首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Molecular genetics of race non-specific rust resistance in wheat   总被引:1,自引:0,他引:1  
Over 150 resistance genes that confer resistance to either leaf rust, stripe rust or stem rust have been catalogued in wheat or introgressed into wheat from related species. A few of these genes from the ‘slow-rusting’ adult plant resistance (APR) class confer partial resistance in a race non-specific manner to one or multiple rust diseases. The recent cloning of two of these genes, Lr34/Yr18, a dual APR for leaf rust and stripe rust, and Yr36, a stripe rust APR gene, showed that they differ from other classes of plant resistance genes. Currently, seven Lr34/Yr18 haplotypes have been identified from sequencing the encoding ATP Binding Cassette transporter gene from diverse wheat germplasm of which one haplotype is commonly associated with the resistance phenotype. The paucity of well characterised APR genes, particularly for stem rust, calls for a focused effort in developing critical genetic stocks to delineate quantitative trait loci, construct specific BAC libraries for targeted APR genes to facilitate robust marker development for breeding applications, and the eventual cloning of the encoding genes.  相似文献   

2.
Epidemiological field controls in different Italian locations and seedling evaluations of the ‘Thatcher’ near-isogenic lines (NILs) carrying the leaf rust resistance genes Lr1, Lr9, Lr24 and Lr47 were conducted during 5 years of testing. These genes confirmed their effectiveness in both field and greenhouse conditions. Moreover a backcross program was carried out by using as recurrent parents the susceptible high-quality common wheat cvs ‘Bolero’, ‘Colfiorito’, ‘Serio’ and ‘Spada’ and the ‘Thatcher’ NILs carrying the above mentioned genes as donor parents. The progenies of different cross combinations were selected by both resistance tests and marker assisted selection using molecular markers (STS, SCAR, CAPS) closely linked to Lr genes: a complete cosegregation was observed between the resistance genes used and the corresponding molecular markers.  相似文献   

3.
A novel photoperiod response gene, designated Ppd-B2, was mapped to wheat chromosome arm 7BS, using a set of lines carrying various segments of 7BS from the early flowering breeding line ‘F26-70 7B’ in a background of the variety ‘Favorit’. The gene was 4.4 cM distal of the microsatellite locus Xgwm0537 and 20.7 cM proximal to Xgwm0255. In contrast to the well-characterized Ppd-1 genes, which require short days for expression, Ppd-B2 was detected when plants were exposed to a long photoperiod. The accelerated flowering produced by Ppd-B2 was correlated with increased grain protein content.  相似文献   

4.
Yellow rust (stripe rust), caused by Puccinia striiformis Westend f. sp. tritici, is one of the most devastating diseases of wheat throughout the world. Wheat-Haynaldia villosa 6AL.6VS translocation lines R43, R55, R64 and R77, derived from the cross of three species, carry resistance to both yellow rust and powdery mildew. An F2 population was established by crossing R55 with the susceptible cultivar Yumai 18. The yellow rust resistance in R55 was controlled by a single dominant gene, which segregated independently of the powdery mildew resistance gene Pm21 located in the chromosome 6VS segment, indicating that the yellow rust resistance gene and Pm21 are unlikely to be carried by the same alien segment. This yellow rust resistance gene was considered to beYr26, originally thought to be also located in chromosome arm 6VS. Bulked Segregation Analysis and microsatellite primer screens of the population F2 of Yumai 18 × R55 identified three chromosome 1B microsatellite locus markers, Xgwm11, Xgwm18 and Xgwm413, closely linked to Yr26. Yr26 was placed 1.9 cM distal of Xgwm11/Xgwml8, which in turn were 3.2 cM from Xgwm413. The respective LOD values were 21 and 36.5. Therefore, Yr26 was located in the short arm of chromosome 1B. The origin and distribution of Yr26 was investigated by pedigree, inheritance of resistance and molecular marker analysis. The results indicated that Yr26 came from Triticum turgidum L. Three other 6AL.6VS translocation lines, R43, R64 and R77, also carried Yr26. These PCR-based microsatellite markers were shown to be very effective for the detection of the Yr26 gene in segregating populations and therefore can be applied in wheat breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
At the IPK Gatersleben a series of 85 bread wheat (T. aestivum)/goatgrass (Aegilops tauschii) introgression lines was developed recently. Based on the knowledge that chromosome 7D of this particular Ae. tauschii is a donor of resistance to septoria tritici blotch (Mycosphaerella graminicola), a sub-set of thirteen chromosome 7D introgression lines was investigated along with the susceptible recipient variety ‘Chinese Spring’ (CS) and the resistant donor line ‘CS (Syn 7D)’. The material was inoculated with two Argentinian isolates of the pathogen (IPO 92067 and IPO 93014) at both the seedlings (two leaf) and adult (tillering) stages at two locations over 2 years (2003, 2004). The resistance was effective against both isolates and at both developmental stages, and the resistance locus maps to the centromeric region of chromosome arm 7DS. On the basis of its relationship with the microsatellite marker Xgwm44, it is likely that the gene involved is Stb5. Stb5 is therefore apparently effective against M. graminicola isolates originating from both Europe and South America.  相似文献   

6.
Fusarium head blight (FHB) infects all cereals including maize and is considered a major wheat disease, causing yield losses and mycotoxin contamination. This study aimed to compare the realized selection gain from marker and phenotypic selection in European winter wheat. A double cross (DC) combined three FHB resistance donor-QTL alleles (Qfhs.lfl-6AL and Qfhs.lfl-7BS from ‘Dream’, and one QTL on chromosome 2BL from ‘G16-92’) with two high yielding, susceptible winter wheats, ‘Brando’ and ‘LP235.1’. The base population of 600 DC derived F1 lines was on one hand selected for the respective QTLs by SSR markers (marker-selected cycle, CM), resulting in 35 progeny possessing different combinations of beneficial donor-QTL alleles. On the other hand it was selected phenotypically, only by FHB rating, and the best 20 lines were recombined and selfed (phenotypically selected cycle, CP). The variants CP, CM, and an unselected variant (C0) were tested at four locations by inoculation of Fusarium culmorum. Resistance was measured as the mean of multiple FHB ratings (0–100%). FHB severity was reduced through both phenotypic and marker selection by 6.2 vs. 5.0%, respectively. On a per-year basis, marker selection by 2.5% was slightly superior to phenotypic selection with 2.1%, because the first variant saved 1 year. Marker-selected lines were on average 8.6 cm taller than phenotypically selected lines. A high genetic variation within the marker-selected variant for FHB resistance and the high effect of a resistance-QTL allele on straw length indicate that additional phenotypic selection will further enhance selection gain.  相似文献   

7.
Pre-harvest sprouting (PHS) reduces the quality of wheat (Triticum aestivum L.) and the economic value of the grain. The objective of this study was to evaluate the diversity of the Viviparous-1B (Vp-1B) gene associated with PHS tolerance in a collection of 490 widely grown winter wheat varieties from central and northern Europe. Four alleles of Vp-1B were found in the wheat varieties tested, three of which (Vp-1Ba, Vp-1Bb and Vp-1Bc) had previously been identified in Chinese wheat varieties. The fourth was a new allele which had a 25-bp of deletion in the third intron region compared with the nucleotide sequence of Vp-1Ba, and was designated as Vp-1Bd. The frequencies of different alleles in this set of European wheat germplasm were: Vp-1Ba (54%) > Vp-1Bc (21%) > Vp-1Bd (20%) > Vp-1Ba + c (4%) > Vp-1Bb (1%), with Vp-1Bb being present only in two French varieties, ‘Altria’ and ‘Recital’. In addition, the frequencies of the alleles differed in varieties from different European countries. For example, Vp-1Ba had the highest frequency (76%) in varieties included in the UK National List (NL), but was least frequent in the Recommended List (RL) of Sweden (19%). Similarly, Vp-1Bc was present with the highest frequency (58%) in wheat varieties from Sweden, and the lowest in UK NL varieties (8%) while Vp-1Bd had the highest frequency of 32% in German varieties, and the lowest in Sweden varieties with only 8%. The Vp-1Ba allele was present in over half of the UK wheat varieties tested but the frequency was lower in RL varieties than in NL ones. Furthermore, heterogeneities were found between Vp-1Ba and Vp-1Bc in the varieties from Sweden, Netherlands, Germany and UK.  相似文献   

8.
An interspecific cross was made to transfer leaf rust and stripe rust resistance from an accession of Aegilops ovata (UUMM) to susceptible Triticum aestivum (AABBDD) cv. WL711. The F1was backcrossed to the recurrent wheat parent, and after two to three backcrosses and selfing, rust resistant progenies were selected. The C-banding study in a uniformly leaf rust and stripe rust resistant derivative showed a substitution of the 5M chromosome of Ae. ovata for 5D of wheat. Analysis of rust resistant derivatives with mapped wheat microsatellite makers confirmed the substitution of 5M for 5D. Some of these derivatives also possessed one or more of the three alien translocations involving 1BL, 2AL and 5BS wheat chromosomes which could not be detected through C-banding. A translocation involving 5DSof wheat and the substituted chromosome 5M of Ae. ovata was also observed in one of the derivatives. Susceptibility of this derivative to leaf rust showed that the leaf rust resistance gene(s) is/are located on short arm of 5M chromosome of Ae. ovata. Though the Ae. ovatasegment translocated to 1BL and 2AL did not seem to possess any rust resistance gene, the alien segment translocated to 5BS may also possess gene(s) for rust resistance. The study demonstrated the usefulness of microsatellite markers in characterisation of interspecific derivatives. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants.  相似文献   

10.
J.T. Kinane  P.W. Jones 《Euphytica》2001,117(3):251-260
Small variant wheat populations created by induced mutagenesis (n = 69) or adventitious regeneration (n = 66) were intensively screened for an altered response (compared to the parent variety ‘Guardian’) to the causal pathogen of powdery mildew in wheat, Blumeria graminis f. sp. tritici. Intensive field screening following natural infection of replicated plots of wheat lines over two years revealed a total of 13 mutants exhibiting significantly greater resistance than ‘Guardian’: eight from induced mutagenesis (11.6%) of the M2 population and five from adventitious regeneration (7.6%). Complete resistance was identified in two lines, (one (M66) developed following induced mutagenesis, and the other (SC240) by adventitious regeneration). The complete resistance in the induced mutant was stable over two generations and was associated with a high frequency of leaf flecking, and consequently a low grain yield. Resistance in SC240 proved to be unstable; SC240 exhibited complete resistance to powdery mildew in the SC2 and SC3 generations, but only 20% of the SC4 plants were completely resistant, while the remainder were indistinguishable in mildew response to ‘Guardian’. The mildew response of all the SC5 generation of SC240 was not significantly different from ‘Guardian’. Yield analysis of the thirteen mutants with increased resistance in the presence of powdery mildew indicated that eleven exhibitedgrain yields at least as high as that of ‘Guardian’, while the mutant M19 exhibited a yield significantly higher than that of ‘Guardian’. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We previously surveyed chromosomal regions showing segregation distortion of RFLP markers in the F2 population from the cross between a japonica type variety ‘Nipponbare’ and an indica type variety ‘Milyang23’, and showed that the most skewed segregation appeared on the short arm of chromosome 3. By comparison with the marker loci where distortion factors were previously identified, this region was assumed to be a gametophytic selection-2 (ga2) gene region. To evaluate this region, two near isogenic lines (NILs) were developed. One NIL had the ‘Nipponbare’ segment of this region on the genetic background of ‘Milyang23’ (NIL9-23), and the other NIL had the ‘Milyang23’ segment on the genetic background of ‘Nipponbare’ (NIL33-18). NIL9-23 and ‘Milyang23’, NIL33-18 and ‘Nipponbare’, and ‘Nipponbare’ and ‘Milyang23’ were respectively crossed to produce F1 and F2 populations. The F1 plants of NIL9-23 × ‘Milyang23’ and NIL33-18 × ‘Nipponbare’ showed high seed fertility and the same pollen fertility as their parental cultivars, indicating that ga2 does not reduce seed and pollen fertility. Segregation ratio of a molecular marker on the ga2 region in the three F2 populations was investigated to clarify whether segregation distortion occurred on the different genetic backgrounds. Segregation distortion of the ga2 region appeared in the both F2 populations from the NIL9-23 and ‘Milyang23’ cross (background was ‘Milyang23’ homozygote) and the ‘Nipponbare’ and ‘Milyang23’ cross (background was heterozygote), but did notin the F2 population from the NIL33-18 and ‘Nipponbare’ cross (background was ‘Nipponbare’ homozygote). This result indicates that ga2 interacts with a ‘Milyang23’ allele(s) on the different chromosomal region(s) to cause skewed segregation of the ga2 region. In addition, segregation ratio was the same between the F2 populations from NIL9-23 × ‘Milyang23’ and ‘Nipponbare’ × ‘Milyang23’ crosses, suggesting that the both genotypes, ‘Milyang23’ homozygote and heterozygote, of gene(s) located on the different chromosomal region(s) have the same effect on the segregation distortion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Summary A doubled haploid (DH) wheat population derived from the cross Wangshuibai/Alondra‘s’ was developed through chromosome doubling of haploids generated by anther culture of hybrids. Fusarium head blight (FHB) was evaluated for three years from 2001 to 2003 in Jianyang, Fujian Province, China, where epidemics of FHB have been consistently severe. After 307 pairs of simple sequence repeat (SSR) primers were screened, 110 pairs were polymorphic between Wangshuibai and Alondra`s’, and used to construct a genetic linkage map for detection of quantitative trait loci (QTLs). A stable QTL for low FHB severity was detected on chromosomes 3B over all three years, and QTLs on chromosomes 5B, 2D, and 7A were detected over two years. Additional QTLs on chromosomes 3A, 3D, 4B, 5A, 5D, 6B and 7B showed marginal significance in only one year. Six QTLs were detected when phenotypic data from three years were combined. In addition, significant additive-by-additive epistasis was detected for a QTL on 6A although its additive effect was not significant. