suitable to extract 80–95% of TPH extracted by the Soxhlet method. Finally, the use of silica gel for cleanup of co-extracted natural organic matter was found unnecessary, because of the low amounts co-extracted for soils with up to 5% organic carbon, and because the chemical nature of the co-extracted organic matter prevents its selective adsorption to silica.  相似文献   

17.
A method is described to determine acid and alkaline phosphatase activities from the rate of decomposition of p-nitrophenylphosphate in the presence of large amounts of organic matter, such as occur in the surface layers of soils or in animal wastes. The p-nitrophenol formed is separated by high pressure liquid chromatography on a cellulose column from p-nitrophenylphosphate and other organic compounds present in the soil or waste extract. After separation, p-nitrophenol is measured on-line in a spectrophotometric flow cell at a wavelength of 405 nm. In this way p-nitrophenol concentrations down to 0.1 μm can be measured, making it possible to work with substrate concentrations of 1 μm.

The necessity of correcting the phosphatase activity measured in this way for adsorption of enzyme, substrate (p-nitrophenylphosphate) and product (p-nitrophenol) is discussed.

Acid and alkaline phosphatases are inhibited strongly at phosphate concentrations greater than 0.1 mm, consequently substrate concentrations in the range of 0.01 to 0.1 mm were used.

The method was applied to a number of sandy soils and to pig slurry. Air drying or freeze drying of soils was found to decrease the phosphatase activity. Freeze drying did not affect the phosphatase activity of pig slurry. Michaelis-Menten kinetics were found to apply reasonably well. The resulting kinetic parameters are compared with values from the literature. Phosphatase activities are correlated with organic P and organic matter contents of soils and pig slurry.  相似文献   


18.
通过温室盆栽试验,研究了连续3年在不同土壤中施用不同量的生物有机肥的土壤养分、微生物生物量、酶活性及棉花各器官干物质量的变化。结果表明:连续3年施用生物有机肥,3种土壤的养分、酶活性、微生物量和各器官干物质量均有不同程度的提高。随着其用量的增加,土壤养分、微生物量及脲酶活性也在增加,土壤pH则相反,土壤蔗糖酶、多酚氧化酶、蛋白酶活性表现先上升后下降的趋势,且在不同土壤施用生物有机肥10~30 g/kg时基本达到最高,过氧化氢酶活性无显著变化。高、中、低有机质含量的土壤的棉花各器官干物质量分别在施用生物有机肥10~20、20~30、40 g/kg时基本达到最高。随着施肥年限的延长,3种土壤微生物生物量碳、氮均表现为先降低后升高的趋势,土壤酶活性则变化差异较大。通过在不同有机质含量土壤中施肥与不施肥比较发现,本底有机质含量越低的土壤,施肥较不施肥的土壤养分、脲酶、蔗糖酶、蛋白酶活性及微生物量增加幅度越大。  相似文献   

19.
冷凉区有机物料(秸秆和有机肥)还田黑土胞外酶计量特征是否受年平均温度的影响,目前缺少定量研究和深入分析。根据气候条件,该研究在黑龙江省西部依据纬度特征选取了12个有机物料还田年限大于5 a的定位试验点,基于有机物料还田种类对土壤胞外酶计量学特征及驱动因子进行了区域性分析。结果表明土壤胞外酶C:N:P在1:0.97:0.61~1:1.13:0.71之间,即有机肥还田(M)和秸秆还田(S)处理下土壤微生物整体面临微生物碳和养分(氮)限制。研究发现随年均温度升高,M和S处理的碳获取酶活性降低,而氮获取酶活性增加。此外,年均温度升高还使得M处理磷获取酶活性降低,而S处理磷获取酶活性增加。总体而言,东北冷凉区有机物料还田黑土微生物能量和养分限制主要受年平均温度直接影响,间接受pH值,土壤C:P等影响。该研究为冷凉区黑土建立合理的碳氮磷施肥模式提供数据支撑,为土壤养分恢复提供理论依据。  相似文献   

20.
While many ecosystem processes depend on biodiversity, the relationships between agricultural plant diversity and soil carbon (C) and nitrogen (N) dynamics remains controversial. Our objective was to examine how temporal plant diversity (i.e. crop rotation) influences residue decomposition, a key ecosystem function that regulates nutrient cycling, greenhouse gas emissions, and soil organic matter formation. We incubated soils from five long-term crop rotations, located at W.K. Kellogg Biological Station LTER in southwestern Michigan, USA, with and without four chemically diverse crop residues. Increasing crop biodiversity increased soil potentially mineralizable C by 125%, increased hydrolytic enzyme activity by 46%, but decreased oxidative enzyme activity by 20% in soils before residue was added. After residue additions, soils from more diverse cropping systems decomposed all residues more rapidly (0.2–8.3% greater mass loss) compared to monoculture corn. The fast-cycling, ‘Active C’ pool and microbial biomass N increased with higher cropping diversity, but the differences among rotations in Active C pools was higher for the most recalcitrant residues. Further, the ratio of the cellulose degrading enzyme (β-glucosidase) to the lignin degrading enzyme (phenol oxidase) was highest in the two most diverse crop rotations regardless of residue additions, providing additional evidence of enhanced microbial activity and substrate acquisition in more diverse rotations. Our study shows that crop diversity over time influences the processing of newly-added residues, microbial dynamics, and nutrient cycling. Diversifying crop rotations has the potential to enhance soil ecosystem functions and is critical to maintaining soil services in agricultural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号