首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 提高杂交稻种子活力分级检测精度和速度。方法 提出了一种基于YOLOv5改进模型(YOLOv5-I)的杂交稻芽种快速分级检测方法,该方法引入SE (Squeeze-and-excitation)注意力机制模块以提高目标通道的特征提取能力,并采用CIoU损失函数策略以提高模型的收敛速度。结果 YOLOv5-I算法能有效实现杂交稻芽种快速分级检测,检测精度和准确率高,检测速度快。在测试集上,YOLOv5-I算法目标检测的平均精度为97.52%,平均检测时间为3.745 ms,模型占用内存空间小,仅为13.7 MB;YOLOv5-I算法的检测精度和速度均优于YOLOv5s、Faster-RCNN、YOLOv4和SSD模型。结论 YOLOv5-I算法优于现有的算法,提升了检测精度和速度,能够满足杂交稻芽种分级检测的实用要求。  相似文献   

2.
针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值分别为81.6%、87.3%,比原模型分别提高了4.9、3.4百分点。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。  相似文献   

3.
为了解决现有的农作物病害检测方法对不同番茄叶片病害检测的精度低、效果差的问题,提出一种基于YOLOv5网络模型改进的番茄叶片病害检测模型YOLOv5s-TLD。首先在原YOLOv5s模型的Backbone中构建DCAM注意力机制模块,通过制定双通道注意力和空间注意力机制加强模型对番茄叶片病理特征的提取能力,并减弱模型受复杂背景特征的影响,以提高模型对不同种类病害的检测精度和分类精度;然后应用融合Swin Transformer的C3STR模块替换原网络第6层的C3模块,强化模型在多尺度上建模的能力,实现模型对小尺寸的番茄叶片病害残差特征的高精度学习;再运用BiFPN加权双向特征金字塔网络替换原YOLOv5模型Head的PANet路径聚合网络,该网络采用跨尺度特征融合和可学习权重的方式融合模型不同层次的特征,在增强网络的特征融合能力的同时使网络获得更多的特征信息,以提高模型的感受野和特征表达能力;最后进行不同模型的检测对比试验,并在实际复杂场景下进行番茄叶片病害检测试验。试验结果表明:YOLOv5s-TLD模型平均精度均值和召回率分别为97.7%和96.3%,较原YOLOv5s模型平均精...  相似文献   

4.
为构建田间杂交大豆胚轴颜色检测模型,以大田场景下的大豆植株为研究对象,利用自走式大豆表型信息采集平台获取图像数据并构建杂交大豆胚轴颜色数据集,使用不同目标检测模型(SSD、Faster R-CNN、YOLOv3、YOLOv4、YOLOv5、YOLOX和YOLOv7)对杂交大豆胚轴颜色数据集进行检测,将模型分数(F1)、平均精度均值(mAP)及检测速度3个指标用于评估不同模型在杂交大豆胚轴颜色检测中的性能。在YOLOv7网络中添加CARAFE特征上采样算子、SE注意力机制模块和WIoU位置损失函数,建立杂交大豆胚轴颜色检测模型YOLOv7-CSW,并利用改进模型对杂交大豆胚轴颜色数据集进行消融试验。结果表明:1)YOLOv7模型的F1(0.92)与mAP(94.3%)均显著高于其他模型;2)YOLOv7模型的检测速度为58帧/s,低于YOLOv5和YOLOX,检测速度可以满足田间实时检测任务需求;3)YOLOv7-CSW模型比YOLOv7模型的F1和mAP分别升高0.04和2.6%;4)YOLOv7-CSW模型比YOLOv7模型检测速度升高了5帧/s,可以实现杂交大豆胚轴颜色实时检测。综...  相似文献   

5.
针对现有番茄检测精度低、没有品质检测和部署难度高等问题,提出基于YOLOv5s改进的番茄及品质实时检测方法,并与原始YOLOv5模型及其他经典模型进行对比研究。结果表明,针对番茄大小不同的问题,采用K-Means++算法重新计算先验锚框提高模型定位精度;在YOLOv5s主干网络末端添加GAM注意力模块,提升模型检测精度并改善鲁棒性;应用加权双向特征金字塔网络(BiFPN)修改原有结构,完成更深层次的加权特征融合;颈部添加转换器(transformer),增强网络对多尺度目标的检测能力。改进后的YOLOv5s番茄识别算法检测速度达到72帧/s。在测试集中对番茄检测均值平均精度(mAP)达到93.9%,分别比SSD、Faster-RCNN、YOLOv4-Tiny、原始YOLOv5s模型提高17.2、13.1、5.5、3.3百分点。本研究提出的番茄实时检测方法,在保持检测速度的同时,可降低背景因素干扰,实现复杂场景下对番茄的精准识别,具有非常好的应用前景,为实现番茄自动采摘提供相应技术支持。  相似文献   

