首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In higher eukaryotes, the S phase and M phase of the cell cycle are triggered by different cyclin-dependent kinases (CDKs). For example, in frog egg extracts, Cdk1-cyclin B catalyzes entry into mitosis but cannot trigger DNA replication. Two hypotheses can explain this observation: Either Cdk1-cyclin B fails to recognize the key substrates of its S-phase-promoting counterparts, or its activity is somehow regulated to prevent it from activating DNA synthesis. Here, we show that Cdk1-cyclin B1 has cryptic S-phase-promoting abilities that can be unmasked by relocating it from the cytoplasm to the nucleus and moderately stimulating its activity. Subcellular localization of vertebrate CDKs and the control of their activity are thus critical factors for determining their specificity.  相似文献   

2.
Centrosomes organize the bipolar mitotic spindle, and centrosomal defects cause chromosome instability. Protein phosphorylation modulates centrosome function, and we provide a comprehensive map of phosphorylation on intact yeast centrosomes (18 proteins). Mass spectrometry was used to identify 297 phosphorylation sites on centrosomes from different cell cycle stages. We observed different modes of phosphoregulation via specific protein kinases, phosphorylation site clustering, and conserved phosphorylated residues. Mutating all eight cyclin-dependent kinase (Cdk)-directed sites within the core component, Spc42, resulted in lethality and reduced centrosomal assembly. Alternatively, mutation of one conserved Cdk site within γ-tubulin (Tub4-S360D) caused mitotic delay and aberrant anaphase spindle elongation. Our work establishes the extent and complexity of this prominent posttranslational modification in centrosome biology and provides specific examples of phosphorylation control in centrosome function.  相似文献   

3.
Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the transition from the G1 phase to the S phase of the cell cycle. The amount of cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiquitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, flies, and mammals. Fbw7 associates specifically with phosphorylated cyclin E, and SCFFbw7 catalyzes cyclin E ubiquitination in vitro. Depletion of Fbw7 leads to accumulation and stabilization of cyclin E in vivo in human and Drosophila melanogaster cells. Multiple F-box proteins contribute to cyclin E stability in yeast, suggesting an overlap in SCF E3 ligase specificity that allows combinatorial control of cyclin E degradation.  相似文献   

4.
Aberrant centrosome duplication is observed in many tumor cells and may contribute to genomic instability through the formation of multipolar mitotic spindles. Cyclin-dependent kinase 2 (Cdk2) is required for multiple rounds of centrosome duplication in Xenopus egg extracts but not for the initial round of replication. Egg extracts undergo periodic oscillations in the level of free calcium. We show here that chelation of calcium in egg extracts or specific inactivation of calcium/calmodulin-dependent protein kinase II (CaMKII) blocks even initial centrosome duplication, whereas inactivation of Cdk2 does not. Duplication can be restored to inhibited extracts by addition of CaMKII and calmodulin. These results indicate that calcium, calmodulin, and CaMKII are required for an essential step in initiation of centrosome duplication. Our data suggest that calcium oscillations in the cell cycle may be linked to centrosome duplication.  相似文献   

5.
To protect genome integrity and ensure survival, eukaryotic cells exposed to genotoxic stress cease proliferating to provide time for DNA repair. Human cells responded to ultraviolet light or ionizing radiation by rapid, ubiquitin- and proteasome-dependent protein degradation of Cdc25A, a phosphatase that is required for progression from G1 to S phase of the cell cycle. This response involved activated Chk1 protein kinase but not the p53 pathway, and the persisting inhibitory tyrosine phosphorylation of Cdk2 blocked entry into S phase and DNA replication. Overexpression of Cdc25A bypassed this mechanism, leading to enhanced DNA damage and decreased cell survival. These results identify specific degradation of Cdc25A as part of the DNA damage checkpoint mechanism and suggest how Cdc25A overexpression in human cancers might contribute to tumorigenesis.  相似文献   

6.
Heterokaryon studies suggest that senescent and quiescent human diploid fibroblasts (HDF) contain a common inhibitor of entry into S phase. DNA synthesis can be induced in senescent and quiescent HDF by fusing them with cells containing DNA viral oncogenes such as SV40 T antigen, adenovirus E1A, or human papillomavirus E7. Both senescent and quiescent HDF contained the unphosphorylated form (p110Rb) of the retinoblastoma protein, a putative inhibitor of proliferation. After serum stimulation, senescent HDF did not phosphorylate p110Rb and did not enter S phase, whereas quiescent HDF phosphorylated p110Rb and entered S phase. These findings, combined with the observations that T antigen, E1A, and E7 form complexes with, and presumably inactivate, unphosphorylated p110Rb, suggest that failure to phosphorylate p110Rb may be an immediate cause of failure to enter S phase in senescent HDF.  相似文献   

7.
In eukaryotes, it is unknown whether mismatch repair (MMR) is temporally coupled to DNA replication and how strand-specific MMR is directed. We fused Saccharomyces cerevisiae MSH6 with cyclins to restrict the availability of the Msh2-Msh6 mismatch recognition complex to either S phase or G2/M phase of the cell cycle. The Msh6-S cyclin fusion was proficient for suppressing mutations at three loci that replicate at mid-S phase, whereas the Msh6-G2/M cyclin fusion was defective. However, the Msh6-G2/M cyclin fusion was functional for MMR at a very late-replicating region of the genome. In contrast, the heteroduplex rejection function of MMR during recombination was partially functional during both S phase and G2/M phase. These results indicate a temporal coupling of MMR, but not heteroduplex rejection, to DNA replication.  相似文献   

8.
Budding yeast protein phosphatase Cdc14 is sequestered in the nucleolus in an inactive state during interphase by the anchor protein Net1. Upon entry into anaphase, the Cdc14 early anaphase release (FEAR) network initiates dispersal of active Cdc14 throughout the cell. We report that the FEARnetwork promotes phosphorylation of Net1 by cyclin-dependent kinase (Cdk) complexed with cyclin B1 or cyclin B2. These phosphorylations appear to be required for FEAR and sustain the proper timing of late mitotic events. Thus, a regulatory circuit exists to ensure that the arbiter of the mitotic state, Cdk, sets in motion events that culminate in exit from mitosis.  相似文献   

9.
The regulation of DNA replication during the eukaryotic cell cycle was studied in a system where cell free replication of simian virus 40 (SV40) DNA was used as a model for chromosome replication. A factor, RF-S, was partially purified from human S phase cells based on its ability to activate DNA replication in extracts from G1 cells. RF-S contained a human homologue of the Schizosaccharomyces pombe p34cdc2 kinase, and this kinase was necessary for RF-S activity. The limiting step in activation of the p34 kinase at the G1 to S transition may be its association with a cyclin since addition of cyclin A to a G1 extract was sufficient to start DNA replication. These observations suggest that the role of p34cdc2 in controlling the start of DNA synthesis has been conserved in evolution.  相似文献   

10.
Most tumor cells are characterized by increased genomic instability and chromosome segregational defects, often associated with hyperamplification of the centrosome and the formation of multipolar spindles. However, extra centrosomes do not always lead to multipolarity. Here, we describe a process of centrosomal clustering that prevented the formation of multipolar spindles in noncancer cells. Noncancer cells needed to overcome this clustering mechanism to allow multipolar spindles to form at a high frequency. The microtubule motor cytoplasmic dynein was a critical part of this coalescing machinery, and in some tumor cells overexpression of the spindle protein NuMA interfered with dynein localization, promoting multipolarity.  相似文献   

11.
Centrosomes were microsurgically removed from BSC-1 African green monkey kidney cells before the completion of S phase. Karyoplasts (acentrosomal cells) entered and completed mitosis. However, postmitotic karyoplasts arrested before S phase, whereas adjacent control cells divided repeatedly. Postmitotic karyoplasts assembled a microtubule-organizing center containing gamma-tubulin and pericentrin, but did not regenerate centrioles. These observations reveal the existence of an activity associated with core centrosomal structures-distinct from elements of the microtubule-organizing center-that is required for the somatic cell cycle to progress through G1 into S phase. Once the cell is in S phase, these core structures are not needed for the G2-M phase transition.  相似文献   

12.
The peptidyl-prolyl isomerase Pin1 has been implicated in regulating cell cycle progression. Pin1 was found to be required for the DNA replication checkpoint in Xenopus laevis. Egg extracts depleted of Pin1 inappropriately transited from the G2 to the M phase of the cell cycle in the presence of the DNA replication inhibitor aphidicolin. This defect in replication checkpoint function was reversed after the addition of recombinant wild-type Pin1, but not an isomerase-inactive mutant, to the depleted extract. Premature mitotic entry in the absence of Pin1 was accompanied by hyperphosphorylation of Cdc25, activation of Cdc2/cyclin B, and generation of epitopes recognized by the mitotic phosphoprotein antibody, MPM-2. Therefore, Pin1 appears to be required for the checkpoint delaying the onset of mitosis in response to incomplete replication.  相似文献   

13.
cdc2 gene expression at the G1 to S transition in human T lymphocytes   总被引:39,自引:0,他引:39  
The product of the cdc2 gene, designated p34cdc2, is a serine-threonine protein kinase that controls entry of eukaryotic cells into mitosis. Freshly isolated human T lymphocytes (G0 phase) were found to have very low amounts of p34cdc2 and cdc2 messenger RNA. Expression of cdc2 increased 18 to 24 hours after exposure of T cells to phytohemagglutinin, coincident with the G1 to S transition. Antisense oligodeoxynucleotides could reduce the increase in cdc2 expression and inhibited DNA synthesis, but had no effect on several early and mid-G1 events, including blastogenesis and expression of interleukin-2 receptors, transferrin receptors, c-myb, and c-myc. Induction of cdc2 required prior induction of c-myb and c-myc. These results suggest that cdc2 induction is part of an orderly sequence of events that occurs at the G1 to S transition in T cells.  相似文献   

14.
DNA ligase: structure, mechanism, and function   总被引:67,自引:0,他引:67  
DNA ligase of E. coli is a polypeptide of molecular weight 75,000. The comparable T4-induced enzyme is somewhat smaller (63,000 to 68,000). Both enzymes catalyze the synthesis of phosphodiester bonds between adjacent 5'-phosphoryl and 3'-hydroxyl groups in nicked duplex DNA, coupled to the cleavage of the pyrophosphate bond of DPN (E. coli) or ATP (T4). Phosphodiester bond synthesis catalyzed by both enzymes occurs in a series of these discrete steps and involves the participation of two covalent intermediates (Fig. 1). A steady state kinetic analysis of the reaction-catalyzed E. coli ligase supports this mechanism, and further demonstrates that enzyme-adenylate and DNA-adenylate are kinetically significant intermediates on the direct path of phosphodiester bond synthesis. A strain of E. coli with a mutation in the structural gene for DNA ligase which results in the synthesis of an abnormally thermolabile enzyme is inviable at 42 degrees C. Although able to grow at 30 degrees C, the mutant is still defective at this temperature in its ability to repair damage to its DNA caused by ultraviolet irradiation and by alkylating agents. At 42 degrees C, all the newly replicated DNA is in the form of short 10S "Okazaki fragments," an indication that the reason for the mutant's failure to survive under these conditions is its inability to sustain the ligation step that is essential for the discontinuous synthesis of the E. coli chromosome. DNA ligase is therefore an essential enzyme required for normal DNA replication and repair in E. coli. Purified DNA ligases have proved to be useful reagents in the construction in vitro of recombinant DNA molecules.  相似文献   

15.
Because ribosome biogenesis plays an essential role in cell proliferation, control mechanisms may have evolved to recognize lesions in this critical anabolic process. To test this possibility, we conditionally deleted the gene encoding 40S ribosomal protein S6 in the liver of adult mice. Unexpectedly, livers from fasted animals deficient in S6 grew in response to nutrients even though biogenesis of 40S ribosomes was abolished. However, liver cells failed to proliferate or induce cyclin E expression after partial hepatectomy, despite formation of active cyclin D-CDK4 complexes. These results imply that abrogation of 40S ribosome biogenesis may induce a checkpoint control that prevents cell cycle progression.  相似文献   

16.
Initiation and maintenance of mitosis require the activation of protein kinase cyclin B-Cdc2 and the inhibition of protein phosphatase 2A (PP2A), which, respectively, phosphorylate and dephosphorylate mitotic substrates. The protein kinase Greatwall (Gwl) is required to maintain mitosis through PP2A inhibition. We describe how Gwl activation results in PP2A inhibition. We identified cyclic adenosine monophosphate-regulated phosphoprotein 19 (Arpp19) and α-Endosulfine as two substrates of Gwl that, when phosphorylated by this kinase, associate with and inhibit PP2A, thus promoting mitotic entry. Conversely, in the absence of Gwl activity, Arpp19 and α-Endosulfine are dephosphorylated and lose their capacity to bind and inhibit PP2A. Although both proteins can inhibit PP2A, endogenous Arpp19, but not α-Endosulfine, is responsible for PP2A inhibition at mitotic entry in Xenopus egg extracts.  相似文献   

17.
When DNA replication is inhibited during the synthesis (S) phase of the cell cycle, a signaling pathway (checkpoint) is activated that serves to prevent mitosis from initiating before completion of replication. This replication checkpoint acts by down-regulating the activity of the mitotic inducer cdc2-cyclin B. Here, we report the relation between chromatin structure and induction of the replication checkpoint. Chromatin was competent to initiate a checkpoint response only after the DNA was unwound and DNA polymerase alpha had been loaded. Checkpoint induction did not require new DNA synthesis on the unwound template strand but did require RNA primer synthesis by primase. These findings identify the RNA portion of the primer as an important component of the signal that activates the replication checkpoint.  相似文献   

18.
按照肝脏受 TAA损伤的程度把试验动物 Wistar大白鼠分为两组 ( TAA- 1和 TAA- 2 )。Northern杂交分析表明 ,在 TAA- 1的窦内皮细胞中 ,bcl- x和 bax基因的表达水平轻微降低 ;随着肝损伤的增加 ,表达水平再度下降。核 Run- off转录分析表明 ,两组的窦内皮细胞、总的 RNA合成率下降约 30 %( P<0 .0 0 1 ) ;TAA- 1、bad、bax和 cyclin E的 m RNA合成有所降低 ,而 cyclin A的 m RNA合成则明显增加 ;TAA- 2、bad、bax和 bcl- 2的 m RNA合成增加了 2~ 3倍 ,bcl- x的 m RNA合成增加了 7倍多  相似文献   

19.
The proliferating cell nuclear antigen (PCNA or cyclin) is a nuclear protein recently identified as a cofactor of DNA polymerase delta. When exponentially growing Balb/c3T3 cells are exposed to antisense oligodeoxynucleotides to PCNA, both DNA synthesis and mitosis are completely suppressed. A corresponding sense oligodeoxynucleotide has no inhibitory effects. These experiments indicate that PCNA (cyclin) is important in cellular DNA synthesis and in cell cycle progression.  相似文献   

20.
Eubacteria inactivate their ribosomes as 100S dimers or 70S monomers upon entry into stationary phase. In Escherichia coli, 100S dimer formation is mediated by ribosome modulation factor (RMF) and hibernation promoting factor (HPF), or alternatively, the YfiA protein inactivates ribosomes as 70S monomers. Here, we present high-resolution crystal structures of the Thermus thermophilus 70S ribosome in complex with each of these stationary-phase factors. The binding site of RMF overlaps with that of the messenger RNA (mRNA) Shine-Dalgarno sequence, which prevents the interaction between the mRNA and the 16S ribosomal RNA. The nearly identical binding sites of HPF and YfiA overlap with those of the mRNA, transfer RNA, and initiation factors, which prevents translation initiation. The binding of RMF and HPF, but not YfiA, to the ribosome induces a conformational change of the 30S head domain that promotes 100S dimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号