首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circulating concentrations of estradiol (E2), vitellogenin (VTG), thyroxine (T4), triiodothyronine (T3) and insulin were measured in reproductively maturing four and five year-old Atlantic salmon. Blood samples were collected from the fish in seawater for one year prior to their spawning in November in fresh water. In females, E2 and VTG were low but detectable from December to July, and then increased to peak levels in September and October. Plasma levels of T4 and T3 were relatively constant in winter and spring, and decreased in July. Plasma concentration of T4 increased in November when the fish returned to fresh water. Plasma T3 levels remained low during the autumn. Both T4 and T3 levels tended to be higher in males than in females during September through November. Plasma insulin concentrations increased during the spring to peak values in May, and then decreased in June and July in fish of both sexes. There was a significant elevation of plasma insulin in males during October, and the levels in males tended to be higher than those found in females during final maturation.  相似文献   

2.
Early sexual maturation of male chinook salmon (maturation 1 to 4 years prior to females in the same age class) results in reduced effectiveness of stock enhancement programs and a financial loss to the salmon farming industry. Previous studies in Atlantic salmon have shown that the age of maturity in males is affected by growth and/or body energy stores, but the relative roles of these two factors are not well understood. Therefore, an experiment was designed to determine when spermatogenesis was initiated, to characterize the endocrine changes during the onset of puberty in male salmon, and to determine if the level of whole-body lipid affects the incidence of early male maturation in a wild stock (Yakima River) of 1+ spring chinook salmon. Fry were fed a commercial diet from February until August and were then divided into groups of 320 fish (mean weight, 5.6 g) and fed one of five experimental diets (two replicate groups/diet) containing 4%, 9%, 14%, 18% or 22% lipid and 82%, 77%, 73%, 69%, or 65% protein for 13 months. Fish were reared on natural photoperiod and ambient temperature (6°C to 16°C), and pair-fed to a level based on the tank with the lowest feed consumption. Fish were weighed monthly and sampled to determine body composition, pituitary follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, plasma insulin-like growth factor I (IGF-I) levels, and stage of gonadal development.

Throughout the experimental period the mean fish weight was similar among treatment groups. However, from December through the end of the experiment in the following September, maturing males were significantly larger than nonmaturing fish. Initial lipid levels in 0-age experimental fish were near 6%, which is similar to wild fish of the same stock and age captured in the Yakima River during August. Fish fed diets containing more than 4% lipid increased in whole-body lipid content during the first 2 months of feeding and then maintained at relatively constant levels during the course of the experiment. Whole-body lipid levels for the dietary treatment groups averaged 5.6%, 7.1%, 8.2%, 9.4%, and 9.6% from October through the following September.

Based on histological examination of the testes of experimental fish, type B spermatogonia and primary spermatocytes were first observed in some of the yearling males during November. These were designated maturing males. Pituitary FSH levels were significantly higher in maturing than nonmaturing males at this time and for the remainder of the study. Pituitary FSH levels increased as spermatogenesis proceeded in maturing fish, whereas pituitary LH levels increased in maturing 1+ males only during July and August, when testes were in late stages of spermatogenesis and in September during spermiation. Plasma IGF-I levels were significantly higher in maturing males than nonmaturing fish from December through the end of experiment. Since maturing males were significantly larger than nonmaturing fish of both sexes from December through September, the difference in IGF-I levels could be due to differences in growth or due to maturation.

The percentage of maturing males was significantly influenced by whole-body lipid, increasing from 34% in fish fed the 4% lipid diet to 45% in fish fed the 22% lipid diet. These data suggest that whole-body lipid levels influenced the incidence of maturation of male spring chinook salmon. In addition, both endocrine and histological indicators suggest that maturation was initiated in males approximately a full year prior to the time the fish will spawn.  相似文献   


