首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.  相似文献   

2.
As pigs are susceptible to infection with both avian and human influenza A viruses, they have been proposed to be an intermediate host for the adaptation of avian influenza viruses to humans. In April 2006, a disease caused by highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) occurred in several pig farms and subsequently overwhelmed almost half of China with more than 2,000,000 cases of pig infection. Here we report a case in which four swine H9N2 influenza viruses were isolated from pigs infected by highly pathogenic PRRSVs in Guangxi province in China. All the eight gene segments of the four swine H9N2 viruses are highly homologous to A/Pigeon/Nanchang/2-0461/00 (H9N2) or A/Wild Duck/Nanchang/2-0480/00 (H9N2). Phylogenetic analyses of eight genes show that the swine H9N2 influenza viruses are of avian origin and may be the descendants of A/Duck/Hong Kong/Y280/97-like viruses. Molecular analysis of the HA gene indicates that our H9N2 isolates might have high-affinity binding to the alpha2,6-NeuAcGal receptor found in human cells. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV) surveillance, especially after the emergence of highly pathogenic PRRSVs in pigs in China.  相似文献   

3.
Proinflammatory cytokines and viral respiratory disease in pigs   总被引:8,自引:0,他引:8  
Swine influenza virus (SIV), porcine respiratory coronavirus (PRCV) and porcine reproductive and respiratory syndrome virus (PRRSV) are enzootic viruses causing pulmonary infections in pigs. The first part of this review concentrates on known clinical and pathogenetic features of these infections. SIV is a primary respiratory pathogen; PRCV and PRRSV, on the contrary, tend to cause subclinical infections if uncomplicated but they appear to be important contributors to multifactorial respiratory diseases. The exact mechanisms whereby these viruses cause symptoms and pathology, however, remain unresolved. Classical studies of pathogenesis have revealed different lung cell tropisms and replication kinetics for each of these viruses and they suggest the involvement of different lung inflammatory responses or mediators. The proinflammatory cytokines interferon-alpha (IFN-alpha), tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) have been shown to play key roles in several respiratory disease conditions. The biological effects of these cytokines and their involvement in human viral respiratory disease are discussed in the second part of this review. The third part summarises studies that were recently undertaken in the authors' laboratory to investigate the relationship between respiratory disease in pigs and bioactive lung lavage levels of IFN-alpha, TNF-alpha and IL-1 during single and combined infections with the above viruses. In single SIV infections, typical signs of swine "flu" were tightly correlated with an excessive and coordinate production of the 3 cytokines examined. PRCV or PRRSV infections, in contrast, were subclinical and did not induce production of all 3 cytokines. Combined infections with these 2 subclinical respiratory viruses failed to potentiate disease or cytokine production. After combined inoculation with PRCV followed by bacterial lipopolysaccharide, both clinical respiratory disease and TNF-alpha/IL-1 production were markedly more severe than those associated with the respective single inoculations. Taken together, these data are the first to demonstrate that proinflammatory cytokines can be important mediators of viral respiratory diseases in pigs.  相似文献   

4.
Swine influenza monitoring programs have been in place in Italy since the 1990 s and from 2009 testing for the pandemic H1N1/2009 virus (H1N1pdm) was also performed on all the swine samples positive for type A influenza. This paper reports the isolation and genomic characterization of a novel H1N2 swine influenza reassortant strain from pigs in Italy that was derived from the H1N1pdm virus. In May 2010, mild respiratory symptoms were observed in around 10% of the pigs raised on a fattening farm in Italy. Lung homogenate taken from one pig showing respiratory distress was tested for influenza type A and H1N1pdm by two real time RT-PCR assays. Virus isolation was achieved by inoculation of lung homogenate into specific pathogen free chicken embryonated eggs (SPF CEE) and applied onto Caco-2 cells and then the complete genome sequencing and phylogenetic analysis was performed from the CEE isolate. The lung homogenate proved to be positive for both influenza type A (gene M) and H1N1pdm real time RT-PCRs. Virus isolation (A/Sw/It/116114/2010) was obtained from both SPF CEE and Caco-2 cells. Phylogenetic analysis showed that all of the genes of A/Sw/It/116114/2010, with the exception of neuraminidase (NA), belonged to the H1N1pdm cluster. The NA was closely related to two H1N2 double reassortant swine influenza viruses (SIVs), previously isolated in Sweden and Italy. NA sequences for these three strains were clustering with H3N2 SIVs. The emergence of a novel reassortant H1N2 strain derived from H1N1pdm in swine in Italy raises further concerns about whether these viruses will become established in pigs. The new reassortant not only represents a pandemic (zoonotic) threat but also has unknown livestock implications for the European swine industry.  相似文献   

5.
Swine influenza viruses H1N1 and H3N2 have been reported in the swine population worldwide. From June 2008 to June 2009, we carried out serological and virological surveillance of swine influenza in the Hubei province in central China. The serological results indicated that antibodies to H1N1 swine influenza virus in the swine population were high with a 42.5% (204/480) positive rate, whereas antibodies to H3N2 swine influenza virus were low with a 7.9% (38/480) positive rate. Virological surveillance showed that only one sample from weanling pigs was positive by RT-PCR. Phylogenetic analysis of the hemagglutinin and neuraminidase genes revealed that the A/Sw/HB/S1/2009 isolate was closely related to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses. In conclusion, H1N1 influenza viruses were more dominant in the pig population than H3N2 influenza viruses in central China, and infection with avian-like H1N1 viruses persistently emerged in the swine population in the area.  相似文献   

6.
Influenza A is a respiratory disease common in the swine industry. Three subtypes, H1N1, H1N2 and H3N2 influenza A viruses, are currently co-circulating in swine populations in Korea. An outbreak of the highly pathogenic avian influenza H5N1 virus occurred in domestic bird farms in Korea during the winter season of 2003. Pigs can serve as hosts for avian influenza viruses, enabling passage of the virus to other mammals and recombination of mammalian and avian influenza viruses, which are more readily transmissible to humans. This study reports the current seroprevalence of swine H1 and H3 influenza in swine populations in Korea by hemagglutination inhibition (HI) assay. We also investigated whether avian H5 and H9 influenza transmission occurred in pigs from Korea using both the HI and neutralization (NT) tests. 51.2% (380/742) of serum samples tested were positive against the swine H1 virus and 43.7% (324/742) were positive against the swine H3 virus by HI assay. The incidence of seropositivity against both the swine H1 virus and the swine H3 virus was 25.3% (188/742). On the other hand, none of the samples tested showed seropositivity against either the avian H5 virus or the avian H9 virus by the HI and NT tests. Therefore, we report the high current seroprevalence and co-infectivity of swine H1 and H3 influenza viruses in swine populations and the lack of seroepidemiological evidence of avian H5 and H9 influenza transmission to Korean pigs.  相似文献   

7.
Precision-cut lung slices of pigs were infected with five swine influenza A viruses of different subtypes (A/sw/Potsdam/15/1981 H1N1, A/sw/Bad Griesbach/IDT5604/2006 H1N1, A/sw/Bakum/1832/2000 H1N2, A/sw/Damme/IDT5673/2006 H3N2, A/sw/Herford/IDT5932/2007 H3N2). The viruses were able to infect ciliated and mucus-producing cells. The infection of well-differentiated respiratory epithelial cells by swine influenza A viruses was analyzed with respect to the kinetics of virus release into the supernatant. The highest titres were determined for H3N2/2006 and H3N2/2007 viruses. H1N1/1981 and H1N2/2000 viruses replicated somewhat slower than the H3N2 viruses whereas a H1N1 strain from 2006 multiplied at significantly lower titres than the other strains. Regarding their ability to induce a ciliostatic effect, the two H3N2 strains were found to be most virulent. H1N1/1981 and H1N2/2000 were somewhat less virulent with respect to their effect on ciliary activity. The lowest ciliostatic effect was observed with H1N1/2006. In order to investigate whether this finding is associated with a corresponding virulence in the host, pigs were infected experimentally with H3N2/2006, H1N2/2000, H1N1/1981 and H1N1/2006 viruses. The H1N1/2006 virus was significantly less virulent than the other viruses in pigs which was in agreement with the results obtained by the in vitro-studies. These findings offer the possibility to develop an ex vivo-system that is able to assess virulence of swine influenza A viruses.  相似文献   

8.
Because pigs have respiratory epitheliums which express both α2-3 and α2-6 linked sialic acid as receptors to influenza A viruses, they are regarded as mixing vessel for the generation of pandemic influenza viruses through genetic reassortment. A H7N2 influenza virus (A/swine/KU/16/2001) was isolated from pig lungs collected from the slaughterhouse. All eight genes of the influenza virus were sequenced and phylogenetic analysis indicated that A/swine/KU/16/2001 originated in Hong Kong and genetic reassortment had occurred between the avian H7N2 and H5N3 influenza viruses. The first isolation of H7 influenza virus in pigs provides the opportunity for genetic reassortment of influenza viruses with pandemic potential and emphasizes the importance of surveillance for atypical swine influenza viruses.  相似文献   

9.
Swine influenza is caused by type A influenza virus. Pigs can be infected by both avian and human influenza viruses; therefore, the influenza virus infection in pigs is considered an important public health concern. The aims of present study were to asses the seroprevalence of swine influenza subtypes in Spain and explore the risk factors associated with the spread of those infections. Serum samples from 2151 pigs of 98 randomly selected farms were analyzed by an indirect ELISA for detection of antibodies against nucleoprotein A of influenza viruses and by the hemagglutination inhibition (HI) using H1N1, H1N2 and H3N2 swine influenza viruses (SIV) as antigens. Data gathered in questionnaires filled for each farm were used to explore risk factors associated with swine influenza. For that purpose, data were analyzed using the generalized estimating equations method and, in parallel by means of a logistic regression. By ELISA, 92 farms (93.9%; CI(95%): 89.1-98.7%) had at least one positive animal and, in total, 1340/2151 animals (62.3%; CI(95%): 60.2-64.3%) were seropositive. A total of 1622 animals (75.4%; CI(95%): 73.6-77.2%) were positive in at least one of the HI tests. Of the 98 farms, 91 (92.9%; CI(95%): 87.7-98.1%) had H1N1 seropositive animals; 63 (64.3%; CI(95%): 54.6-73.9%) had H1N2 seropositive pigs and 91 (92.9%; CI(95%): 87.7-98.1%) were positive to H3N2. Mixed infections were detected in 88 farms (89.8; CI(95%): 83.7-95.9%). Three risk factors were associated with seroprevalences of SIV: increased replacement rates in pregnancy units and, for fatteners, existence of open partitions between pens and uncontrolled entrance to the farm.  相似文献   

10.
Since the first detection of human H3N2 influenza virus in Taiwanese pigs in 1970, infection of pigs with wholly human viruses has been known to occur in other parts of the world. These viruses, referred to as human‐like H3N2 viruses, have been known to cause clinical and subclinical infections of swine populations. Due to the paucity and complete unavailability of information on transmission of influenza viruses from other species, especially humans, to swine in Nigeria and Ghana, respectively, this study was designed to investigate the presence and prevalence of a human strain of influenza A (H3N2) in swine populations at three locations in two cities within these two West African countries in January and February, 2014. Using stratified random technique, nasal swab specimens were collected from seventy‐five (75) pigs at two locations in Ibadan, Nigeria and from fifty (50) pigs in Kumasi, Ghana. These specimens were tested directly by a sensitive Quantitative Solid Phase Antigen‐detection Sandwich ELISA using anti‐A/Brisbane/10/2007 haemagglutinin monoclonal antibody. Influenza virus A/Brisbane/10/2007 (H3N2) was detected among pigs at the three study locations, with an aggregate prevalence of 4.0% for the two locations in Ibadan, Nigeria and also 4.0% for Kumasi, Ghana. Transmission of influenza viruses from other species to swine portends serious sinister prospects for genetic reassortment and evolvement of novel viruses. We therefore recommend that further studies should be carried out to investigate the presence of other circulating human and avian influenza viruses in swine populations in West Africa and also determine the extent of genetic reassortment of strains circulating among these pigs. This would provide an early warning system for detection of novel influenza viruses, which could have pandemic potentials.  相似文献   

11.
The objective of this study was to evaluate the seroprevalence and identify the strains of swine influenza virus (SwIV), as well as the seroprevalence of porcine parvovirus (PPV), transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine respiratory coronavirus (PRCV), porcine circovirus type 2 (PCV-2), and classical swine fever virus (CSFV) in pigs in Trinidad and Tobago (T&T). Blood samples (309) were randomly collected from pigs at farms throughout T&T. Serum samples were tested for the presence of antibodies to the aforementioned viruses using commercial ELISA kits, and the circulating strains of SwIV were identified by the hemagglutination inhibition test (HIT). Antibodies against SwIV were detected in 114 out of the 309 samples (37%). Out of a total of 26 farms, 14 tested positive for SwIV antibodies. HI testing revealed high titers against the A/sw/Minnesota/593/99 H3N2 strain and the pH1N1 2009 pandemic strain. Antibodies against PPV were detected in 87 out of the 309 samples (28%), with 11 out of 26 farms testing positive for PPV antibodies. Antibodies against PCV-2 were detected in 205 out of the 309 samples tested (66%), with 25 out of the 26 farms testing positive for PCV-2 antibodies. No antibodies were detected in any of the tested pigs to PRRSV, TGEV, PRCV, or CSFV.  相似文献   

12.

Background

Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010.This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009. The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test. Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically.

Results

In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July–August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively. Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1)pdm09) was detected on one pig farm in 2009 and on two farms in 2010.

Conclusions

Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.  相似文献   

13.
Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in na?ve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease.  相似文献   

14.
Increasing incidences of emerging and re‐emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of ‘One‐Health/One‐Medicine’ has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal‐human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal‐human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine‐human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm‐level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct additional research to the study of influenza transmission dynamics in animals and at the animal‐human interface.  相似文献   

15.
This paper reports on a serological and virological survey for swine influenza virus (SIV) in densely populated pig areas in Spain. The survey was undertaken to examine whether the H1N2 SIV subtype circulates in pigs in these areas, as in other European regions. Six hundred sow sera from 100 unvaccinated breeding herds across Northern and Eastern Spain were examined using haemagglutination inhibition (HI) tests against H1N1, H3N2 and H1N2 SIV subtypes. Additionally, 225 lung samples from pigs with respiratory problems were examined for the presence of SIV by virus isolation in embryonated chicken eggs and by a commercial membrane immunoassay. The virus isolates were further identified by HI and RT-PCR followed by partial cDNA sequencing. The HI test on sera revealed the presence of antibodies against at least one of the SIV subtypes in 83% of the herds and in 76.3% of the animals studied. Of the 600 sow sera tested, 109 (18.2%), 60 (10%) and 41 (6.8%) had SIV antibodies to subtype H1N2 alone, H3N2 alone and H1N1 alone, respectively. Twelve H3N2 viruses, 9 H1N1 viruses and 1 H1N2 virus were isolated from the lungs of pigs with respiratory problems. The analysis of a 436 nucleotide sequence of the neuraminidase gene from the H1N2 strain isolated further confirmed its identity. Demonstrably, swine influenza is still endemic in the studied swine population and a new subtype, the H1N2, may be becoming established and involved in clinical outbreaks of the disease in Spain.  相似文献   

16.
Intratracheal inoculation of a field isolate of influenza A H1N1 caused high fever, anorexia and dyspnoea in unvaccinated pigs. In a limited study, it was shown that animals vaccinated once with an inactivated influenza A H1N1 strain showed partial protection at challenge, indicated by mild or absent clinical signs and by the suppression of viral replication. There appeared to be a correlation between the hemagglutination-inhibition titers of the serum of vaccinated pigs and the degree of protection. Animals vaccinated with two spaced injections were completely protected at challenge. Viral replication was inhibited in their respiratory tract since no virus was isolated from animals at slaughter and no increase in antibody titer was observed in challenged vaccinates followed serologically. It was concluded that vaccination of swine against influenza with an inactivated vaccine can result in a protective immunity in the respiratory tract. The New Jersey vaccine strain could protect against swine influenza strains (H1N1) currently prevalent in several European countries.  相似文献   

17.
18.
Yu H  Zhou YJ  Li GX  Ma JH  Yan LP  Wang B  Yang FR  Huang M  Tong GZ 《Veterinary microbiology》2011,149(1-2):254-261
Pandemic strains of influenza A virus might arise by genetic reassortment between viruses from different hosts. Pigs are susceptible to both human and avian influenza viruses and have been proposed to be intermediate hosts or mixing vessels, for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we summarize and report for the first time the coexistence of 10 (A-J) genotypes in pigs in China by analyzing the eight genes of 28 swine H9N2 viruses isolated in China from 1998 to 2007. Swine H9N2 viruses in genotype A and B were completely derived from Y280-like and Shanghai/F/98-like viruses, respectively, which indicated avian-to-pig interspecies transmission of H9N2 viruses did exist in China. The other eight genotype (C-J) viruses might be double-reassortant viruses, in which six genotype (E-J) viruses possessed 1-4 H5-like gene segments indicating they were reassortants of H9 and H5 viruses. In conclusion, genetic diversity of H9N2 influenza viruses from pigs in China provides further evidence that avian to pig interspecies transmission of H9N2 viruses did occur and might result in the generation of new reassortant viruses by genetic reassortment with swine H1N1, H1N2 and H3N2 influenza viruses, therefore, these swine H9N2 influenza viruses might be a potential threat to human health and continuing to carry out swine influenza virus surveillance in China is of great significance.  相似文献   

19.
Protecting pigs from simultaneous infection with avian, swine, and human influenza viruses would be an effective strategy to prevent the emergence of reassortants with pandemic potential. M2 protein is a candidate antigen for so-called 'universal vaccines,' which confer cross-protection to different influenza viruses in a strain- and subtype-independent manner. We tested whether a recombinant F gene-deleted Sendai virus vector that contained an M2 gene derived from an H5N1 avian influenza virus (SeV/ΔF/H5N1M2) could induce a cross-reactive antibody response to the extracellular domain of M2 protein (M2e) in pigs. SeV/ΔF/H5N1M2 induced an antibody response to M2e when the vector was inoculated intramuscularly. The antibodies induced by SeV/ΔF/H5N1M2 cross-reacted with M2e derived from different avian, swine, and human influenza viruses. In mice, however, SeV/ΔF/H5N1M2 did not confer cross-protection to challenge with a heterologous H3N2 influenza virus. Our results confirm those of other groups indicating that antibodies to M2e do not mediate protection to influenza viruses in pigs.  相似文献   

20.
The introduction of swine or avian influenza (AI) viruses in the human population can set the stage for a pandemic, and many fear that the Asian H5N1 AI virus will become the next pandemic virus. This article first compares the pathogenesis of avian, swine and human influenza viruses in their natural hosts. The major aim was to evaluate the zoonotic potential of swine and avian viruses, and the possible role of pigs in the transmission of AI viruses to humans. Cross-species transfers of swine and avian influenza to humans have been documented on several occasions, but all these viruses lacked the critical capacity to spread from human-to-human. The extreme virulence of H5N1 in humans has been associated with excessive virus replication in the lungs and a prolonged overproduction of cytokines by the host, but there remain many questions about the exact viral cell and tissue tropism. Though pigs are susceptible to several AI subtypes, including H5N1, there is clearly a serious barrier to infection of pigs with such viruses. AI viruses frequently undergo reassortment in pigs, but there is no proof for a role of pigs in the generation of the 1957 or 1968 pandemic reassortants, or in the transmission of H5N1 or other wholly avian viruses to humans. The major conclusion is that cross-species transmission of influenza viruses per se is insufficient to start a human influenza pandemic and that animal influenza viruses must undergo dramatic but largely unknown genetic changes to become established in the human population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号