首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Bioactive compounds in legumes and their germinated products   总被引:1,自引:0,他引:1  
Nineteen domestic legume varieties, including 6 soybeans, 7 black soybeans, 4 azuki beans, and 2 mung beans, were evaluated for contents of dietary fiber, total phenolics, and flavonoids. Nine varieties of legumes (black soybean TN6, TN3, BM, and WY; soybean KS1, KS2, and KS8; azuki bean AKS5 and AKS6) were good sources of bioactive compounds and were selected for germination tests. After short- and long-term germinations, the bioactive compounds were determined and compared with compositions of isoflavones in soybeans. The reducing power of legumes correlated well with their total flavonoid contents (r (2) = 0.9414), whereas less correlation was found between reducing power and total phenolics contents (r (2) = 0.6885). The dark-coat seeds, such as azuki beans and black soybeans, contained high amounts of phenolic compounds and contributed to high antioxidative ability, whereas their phenolics content and antioxidative abilities significantly decreased after short-term germination due to losses of pigments in the seed coats. After long-term germination, the contents of bioactive compounds (total phenolics and flavonoids) increased again and the ratio of aglycones to total isoflavones significantly increased in black soybeans. TN3 and TN6 seeds and their long-term germinated seeds and AKS5 seeds were identified as the legume samples that might have the highest antioxidant ability according to the results of chemometric analysis. Selection of the right legume varieties combined with a suitable germination process could provide good sources of bioactive compounds from legumes and their germinated products for neutraceutical applications.  相似文献   

2.
The nutritive and toxicological values of the dry seeds, germinated seeds, and string beans of Erythrina americana were studied using raw and boiled samples. Raw germinated seeds had a higher protein content and lower fiber content than dry seeds. The whole string bean had lower protein content and higher fiber content. However, the seeds of the green pod showed the same protein concentration as the dry seeds (dry basis). Boiling and elimination of broth was beneficial in diminishing the alkaloid concentration in all the samples. The trypsin inhibitors, lectins, and tannins were also diminished as was expected. The raw string bean showed the lowest LD(50). Although the total essential amino acids content of the boiled germinated seeds was increased, the quality of protein, protein efficiency ratio (PER), was lower than in boiled dry seeds, and in these, the PER was similar to the control (casein). The present results suggest that for the protein quality and low alkaloid content, the boiled dry seeds and string beans could be used for animal feeding. It could be interesting to test the raw string beans in ruminants since in this stage E. americana showed the lowest toxicity.  相似文献   

3.
《Cereal Chemistry》2017,94(3):417-423
The present study aimed to broaden the concept of nutraceutical products by increasing the nutritional and functional properties of rice pudding, locally known as kheer, with improved physicochemical and sensory traits. Three germinated legumes—namely, lentils (Lens culinaris ), green gram (Vigna radiata ), and black gram (V. mungo )—were added at 5, 15, and 25% levels (based on total milk weight) in rice puddings, and rice pudding without legumes was considered the control. Results showed that germinated legumes compared with their nongerminated counterparts were rich in dietary antioxidants and phenolic content of the puddings. Rice pudding incorporating 5% nongerminated and germinated lentil, 5% nongerminated green gram, 5–25% germinated green gram, and 5% nongerminated and germinated black gram showed peak viscosity similar to that of the control, suggesting that the legumes could be incorporated into pudding without bringing any significant changes in peak viscosity of rice pudding. Moreover, it was also observed that control rice pudding and rice puddings containing 5–15% nongerminated and germinated lentils, 5% nongerminated green gram, and 5% nongerminated and germinated black gram were insignificantly different from each other in overall acceptability, as judged by sensory panelists. For this reason, addition of germinated legumes to rice pudding is a unique way to enhance the phenolic content of this dessert without affecting its appetizing flavor.  相似文献   

4.
《Cereal Chemistry》2017,94(1):11-31
The United Nations has declared 2016 as the International Year of Pulses. Pulses are narrowly defined as leguminous crops that are harvested as dry seeds. Although some pulse crops are harvested green (e.g., green peas), these are classified as vegetables because the pods are often consumed along with the mature and sometimes immature seeds. Other dried legumes such as soybean and peanut meet the definition of being a leguminous crop that is harvested as dry seeds; however, these crops are grown primarily for oil content and, thus, are not categorized as pulses. There are hundreds of pulse varieties grown worldwide; these include, for example, dry edible beans, chickpeas, cowpeas, and lentils. This review will cover the proximate (e.g., protein, carbohydrates, vitamins, and minerals), and phytonutrient (e.g., polyphenolics and carotenoid) composition of dry edible beans, peas, lentils, and chickpeas. Soybean and peanuts will not be covered in this review. The effects of processing on composition will also be covered. The health benefits related to folates, fiber, and polyphenolics will be highlighted. The health benefits discussed will include cardiovascular disease, cancer, diabetes, and weight control. The current review will not cover antinutrient compounds; this topic will be covered in a separate review article published in the same issue.  相似文献   

5.
Oligosaccharides, including raffinose, stachyose, ciceritol, and verbascose, are commonly found in legumes and often result in flatulence in humans. Effects of soaking, soaking with ultrasound (47 MHz), soaking with high hydrostatic pressure (HHP, 621 MPa), and subsequent cooking on the oligosaccharide content of lentils, chickpeas, peas, and soybeans were investigated. Legumes were soaked for 3 or 12 hr in water, soaked for 1.5 or 3 hr with ultrasound, or soaked for 0.5 or 1 hr with HHP. Oligosaccharides of lentils and chickpeas were mainly composed of raffinose, ciceritol, and stachyose, while those of peas and soybeans were raffinose and stachyose. Verbascose was the minor oligosaccharide in lentils and peas and was absent in chickpeas and soybeans. Ciceritol was not detected in peas and soybeans. Total oligosaccharide content of raw legumes ranged from 70.7 mg/g in yellow peas to 144.9 mg/g in chickpeas. Soaking was effective for the reduction of oligosaccharides in the tested legumes. Compared with soaking for 3 hr, soaking legumes with ultrasound for 3 hr in all tested legumes or soaking legumes with HHP for 1 hr, with exception of soybeans, appeared to be more effective for the reduction of oligosaccharides. The effect of cooking on the reduction of oligosaccharide content of presoaked legumes was evident in lentils, while oligosaccharide content of chickpeas, peas, and soybeans was either unchanged or even increased by cooking after presoaking, with or without ultrasound, probably due to the leaching of other soluble components and the release of bound oligosaccharides during cooking. During soaking or cooking of legumes, raffinose leached out faster than other oligosaccharides.  相似文献   

6.
Common bean effects on health have been related to its dietary fiber content and other active compounds. This study assessed the content of flavonoids, coumestrol, phenolic acids, galactooligosaccharides, and phytic acid in wild and cultivated Mexican common bean seeds (raw and cooked) and that of flavonoids, coumestrol, and phenolic acids in germinated bean seeds. The presence of isoflavones in raw bean seeds was not confirmed by the UV spectra. Quercetin, kaempferol, p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, and vanillic acid mean contents were 10.9, 52.3, 10.1, 9.6, 5.4, and 18.2 microg/g, respectively; raffinose, stachyose, verbascose, and phytic acid mean contents were 8.5, 56.3, 5.5, and 11.5 mg/g, respectively, in raw seeds. All compounds were affected by autoclaving, and germination resulted in a de novo synthesis of flavonols, phytoestrogens, and phenolic acids. The impact on health of common bean seed is affected by dietary burden, specific compounds content, and processing. On the other hand, germinated bean seed or beans sprouts may be sources of antioxidants and phytoestrogens.  相似文献   