3.
The tilapia, Oreochromis mossambicus, exhibits a sexually dimorphic pattern of growth, males growing larger than females. We examined the effects of E2 and DHT on the GH/IGF-I axis and on VTG production in the tilapia. Sexually mature tilapia were injected with 5 μg g body weight of E2 (males) or DHT (females) every 5 days for a total of 3 injections. Female tilapia had significantly higher plasma GH levels than males. However, plasma and liver mRNA levels of IGF-I were significantly lower in females than in males, whereas VTG levels in both the plasma and liver mRNA were significantly higher in females than in males. Although significant amounts of VTG were detected in control males (8 ± 0.3 μg ml), the levels in control females (3000 ± 500 μg ml) were about 400 times higher than in males. Males treated with E2 exhibited a female-like GH/IGF-I profile. That is, they had significantly elevated levels of plasma GH with lower plasma IGF-I and liver IGF-I mRNA levels. Estradiol treatment significantly elevated both plasma and liver mRNA VTG levels. Dihydrotestosterone treatment in females induced a male-like GH/IGF-I profile: plasma GH levels were significantly reduced, whereas plasma and liver IGF-I mRNA levels were significantly elevated. Both plasma and liver mRNA levels of VTG were not altered by DHT treatment. Pituitary GH mRNA levels were similar in all treatment groups. These results clearly indicate that estrogens and androgens feminize and masculinize the GH/IGF-I axis, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Although gonadotrophins are major regulators of ovarian function in teleosts and other vertebrates, accumulating evidence indicates that the growth hormone (GH)-insulin-like growth factor (IGF) axis also plays an important role in fish reproduction. As a first step to understand the physiological role of the GH-IGF system in the ovarian development of starry flounder (Platichthys stellatus), the expression profiles of GH and IGF messenger RNAs (mRNAs) and plasma GH, IGF-I, estradiol-17β (E2), and testosterone (T) levels during the ovarian development were investigated. The developmental stages of ovaries were divided into five stages (II, III, IV, V, and VI) by histological analysis. The hepatosomatic index (HSI) and gonadosomatic index (GSI) values increased and peaked at stage IV and stage V, respectively, and then declined at stage VI. Pituitary GH mRNA levels decreased sharply at stage III and raised to top level at stage VI. The hepatic IGF-I mRNA levels ascended to maximum value at stage V and then declined significantly at stage VI. However, the hepatic IGF-II mRNA levels remained stable and increased significantly at stage VI. In contrast, the ovarian IGF-I mRNA levels increased gradually and peaked at stage VI. The ovarian IGF-II mRNA levels were initially stable and increased significantly at stage V until the top level at stage VI. Consistent with the pituitary GH mRNA levels, plasma GH levels reduced sharply at stage III and remained depressed until stage V and then raised remarkably at stage VI. Plasma IGF-I level peaked at stage V and then declined to initial level. Plasma E2 level peaked at stage IV and then dramatically descended to the basal level. Plasma T level peaked at stage V and then declined significantly back to the basal level. Based on statistical analysis, significant positive correlations between hepatic IGF-I mRNA and GSI, ovarian IGF-II mRNA and hepatic IGF-II mRNA, ovarian IGF-I mRNA and ovarian IGF-II mRNA, and plasma IGF-I and plasma T were observed, respectively. These results suggest that the GH-IGF system may be involved in the ovarian development of starry flounder; GH and IGFs appear to play distinct roles in the regulation of the ovarian development in paracrine/autocrine manners. These findings extend our knowledge of the roles of the GH-IGF axis on reproduction regulation in fish.  相似文献   

5.
Rainbow trout around 743 g were fed four different diets over an 8-month period. Maturing males grew faster in the period before spawning (Sept.–Dec.) than maturing females, and significantly faster than immature fish. Mature fish stagnated in growth while the immature fish surpassed the growth of mature fish during the spawning season. The condition factor was moderately influenced by the maturation process. In the period before spawning (Sept.–Jan.) maturing females had a significantly higher hepatosomatic index than males and immature fish. An increase in dry matter and fat and a decrease of protein were observed in the muscle of maturing males and immature fish towards the spawning season, while maturing females had a slight fall in dry matter and fat and a small increase in protein in the same period. Dry matter and fat in muscle of rainbow trout were positively correlated.  相似文献   