6.
由于山地果园运输机立地条件差,实时作业信息的获取、反馈、集中化管理较为困难,为了解7SYDD–200型山地果园单轨运输机搭载货物情况,合理调度运输装备,建立了基于改进的YOLOv5s模型的运输机搭载柑橘果筐的检测方法:在果园自然光环境下使用RGB相机(HSK–200)采集运输机搭载柑橘果筐的图像数据;建立和优化YOLOv5s模型,部署至嵌入式设备,实现对搭载过程中的“空果筐”“柑橘”“满果筐”状态的检测。在模型的颈部网络引入CBAM注意力机制,加强模型提取语义信息的能力,解决检测过程中出现的“双重标签”的问题,使用批归一化(BN)层稀疏的尺度因子衡量各通道对模型的表征能力,并对表征能力弱的通道进行剪枝压缩,以克服基模型YOLOv5s检测速度慢的问题,通过多尺度训练策略对模型进行微调,提高模型检测准确率。试验结果表明:改进YOLOv5s模型的检测方法在柑橘搭载数据集上平均精度均值(m AP)为93.3%;模型的浮点数运算量和大小分别为9.9GFLOPs和3.5 MB,比YOLOv5s的提高60.3%和21.3%;在嵌入式平台Jetson Nano部署,其检测速度为78 ms/帧。  相似文献   

7.
【目的】为实现复杂背景下广佛手发病早期的病虫害快速精准识别,提出一种基于YOLOv5-C的广佛手病虫害识别方法。【方法】使用YOLOv5s网络模型作为基础网络,通过引入所提出的多尺度特征融合模块,提高网络模型的特征提取与特征融合能力,均衡提高每一类广佛手病虫害的识别准确率;使用注意力机制模块提高网络模型对病虫害目标特征信息的关注度,弱化复杂背景的干扰信息,提高网络模型的识别准确率;利用改进的C3-SC模块替换PANet结构中的C3模块,在不影响网络模型识别性能的条件下减少网络模型的参数。【结果】基于YOLOv5-C的复杂背景下的广佛手病虫害识别,F1分数为90.95%,平均精度均值为93.06%,网络模型大小为14.1 Mb,在GPU上每张图像平均检测时间为0.01 s。与基础网络YOLOv5s相比,平均精度均值提高了2.45个百分点,7个类别识别的平均准确率的标准差由7.14减少为3.13,变异系数由7.88%减少为3.36%。平均精度均值比Retina Net、SSD、Efficientdet和YOLOv4模型分别高22.30、20.65、4.84和2.36个百分点。【结论】该方法...  相似文献   

8.
【目的】提出了一种YOLON目标检测网络,为油茶果采收装置夜间非结构化环境下果实目标的精准识别提供技术支持。【方法】在改进YOLOv3的基础上建立YOLON目标检测网络,先在图像输入端添加照度调整模块(LA)对输入图像的照度进行自适应调整,以加强前景图像特征的显著程度,利用特征提取网络对输入图像进行多次卷积以得到对应的特征图;然后在特征融合层添加夜间隐性知识模块(NPK),以先验信息的形式辅助网络预测,提高夜间果实目标的识别准确性;最后对网络特征图进行解码处理得到对应的目标检测框,从而完成对夜间油茶果实目标的检测。为验证所提出网络的有效性,采用准确率(P)、召回率(R)、平均精度均值(mAP)和综合评价指标(F1)对YOLON及对比网络YOLOv3、YOLOv4、YOLOv5s的检测效果进行定量评价。【结果】用YOLON和各对比网络在夜间油茶果数据集上进行训练和测试,YOLON网络的P、R、mAP、F1分别为94.00%,83.63%,94.37%和89.00%,mAP分别较YOLOv3、YOLOv4、YOLOv5s提高2.32%,4.93%和2.33%;对不同果实数量油茶果图像进行测试,YOLON在单果、双果和多果测试数据集上均有较好表现,其对这3类果实目标检测的mAP为98.34%,分别较YOLOv3、YOLOv4、YOLOv5s提高2.17%,8.99%和4.35%;对整树小尺寸油茶果实的检测效果,YOLON的mAP可达93.56%,分别较YOLOv3、YOLOv4、YOLOv5s高1.24%,8.66%和5.57%;在对整树油茶果实图像进行检测时,YOLON的平均置信度为0.69,分别较YOLOv3、YOLOv4、YOLOv5s高0.09,0.22和0.14;此外,用YOLON对夜间采集的处于重叠、遮挡、复杂背景等多态耦合下的油茶果实图像进行检测,也均具有较高的检测置信度。【结论】YOLON可以满足油茶果采收机器人果实定位精度的要求,将其应用于油茶果夜间图像的检测是可行的。  相似文献   