7.
The effect of heat treatment of germinated soybean, lupin, and black bean on chemical composition and protein utilization in rats was evaluated. Heat treatment caused complete inactivation of trypsin inhibitors whereas it did not affect phytic acid levels. Proximate components, minerals, and amino acids did not change, but low molecular weight sugars were affected by heat treatment differently for each germinated legume. The sugar digestibility ratio (total digestible sugars/total nondigestible sugars) in germinated black beans doubled after heat treatment. True protein digestibility (TD) increased with heat treatment only in germinated soybean. Net protein utilization was markedly improved (20%) with heat treatment in germinated soybean and lupin. Utilizable protein of heat-treated germinated legumes was 289, 236, and 132 g/kg of legume dry weight for soybean, lupin, and black bean, respectively. Supplementation with methionine did not alter TD but improved all other indices of protein utilization in the germinated legumes, particularly in black bean. All three germinated legumes become equivalent in protein quality when heating and supplementation with methionine are combined with germination. The use of germinated heat-treated soybean, lupin, and black bean on their own and/or as food ingredients is nutritionally advantageous due to the low content of nondigestible oligosaccharides and the high protein utilization.  相似文献   

8.
In the present study, we evaluated UV‐C radiation and germination treatments as an approach to increase the concentration of bioactive molecules in black bean seed coats. Black beans were germinated for 20 h under UV‐C radiation. Germination rate was higher in seeds radiated with UV‐C light compared with the control (nonirradiated seeds). Flavonoid content was increased twofold in seed coats of beans germinated for 10 h under UV‐C compared with the control. Quercetin‐3O‐glucoside was the major flavonoid identified in stressed seed coats. Furthermore, the application of UV‐C radiation during germination increased the content of soyasaponin Af, Ba, and αg, and it induced the de novo biosynthesis of soyasaponins (phaseoside I, soyasaponin deacetyl Af, and soyasaponin deactyl Ah) not present in the control. Germination of black beans under UV‐C radiation was an effective and simple approach to increase the concentration of bioactive molecules in black bean seed coats.  相似文献   

9.
Phytochemicals for health, the role of pulses   总被引:3,自引:0,他引:3  
Pulses are the seeds of legumes that are used for human consumption and include peas, beans, lentils, chickpeas, and fava beans. Pulses are an important source of macronutrients, containing almost twice the amount of protein compared to cereal grains. In addition to being a source of macronutrients and minerals, pulses also contain plant secondary metabolites that are increasingly being recognised for their potential benefits for human health. The best-studied legume is the soybean, traditionally regarded as an oilseed crop rather than a pulse. The potential health benefits of soy, particularly with respect to isoflavone content, have been the subject of much research and the focus of several reviews. By comparison, less is known about pulses. This review investigates the health potential of pulses, examining the bioactivity of pulse isoflavones, phytosterols, resistant starch, bioactive carbohydrates, alkaloids and saponins. The evidence for health properties is considered, as is the effect of processing and cooking on these potentially beneficial phytochemicals.  相似文献   

10.
《Cereal Chemistry》2017,94(1):66-73
The global production of pulses, such as various peas, beans, lupines, and lentils, is about 77 million metric tons. Pulses are diverse in their traditional food uses in Asia, Africa, and America, where they have been used, for example, in soups, spreads, meal components, snacks, and breakfast items. Having high protein content (about 20–40%), pulses have recently gained interest when alternative sustainable protein sources are considered. Pulses have been used for protein enrichment in pasta and bread, and they also are suitable ingredients in gluten‐free foods. Wet and dry fractionation methods as well as bioprocessing such as germination and fermentation provide useful tools for development of new functional pulse ingredients. The use of pulses is bound to increase in the future, and especially in combination with cereal raw materials they may find new applications meeting both sensory and nutritional needs of consumers on all continents.  相似文献   

11.
《Cereal Chemistry》2017,94(1):98-103
Dehulled and/or germinated black bean flours were physicochemically characterized, including pasting properties, along with the trypsin inhibitor and antioxidant phenolics. To our best knowledge, this is the first study that, using nonparametric correlations and principal component analysis, identifies the parameters affecting the pasting properties of germinated black bean flour. The carbohydrate loss observed after black bean germination was indirectly correlated with the crude fiber content. Therefore, germination increased the protein and crude fiber contents compared with raw seeds (from 19.1 and 2.4% to 24.0 and 5.1%, respectively). Additionally, the highest protein digestibility was obtained in dehulled germinated black bean flour (78.4%), followed by whole germinated seed flour (74.1%). The dehulling process increased the total starch content 13.5 and 18.8% compared with raw and germinated whole bean flours, respectively. Dehulling decreased both trypsin inhibitor activity and antioxidant phenolics. Germination reduced by twofold the peak and final viscosities of black bean flours. Interestingly, both viscosities were negatively correlated with protein and positively correlated with fat and insoluble dietary fiber. Although resistant starch content was not affected by germination or dehulling, its interactions with fat and insoluble dietary fiber were responsible of the changes observed in pasting properties of germinated black bean flour.  相似文献   

12.
Chemical indicators of heat treatment in fortified and special milks   总被引:6,自引:0,他引:6  
Carbohydrate and furosine contents in 12 commercial fortified and special milk samples (pasteurized goat's and ewe's milks; ultrahigh-temperature (UHT) goat's milk, UHT milks fortified with calcium, magnesium, fiber, or royal jelly and honey; and lactose-hydrolyzed milks) were analyzed. Except for lactose-hydrolyzed milks, furosine, lactose, lactulose, galactose, glucose, N-acetylgalactosamine, N-acetylglucosamine, and myo-inositol contents were similar to the previously reported values for UHT or pasteurized milk samples. In lactose-hydrolyzed milks, lactulose was not detectable and lactose was present in low amount; high levels of glucose, galactose, fructose, tagatose, and furosine were also detected in this type of milk. Results found in commercial milks were compared to those obtained in laboratory-prepared UHT milks with lactose hydrolyzed prior to heating. Hydrolysis of lactose before thermal treatments promoted elevated accumulation of reducing sugars (galactose and glucose) that could be partially converted to the corresponding isomers (tagatose and fructose) during heating. In addition, the reducing sugars could also react with the amino groups of proteins, giving rise to the corresponding Amadori compound. According to the obtained results, heating prior to hydrolysis of lactose is suggested to avoid a considerable loss of available lysine.  相似文献   

13.
To obtain information about the extent of the early Maillard reaction between the N-termini of peptides and lactose, alpha-N-(2-furoylmethyl) amino acids (FMAAs) were quantified together with epsilon-N-(2-furoylmethyl)lysine (furosine) in acid hydrolyzates of hypoallergenic infant formulas, conventional infant formulas, and human milk samples using RP-HPLC with UV-detection. FMAAs are formed during acid hydrolysis of peptide-bound N-terminal Amadori products (APs), and furosine is formed from the Amadori products of peptide-bound lysine. Unambiguous identification was achieved by means of LC/MS and UV-spectroscopy using independently prepared reference material. The extent of acid-induced conversion of APs to FMAAs was studied by RP-HPLC with chemiluminescent nitrogen detection (CLND). Depending on the corresponding alpha-N-lactulosyl amino acid, between 6.0% and 18.1% of FMAAs were formed during hydrolysis for 23 h at 110 degrees C in 8 N HCl. From epsilon-N-lactulosyllysine, 50% furosine is formed under these conditions. Whereas furosine was detectable in all assayed samples, five different FMAAs, alpha-FM-Lys, alpha-FM-Ala, alpha-FM-Val, alpha-FM-Ile, and alpha-FM-Leu, were exclusively detected in acid hydrolyzates of hypoallergenic infant formulas in amounts ranging from 35 to 396 mumol/100 g protein. Taking the conversion factors into account, modification of N-terminal amino acids in peptides by reducing carbohydrates was between 0.3% and 8.4%. This has to be considered within the discussion concerning the nutritional quality of peptide-containing foods.  相似文献   

14.
In vitro protein digestibility (IVPD) of lentils, chickpeas, peas, and soybeans treated with ultrasound or high hydrostatic pressure (HHP) during soaking and then heated for 30 min at 98°C was determined using the three-enzyme method (trypsin, chymotrypsin, and peptidase). The IVPD of raw legumes ranged from 72% for soybeans to 83% for dry green peas. The increase in the IVPD after soaking was observed in lentils but not in other legumes. Heating increased the IVPD of the tested legumes by 2–13%. While the effects of applying ultrasound or HHP on IVPD of legumes were mostly inconsistent or insignificant, soaking under HHP for 1 hr and subsequent heating at 98°C for 30 min increased IVPD of legumes. Compared with raw legumes, the soluble protein concentrates exhibited 2–4% higher IVPD, while insoluble proteins exhibited 0.2–1.5% lower IVPD. SDS-PAGE of legume proteins before enzyme digestion exhibited 8–18 protein bands from 20 kDa to 100 kDa representing isolated soluble proteins and from 20 kDa to 100 kDa representing insoluble proteins. After enzyme digestion, soluble proteins exhibited 2–6 minor protein bands with molecular weights <30 kDa, while insoluble proteins of lentils, chickpeas, and peas exhibited one major protein band at ≈52 kDa and two or three minor protein bands with molecular weights <30 kDa. The major insoluble proteins observed as electrophoresis bands after enzyme digestion may be responsible for the reduced protein digestibility of legume proteins.  相似文献   

15.
The effects of cooking, roasting, and fermentation on the composition and protein properties of grain legumes and the characteristics of dough and bread incorporated with legume flours were determined to identify an appropriate pretreatment. Oligosaccharide content of legumes was reduced by 76.2–96.9% by fermentation, 44.0–64.0% by roasting, and 28.4–70.1% by cooking. Cooking and roasting decreased protein solubility but improved in vitro protein digestibility. Mixograph absorption of wheat and legume flour blends increased from 50–52% for raw legumes to 68–76, 62–64, and 74–80% for cooked, roasted, and fermented ones, respectively. Bread dough with cooked or roasted legume flour was less sticky than that with raw or fermented legume flour. Loaf volume of bread baked from wheat and raw or roasted legume flour blends with or without gluten addition was consistently highest for chickpeas, less for peas and lentils, and lowest for soybeans. Roasted legume flour exhibited more appealing aroma and greater loaf volume of bread than cooked legume flour, and it appears to be the most appropriate preprocessing method for incorporation into bread.  相似文献   

16.
为有效提高豆种的萌芽特性、明确其生长过程中营养成分变化规律,并对萌芽产品进行绿色深加工以最大限度保留豆芽营养成分,该论文采用超声波处理提高豆类发芽率和发芽指数,筛选营养丰富的萌芽阶段开发花生-黑豆芽复合汁,并研究超高压和常规热杀菌对花生-黑豆芽复合汁品质的影响。结果表明:300 W和10 min的超声处理可显著提高黑豆和花生的发芽率和发芽指数(P<0.05)。超声处理组的黑豆在第6萌芽阶段(芽长6 cm)时γ-氨基丁酸(gamma-aminobutyric acid,GABA)含量最高,达175.13mg/100g,超声处理组的花生在第5萌芽阶段(芽长2cm)时白藜芦醇含量较高,为0.92 mg/g。以上述阶段原料制备富含白藜芦醇和GABA的花生-黑豆芽复合汁,进一步研究发现,相比于传统热杀菌,超高压杀菌(450MPa和15min)可显著提高花生-黑豆芽复合汁的稳定性和总酚含量(P<0.05),减少颜色劣变,贮藏过程中能更好地保持GABA和白藜芦醇。研究结果将为高品质豆芽深加工产品探索提供理论依据和技术支撑。  相似文献   

17.
Furosine: a suitable marker for assessing the freshness of royal jelly   总被引:7,自引:0,他引:7  
Fifteen commercial samples of royal jelly, consisting of 10 imported samples, and 5 samples of known origin obtained freshly harvested from beekeepers, were analyzed for protein, lysine, and furosine content. In addition, a commercial sample of royal jelly, at the beginning of its commercial shelf life, was stored for 10 months both at 4 degrees C and at room temperature in order to assess the development of the Maillard reaction (furosine) and relative nutritional damage (blocked lysine). The commercial royal jelly products contained different amounts of furosine, ranging from 37.1 to 113.3 mg/100 g protein, evidence of different storage times and conditions. The average furosine content of the royal jelly samples of known origin and harvesting was significantly lower than that of the imported samples (41.7 versus 73.6 mg/100 g protein, respectively). With regard to shelf life, furosine content increased significantly from 72.0 mg/100 g protein to 500.8 mg/100 g protein after 10 months of storage at room temperature, while it increased to a much lower level (100.5 mg/100 g protein) when the royal jelly was stored at 4 degrees C. However, nutritional damage, expressed as blocked lysine (calculated indirectly from the furosine content), was minor or negligible, 11.9 and 2.3% of total lysine, in samples stored at room temperature and at 4 degrees C, respectively. Lysine was determined by an innovative procedure based on high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The results showed that furosine is a suitable index for assessing the quality and freshness of royal jelly.  相似文献   

18.
The Maillard reaction-related effects that thermal treatments during the manufacturing process and storage (at 20 and 37 degrees C) have on powdered adapted and follow-up milk-based infant formulas were estimated by measuring the available lysine and furfural compounds contents of raw cow milk used in manufacturing, intermediate products and formulas. A fluorimetric method was used to measure the available lysine contents, and free and total furfural compounds were determined by HPLC. Statistically significant losses in available lysine (about 20%) in the infant formulas with respect to raw milk were found. The storage period did not affect the available lysine contents of adapted formulas but reduced (16%) the contents of the follow-up ones (from 6.61 to 5.33 g/100 g of protein). No furfural compounds were detected in raw milk, and free and total furyl methyl ketone (FMC) and methylfurfural (MF) were not observed in the analyzed samples. After 6 months of storage, an increase in free hydroxymethylfurfural (HMF) (from 0.34 to 0.77 mg/100 g of protein) and furfural (F) (from nondetectable to 0.1 mg/100 g of protein) in adapted formulas and free HMF (from 1.84 to 2.62 mg/100 g of protein) in follow-up formulas was observed.  相似文献   

19.
The effect of freeze-drying and the assessment of the storage stability of freeze-dried royal jelly (RJ) were investigated by the determination of furosine and blocked lysine. The level of furosine in the RJ samples collected from cells at different times (1, 2, and 3 days after grafting) showed that the Maillard reaction had already occurred in the hive as indicated by the increase in furosine: from 9.6 to 20.8 mg/100 g of protein. Freeze-dried RJ was more prone to the early stage of the Maillard reaction than fresh RJ, as confirmed by the significantly higher furosine values found after 12 months, both at 4 degrees C (253.4 versus 54.9 mg/100 g of protein) and at room temperature (884.3 versus 332.5 mg/100 g of protein). After 18 months at room temperature, the lyophilized samples reached a furosine level of 1440.4 mg/100 g of protein, which corresponded to the blocked lysine levels, amounting to 24% of total lysine.  相似文献   

20.
Abstract

The produced vinasse from molasses of sugar beets contains high amounts of nitrogen, potassium, and sodium (Na‐vinasse). In a pot experiment involving plant species of different tolerance to soil salts (cotton, corn, and beans), applications up to 10 t vinasse ha‐1 did not significantly affect the seed germination, and had a positive effect on plant growth of all species. Increasing the vinasse application to 20 t ha‐1 had no effect on seed germination of cotton and increased its growth. In contrast, a 20 t ha‐1 application delayed the time of germination and inhibited corn and bean growth up to one month. Subsequently, plant growth increased and plant height 52 days after sowing was similar to that with the 10 t ha‐1 treatment. For the bean plants, the negative effect of the 20 t ha‐1 application continued and resulted in a higher dry matter in leaves, but lower dry matter in stems and fruits compared to the untreated soil. A replacement of potassium by sodium in cotton and corn plants was also observed at this vinasse application. Very high application of vinasse (100 t ha‐1) resulted in a damage of cotton and bean seeds, while a higher portion of corn seeds germinated (64%). However, corn seeds that germinated collapsed after a few days. Among the three species studied, cotton plants absorbed the highest amount of sodium, corn plants the highest amount of potassium and those of bean the highest amount of nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号