6.
The glutamate agonist, N-methyl-D,L-aspartate (NMA) stimulates the secretion of growth hormone (GH) from pituitary fragments in vitro and increases plasma GH levels in vivo in rainbow trout, Oncorhynchus mykiss (Flett et al. 1994; Holloway and Leatherland 1997a,b); however gonadal steroid hormones appear to modulate this response in experimental situations. This study examines whether steroid hormones also modulate the GH-regulatory actions of NMA during the normal reproductive cycle of rainbow trout by examining the relationship between the stage of sexual maturation and the pituitary release of GH in vitro in response to an NMA (10-8 M) challenge. NMA had no effect on mean GH release from the pituitary glands of fish that were immature (GSI <1.0), from males during early development (GSI 1.0-3.0), or from sexually mature males (with free running milt) and females (ovulated). However, NMA significantly increased GH release from pituitary glands taken from females during the early stages of gonadal growth (GSI 1.0-9.0) and from males and females sampled during the later stages of gonadal growth (males GSI 3.01-6.0; females GSI 9.01-15.0). The GH-stimulatory action of NMA in males and females progressed to a maximum effect during the late stages of gonadal growth, and disappeared in ovulated females and free running males. Moreover, in female fish, the maximal GH release in response to the NMA challenge is positively correlated with plasma 17β-estradiol levels; no such correlation was evident for plasma testosterone levels in males. Changes in the GH response to NMA during maturation while gonadal steroid levels fluctuate provides further evidence to suggest that the effects of NMA on GH secretion are intimately linked to endogenous gonadal steroid hormone levels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Samples of hatchery-reared Atlantic salmon parr (age 0+ and 1+) from two different Norwegian river strains were investigated for connections between sexual maturity and prevalence of dorsal fin ray erosion. Mature males showed consistently lower prevalence as well as better recovery than immature males. Among the immature fish, no differences were detected between males and females. The results are discussed relative to morphological and physiological changes in maturing salmon parr.  相似文献   

8.
Plasma growth hormone (GH), insulin-like growth factor-I (IGF-I), and insulin were measured in two groups of Salmo salar L. during a one-year study. The fish were reared under either a simulated natural photoperiod (SNP) from January to December or a regime of continuous light from January to June, followed by SNP until December (LL/SNP). Plasma GH levels during spring were low, and lower in the LL/SNP fish (< 0.9 ng ml− 1) than in the SNP fish (> 1.9 ng ml− 1), although the LL/SNP grew better (0.8% per day) than the SNP fish (0.5% per day). Plasma IGF-I levels increased transiently from January (64.7 ng ml− 1) to maximum in late September in the LL/SNP (85.8 ng ml− 1) and in November in the SNP group (87.3 ng ml− 1). The ratio GH:IGF-I was lower in the LL/SNP group during spring when this group grew better than the SNP group.  相似文献   

9.
Sexually immature Arctic charr, Salvelinus alpinus (Linnaeus), were fed one of five isoenergetic practical diets of differing lipid:protein ratios (0.98, 0.67, 0.41, 0.26, 0.19) for an 84‐day period to examine the influence of diet composition on growth, and growth hormone (GH) and thyroid hormone physiology. All five diets supported growth at approximately the same rate, but the diet with a lipid:protein ratio of 0.98 had the lowest weight gain and highest food conversion ratios. A GH enzyme‐linked immunosorbent assay (ELISA), developed for use with oncorhynchid fishes, was validated for use with Arctic charr. Plasma GH concentrations were significantly higher in fish fed the diet with a lipid:protein ratio of 0.98, and there were significant direct and inverse correlations between plasma GH levels and dietary lipid and protein content respectively. There were no significant differences in pre‐ and post‐prandial plasma GH concentrations for any group. There were significant post‐prandial elevations of plasma triiodothyronine (T3) and thyroxine (T4) for fish fed the lower lipid:protein ratio diets, but there were no differences related to the diets. The results are discussed in terms of GH as a factor in the regulation of lipid and protein homeostasis in fishes.  相似文献   

10.
Triploidy as a result of thermal shock exposure of fertilized eggs decreases the growth rate ofOreochromis aureus as compared to their diploid controls, but this is due to the higher female ratio present in triploids (86%) and the lower growth rate of females. When females and males are considered separately, the growth rate is not significantly different in diploids and triploids. Since triploidy results in a malfunctioning steroidogenesis in females (mainly testosterone (T) and 17β-estradiol (E2)), but does not affect the growth rate, it is concluded that female gonadal steroids do not influence growth unless in pharmacological concentrations. These low levels of gonadal steroids are generally accompanied by higher levels of gonadotropin (GtH), but the difference is not always significant. Despite their lower growth rate diploid females have higher plasma concentrations of growth hormone (GH) during several months compared to the triploid females and diploid males. 3,5,3′-triiodo-L-thyronine (T3) levels, however, are comparable between diploid and triploid females (except for 1 month), but higher in diploid males in 4 of the 5 months studied. 11-ketotestosterone (11kT) is always higher in males. These results indicate that the higher growth rate of males may be related to the high circulating levels of T3 and 11kT.  相似文献   