9.
针对自然环境中,人工目视解译苹果叶部病害耗时耗力、人为主观因素强的问题。本研究提出了一种融合自注意力机制和Transformer模块的目标检测算法——BCE-YOLOv5,实现对自然环境下对苹果叶片病虫害的自动识别与检测。该算法首先使用BotNet、ConvNeXt模块分别替换Backbone网络和Neck网络的CSP结构,增加自注意力机制对目标的特征提取能力。通过将改进的CBAM引入YOLOv5的特征融合网络之后,使注意力机制对特征融合信息更加地关注。最后,用α-IoU损失函数替换IoU损失函数,使得网络在模型训练过程中收敛的更加稳定。BCE-YOLOv5算法在传统算法YOLOv5基础上平均精准率均值提升了2.9百分点,并且改进后的算法的模型大小和计算量较传统算法分别减小了0.2 M和0.9 GFLOPs。平均精度均值比YOLOv4s、YOLOv6s、YOLOx-s和YOLOv7模型分别高2.5、1.3、3.5、2.2百分点。该方法能快速准确识别苹果叶部病害,为苹果种植过程中提供智能化管理做参考。  相似文献   

10.
针对复杂环境下目前现有的玉米病虫害检测方法的精度不理想、模型复杂、难以在移动端部署等问题,本研究提出了基于轻量化改进型YOLOv5s的玉米病虫害检测方法。首先,采用轻量级网络GhostNet替换原始YOLOv5s模型中特征提取网络和特征融合网络的卷积层,降低模型的计算量和参数量,提高运行速度,以满足移动端的部署要求;其次,为弥补GhostNet所带来的检测精度下降缺陷,在模型的主干特征提取网络中引入注意力机制,更加全面地评估特征权值,以增强玉米病虫害的特征,减弱无关信息的干扰,提升检测性能;最后,将模型的损失函数由CIOU替换为EIOU,以增强模型对目标的精确定位能力,从而提升模型的收敛速度和回归精度。试验结果表明,改进模型相比原始YOLOv5s模型在对供试玉米病虫害检测中,P、R和mAP分别提高了1.9个百分点、2.2个百分点和2.0个百分点,分别达到了94.6%、80.2%和88.8%;在保持较高检测精度的同时,模型的计算量、参数量和模型大小分别减少了50.6%、52.9%和50.4%,解决了检测模型在移动端的部署问题。  相似文献   

11.
为解决水稻害虫体型小且不同类型害虫外观差异小、同类型害虫不同生长过程中外观差异大导致水稻害虫难以识别的问题,将卷积块注意力和特征金字塔模块引入图像识别网络YOLOv7。以湖北省鄂州市水稻种植基地为样本采集点,构建一个具有挑战性的大规模水稻虫害数据集;根据样本分布特点进行数据增强,引入随机噪声、Mixup、Cutout等数据增强方法,使深度学习模型从更深的维度学习害虫判别力视觉特征;将MobileNetv3作为主干网络,对YOLOv7网络进行改进,并构建基于特征金字塔的多尺度神经网络模型,提升小个体害虫的识别精度。试验结果显示,基于改进YOLOv7的水稻虫害检测平均准确率为85.46%,超越YOLOv7、EfficientNet-B0等网络。改进YOLOv7模型大小为20.6 M,检测速度为92.2 帧/s,检测速度是原始YOLOv7算法的5倍以上。结果表明,该方法能用于实现水稻虫害远程实时自动化识别。  相似文献   