11.
The egg yolk precursor, vitellogenin (VTG), was purified from blood plasma of striped bass by chromatography on hydroxylapatite or DEAE-agarose. The fish were first implanted with estradiol-17β (E2), which induced vitellogenesis. A rabbit antiserum (a-FSPP) raised against plasma from mature female striped bass, and then adsorbed with mature male plasma, was used to detect female-specific plasma protein (FSPP) in the chromatography fractions. Striped bass VTG (s-VTG) was collected from the peak fraction that was induced by E2, reacted with a-FSPP, and contained all detectable phosphoprotein. It appeared as a single band (Mr ≂ 170,000) in SDS-PAGE or Western blots using a-FSPP, and as a pair of closely-spaced phospholipoprotein bands in native gradient-PAGE, suggesting that there is more than one circulating form of s-VTG. The relationship of s-VTG to the yolk proteins was verified using a-FSPP. The antiserum reacted with the main peak from gel filtration of saline ovary extracts, and it specifically immunostained the two main bands in Western blots of the extracts and the yolk granules of mature oocytes. The amino acid composition of s-VTG was similar to that of VTG from other fish and Xenopus. A radial immunodiffusion assay for s-VTG was developed using a-FSPP and purified s-VTG as standard. The s-VTG was not detected in blood plasma of males, immature females, or regressed adult females, but plasma s-VTG levels were highly correlated with plasma E2 and testosterone levels, and oocyte growth, in maturing females. The results indicate that the maturational status of female striped bass can be identified by s-VTG immunoassay.  相似文献   

12.
Blood samples were collected from captive Pacific halibut, Hippoglossus stenolepis , at intervals of about six weeks from early December 1986 to late November 1987. Concentrations of plasma androgen and estradiol-17β were determined by radioimmunoassay. The plasma concentrations of steroid were highest during autumn and winter in halibut that matured during late winter. The concentrations of steroids in samples collected in December were above 2 ng/mL (estradiol) or 1 ng/mL (androgen) in maturing females and below 0.5 ng/mL for both steroids in non-maturing females. The levels of steroids decreased rapidly about one month before spawning. In a mature male, androgen began to rise in August and November, and reached a peak of 7 ng/mL in early December. One month before spawning, the androgen concentration fell to 0.16 ng/mL. Estradiol concentrations were detectable in the male and varied little during the year. In immature fish, neither androgen nor estradiol changed significantly throughout the year. These results suggest that the concentrations of estradiol or androgen measured in blood samples taken during December may be used to determine the sex and state of maturation of Pacific halibut.  相似文献   

13.
Plasma somatolactin (SL) concentrations were examined in chum salmon in relation to gonadal maturation; immature salmon in the Bering Sea at various stages of maturation, and mature salmon during upstream migration caught at the ocean, bay and river. Plasma SL concentrations as well as plasma prolactin (PRL) and growth hormone (GH) levels in the immature fish caught in the Bering Sea were maintained essentially at similar levels. Plasma SL in mature salmon increased significantly from the fish in the ocean to the fish in the river in both sexes. Although all the fish had fully developed gonads, females completed ovulation while still in the bay, whereas final spermeation in males was achieved after entry into the river. Thus, no clear correlation was seen between plasma SL levels and final gonadal maturation. On the other hand, plasma PRL concentrations in both male and female fish were higher in the fish in the river than those in the ocean and bay, and plasma GH levels were higher in both sexes in the fish in the bay and river than those in the ocean. Plasma levels of triglycerides, glucose, free fatty acids and ionized sodium and calcium were also examined. Significant-negative correlations were seen between plasma SL and plasma ionized calcium in mature male salmon, and between plasma SL and plasma triglycerides in mature female salmon. Although our findings do not rule out the possibility of the involvement of SL in final maturation, the results indicate that SL seems to be involved at least in energy and/or calcium metabolism during the spawning migration.  相似文献   

14.
Periodic changes in reproductive hormone levels, gonadal histology and gonadosomatic index (GSI) of snow trout, Schizothorax richardsonii, were examined to ascertain annual cycle of gonadal development and reproductive status in their natural habitat. In females, there were coherent changes in plasma 17β‐oestradiol and vitellogenin along with GSI, oocyte maturation and vitellogenic progression, collectively indicating two distinct maturation peaks during the months of September and February. Coinciding with this, in males, plasma 11‐keto testosterone was also noticeably higher during September and February, with highest GSI values in September. However, plasma 17α, 20β‐dihydroxyprogesterone levels in males were found to be persistently high from September to February. This observation suggests the potential presence of matured oozing males over a longer period, unlike in females. Overall, the close association between reproductive hormone levels, GSI and gonadal maturation stages in males and females (particularly, the presence of postovulatory follicle complexes) with apparent natural synchronization clearly indicates that S. richardsonii breeds twice in a year, possibly during late September to early November and late February to early April in the coldwater riverine habitats of the Indian Himalayan region.  相似文献   

15.
中华鲟血清卵黄蛋白原水平的初步观察   总被引:1,自引:0,他引:1  
通过碱不稳定性蛋白结合磷法测定不同年龄中华鲟(Acipenser sinensis)血清中磷含量,以磷的含量变化反映卵黄蛋白原(VTG)变化情况。实验鱼为人工养殖0.5、1、2、3、4、5、6、8、9、10龄中华鲟和野生成熟中华鲟,共81尾,其中8尾野生雌鱼在人工繁殖前后各取样2~4次,共测97个血液样本。结果显示:低龄中华鲟VTG含量较低,最低值在5龄,含磷量为(4.6±1.6)mg/L,5龄后增加,成熟后达到最大,含磷量为(52.0±4.5)mg/L。在性腺不同发育时期,雌性个体在Ⅱ~Ⅴ期VTG的含量增加,Ⅱ~Ⅲ期增加速度较快,随后变缓,Ⅴ期达到最高水平,Ⅵ期降低;而雄性个体在Ⅱ~Ⅳ期VTG的增加量很少,Ⅳ期达到最高水平,含磷量为(28.7±12.2)mg/L。繁殖雌鱼产前VTG含量最高,含磷量为(62.5±8.7)mg/L,产后低于产前。此外,发现产后鲟鱼卵巢液中含量低于其血清中含量,但高于其他年龄组血清中的水平。本实验表明淡水养殖的中华鲟有可能达到性成熟。  相似文献   

16.
Circulating levels of the egg yolk precursor protein, vitellogenin (VTG), can be used as a biochemical indicator of maturation in female fish. Here we report on purification and partial characterization of VTG from a temperate marine serranid, the gag(Mycteroperca microlepis). Development of a competitive, enzyme-linked immunosorbent assay (ELISA) for gag VTG (gVTG) is also described. The gVTG was purified by DEAE-agarose anion exchange chromatography from a pooled plasma sample collected from several juvenile gag after they were injected with 17estradiol. The protein appeared as a major band of Mr183000 after SDS-PAGE ± Western blotting using either a specific rabbit antiserum to gVTG or a universal monoclonal antibody for vertebrate VTGs. Amino acid composition analysis and N-terminal peptide sequencing verified that gVTG is similar in primary structure to VTG from several other teleost species. The purified gVTG and its specific antiserum were used to develop a sensitive, competitive, antibody-capture ELISA for quantifying the protein in blood plasma from maturing females. VTG levels in maturing female gag were highly correlated with oocyte growth and circulating testosterone and 17-estradiol levels, whereas VTG was non-detectable in juveniles, immature females or males. Two size-based maturity schedules for female gag were constructed, one utilizing detection of VTG in their circulation as a marker of maturity and the other relying on histological evidence that their ovaries were in vitellogenic or later stages of maturation. The two schedules were virtually identical. The gVTG ELISA was also used to detect VTG in blood plasma from mature Nassau grouper (Epinephelus striatus) and red hind (E. guttatus). As with gag, the assay was completely reliable for discriminating between reproductively mature females versus males from these two grouper species.  相似文献   

17.
The involvement of testosterone (T), estradiol-17β (E2), 11-ketotestosterone (11-KT), 17,20β-dihydroxy-4-pregnene-3-one (DHP), luteinizing hormone (LH), thyroxine (T4), and triiodothyronine (T3) in the regulation of downstream and upstream movement (swimming behavior) was investigated in land-locked sockeye salmon Oncorhynchus nerka, using an artificial raceway. During the downstream migratory period, T implant resulted in high plasma T levels and inhibited the occurrence of downstream swimming behavior (negative rheotaxis) in yearling (1+) immature smolts. In terms of upstream behavior, 2-year-old (2+) males exhibited high plasma T and 11-KT levels, while 2+ females had elevated T and DHP levels. In 1+ immature fish, a T implant induced upstream swimming behavior (positive rheotaxis). In experiments 1 and 3, the plasma T4 and T3 levels of non-migrants tended to be higher than those of migrants. In contrast, no marked changes in plasma and pituitary LH were found in both downstream and upstream migrants. These results suggest that sex steroids, such as T, play significant roles in the regulation of downstream and upstream swimming behaviors in land-locked sockeye salmon.  相似文献   

18.
19.
Six-week-old Nile tilapia (Oreochromis niloticus) fry with an average weight (SD) of 0.51(0.2) g were reared for 140 days on five formulated, isocaloric diets of different protein levels (25, 30, 40 and 45% by dry weight). Fish fed diets of higher protein levels (40 and 45%) showed better growth and feed conversion ratio than those on lower protein levels. Fast-growing fish matured earlier. Maturation rate was affected by the dietary protein levels. Males matured earlier than females: the first mature males were recorded when they were 14 weeks old, whereas the females matured after 18 weeks. In both sexes, mean percentage of mature fish rose with increasing dietary protein level, the percentage of mature males being higher than that of the females. Similarly, the percentage of mature fish rose with the increasing age of fish, with more than 50% males and females mature at the age of 22 and 24 weeks, respectively, the exception being the 25% protein diet fed fish, where the percentage of mature fish was below 50%. In all treatments, spawning was initiated when the fish were 22 weeks old. Smallest size at spawning of males and females was 9.2 cm (13.1 g) and 8.1 cm (8.9 g), respectively, and dietary protein levels influenced the size of fish at first maturity. For both sexes, no difference was found in the gonado-somatic index (GSI) among different treatments. Fecundity increased with increasing dietary protein levels, but significant differences were found only between 40–45% and 25–35% dietary protein levels. The relative fecundity (eggs g–1 female) was higher at the lower dietary protein levels (25–35%) than at the higher dietary protein levels (40–45%). The dietary protein levels did not have any significant influence on the size and weight of mature eggs. The chemical composition of fish and mature ovaries was significantly influenced by the dietary protein level.  相似文献   

20.
GH-transgeniccoho salmon (Oncorhynchus kitsutch) juveniles were fed diets containing 3,5,3-triiodo-L-thyronine (T3; 30 ng/g fish) or 6-n-propyl-2-thiouracil (PTU; 20 ug/g fish), to assess the effect of these drugs on the physiology, growthand survival in comparison with untreated transgenicand non-transgenic salmon. After 84 days, food intake, feed efficiency, survival, growth, hepato-somatic index (HSI), viscera-somatic index (VSI), plasma L-thyroxine (T4), T3and growth hormone (GH) levels,and cranial morphological abnormalities were determined. Growth of transgenic salmon was significantly faster than the nontransgenic salmon,and was increased by exogenous T3and reduced by PTU. Food intake of transgenic salmon was higher than that of the nontransgenic group, but was reduced by exogenous PTU administration. Food conversion efficiency of transgenic salmon was lower than that of nontransgenic salmon,and also was increased by T3 but reduced by PTU in the transgenic fish. The survival rate in all transgenic groups was significantly higher than that of nontransgenic,and transgenic T3and PTU treatment groups showed higher survivals than the transgenic-control group. The HSIand VSI of the transgenic fish were higher than the nontransgenic fish;and both parameters in the transgenic salmon were increased by PTU, but reduced by T3. The plasma T4 level in transgenic salmon was approximately 1.5-fold higher relative to the nontransgenic fish, whereas no difference was observed among the transgenic groups. Plasma T3 levels in transgenic salmon were also approximately 2-fold higher relative to the nontransgenic fish. However, the plasma T3 level in transgenic animals was increased by exogenous T3 administration, but was reduced by exogenous PTU to that observed in nontransgenic salmon. The plasma GH level of transgenic fish was higher than that of the nontransgenic salmon,and the level was increased by the exogenous T3, whereas exogenous PTU did not reduce significantly GH levels in transgenic salmon. Transgenic fish also displayed cranium, jawand opercular abnormalities typical of the effects of this gene construct incoho salmon, indicating that some imbalance in growth processes has been induced. However, these abnormalities (especially cranial disruptions) were diminished by administration of exogenous PTU. In conclusion, exogenous T3and PTU treatments can induce hyperthyroidismand hypothyroidism, respectively,and have inverse effects on growthand skeletal abnormalities of transgenic salmon constitutively expressing GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号