12.
针对目前在复杂环境下苹果树叶病害检测准确度低、鲁棒性差、计算量大等问题,提出一种改进的基于YOLOv5s苹果树叶病害的检测方法。首先,该方法在YOLOv5s网络基础上,选择考虑方向性的SIoU边框损失函数替代CIoU边框损失函数,使网络训练和推理过程更快,更准确。其次,在特征图转换成固定大小的特征向量的过程中,使用了简单化的快速金字塔池化(SimSPPF)替换快速金字塔池化(SPPF)模块,在不影响效率的情况下丢失的信息更少。最后在主干网络中使用BoTNet(bottleneck transformers)注意力机制,使网络准确的学习到每种病害的独有特征,并且使网络收敛更快。结果表明,相比于基准网络YOLOv5s,改进后的YOLOv5s网络mAP精度为86.5%,计算量为15.5GFLOPs,模型权重大小为13.1 MB,相对于基准YOLOv5s,平均精度提升了6.3百分点、计算量降低了0.3GFLOPs、模型权重压缩了1 MB。并适用于遮挡、阴影、强光、模糊的复杂环境。本研究所提出的方法,在降低了网络大小、权重、计算量的情况下提高了复杂环境下苹果树叶病害的检测精度,且对复杂环境具有一...  相似文献   

13.
【目的】提出一种基于改进YOLOv5_OBB的旋转目标检测方法,快速、准确地检测和定位中华绒螯蟹。【方法】首先,在YOLOv5_OBB的主干网络中引入高效通道注意模块;其次,采用BiFPN网络结构进行特征融合模块设计,实现高效的双向跨尺度连接和加权特征融合;最后,采用变焦损失(varifocal loss)解决正负样本不均衡问题。【结果】改进后YOLOv5_OBB模型的P(precision)、R(recall)和mAP(mean average precision)分别达到95.4%、95.2%和90.1%,比原模型分别提高了1.0%、1.9%和1.3%。【结论】该模型能够实时、准确地检测和定位中华绒螯蟹,实现自动化养殖。  相似文献   

14.
【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用MobileNetv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型进行识别精度改进。采用平均精度、平均精度均值、图像检测速度和模型大小作为模型性能评价指标,在相同的茶叶病害数据集和试验平台中,对改进YOLOv4模型与原始YOLOv4模型、其他目标检测模型(YOLOv3、SSD和Faster R CNN)的病害识别效果进行对比试验。【结果】与原始YOLOv4模型相比,改进YOLOv4模型的大小减少了83.2%,对茶白星病、茶云纹叶枯病和茶轮斑病识别的平均精度分别提高了6.2%,1.7%和1.6%,平均精度均值达到93.85%,图像检测速度为26.6帧/s。与YOLOv3、SSD和Faster R-CNN模型相比,改进YOLOv4模型的平均精度均值分别提高了6.0%,13.7%和3.4%,图像检测速度分别提高了5.5,7.3和11.7帧/s。【结论】对YOLOv4模型所使用的改进方法具备有效性,所提出的改进YOLOv4模型可以实现对自然环境下3种常见茶叶病害的快速精准识别。  相似文献   

15.
针对现有的卷积神经网络模型过于依赖设备的计算和存储能力、水稻病虫害形状大小不一、遮挡造成的病害特征显著性弱、漏检率高等问题,采用轻量化、易部署的YOLOv4-tiny模型检测和识别水稻病虫害。首先收集831张4种不同的水稻病害叶片图像样本,为了使模型具有更好的泛化能力,对已有数据进行数据增强,将样本数量扩增到了5 320张。然后构建YOLOv4-tiny轻量化模型,与经典的YOLOv4算法模型相比,其主干特征提取网络CSPDarkNet53模块替换为CSPDarkNet53_tiny,使用CPSnet进行通道的分割,实现了网络模型的压缩并提高了训练速度;添加了FPN结构,对有效特征层进行特征融合;依据模型评价指标,通过试验将YOLOv4-tiny轻量化网络与经典的YOLOv4网络、Faster-RCNN网络、YOLOv4-MobileNet系列轻量化网络、YOLOv4-GhostNet轻量化网络和SSD轻量化网络进行对比。结果表明,YOLOv4-tiny的平均准确率可以达到81.79%,检测速度可以达到90.03帧/s,模型权重大小为22.4 MB,能够比较精准地识别水稻胡麻斑病、白叶...  相似文献   

16.
为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2模块中使用深度可分离卷积代替传统卷积,避免了复杂模型导致的内存不足和高延迟问题;最后,将原YOLOv4网络每个尺度的最后一层3×3卷积改为Inception网络结构,以提高模型在生猪姿态检测上的准确率。应用上述模型,对生猪的站立、坐立、腹卧、趴卧和侧卧5类姿态进行识别。结果显示,Mini_YOLOv4模型较YOLOv4模型在检测精度上提升了4.01百分点,在检测速度上提升近1倍,在保证识别精度的同时提升了实时性,可为生猪行为识别提供技术参考。  相似文献   

17.
为实现自然环境下不同成熟度火龙果在不同光照、不同遮挡场景下的精确快速识别,提出了一种基于对YOLOv5的网络模型改进的一种检测模型(PITAYA-YOLOv5)。首先,使用k-means++算法重新生成火龙果数据集的锚框,提高了网络的特征提取能力;其次,将CSPDarkNet替换成PPLCNet作为骨干网络,并加入SE注意力模块(Squeeze-and-Excitation block),在降低网络参数量的同时保持检测精度;同时加入加权双向特征金字塔网络(Bi-FPN)替换YOLOv5的特征融合网络,提高网络对不同尺度特征图的融合效率;引入αDIoU损失函数,提高了模型的收敛效果。试验结果表明:PITAYA-YOLOv5目标检测模型的平均精度均值为94.90%,较原模型提高1.33个百分点,F1值为91.37%,较原模型提高1.12个百分点,平均检测速度达到20.2 ms,占用内存仅有8.1 M。针对枝条遮挡和果间遮挡下的火龙果检测能力明显增强。对比Faster R-CNN、CenterNet、YOLOv3、YOLOv5以及轻量化骨干网络ShuffleNetv2,该模型具有良好的检测精...  相似文献   

18.
[目的]针对自然场景下无人机拍摄的图像中鼠洞目标占比小,与地物高度融合且容易受阴影等各类因素影响,导致误识别率高的情况,需要对目标检测算法进行改进,以提高鼠洞定位精度。[方法]以YOLOv5s为基础算法进行优化改进,在Backbone主干网络的C3模块融合轻量ECA注意力机制模块,从通道方面更好关注特征信息,降低漏检率;在特征金字塔FPN中引入转置卷积学习最佳上采样方法,恢复卷积运算中丢失的有用信息;用SIoU替换CIoU损失函数来有效减少冗余框,同时加快预测框的收敛和回归。其次,做消融实验来验证3种改进策略的有效性并对比模型改进前后在不同场景下的识别情况。[结果]改进的YOLOv5s比原始模型的P、R和mAP分别提高了3.3%、3.7%和3.5%,FPS达到了56.7,且在特殊场景下无漏检、错检的情况,可以保证鼠洞检测的准确性和实时性。对比其它算法在平均检测精度、体积和速度上都较有优势。[结论]本文改进的算法能满足在复杂场景下的鼠洞检测,实现精确定位,为鼠害监测提供鼠洞检测方面的支撑。  相似文献   

19.
针对工业施工场所背景复杂导致安全帽检测精度低及漏检等问题,提出一种融合注意力机制的安全帽检测算法。该算法在YOLOv5s网络模型的基础上,在主干网络中加入坐标注意力模块,使得网络可以有效关注目标信息的特征,提升远距离目标的检测能力。在网络训练过程中优化损失函数,将原有的CIoU损失函数更换为EIoU损失函数,优化了目标边界框回归的收敛速度,可以生成定位更精准的边界框,提高了模型检测精度。实验结果表明,改进后的算法平均精度达到94.5%,相较于原始模型提高了1.9个百分点,相较于YOLOv3算法提高了12.3个百分点。提出的算法有效地改善了原算法中安全帽漏检、误检的情况,同时提高了检测精度。  相似文献   

20.
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号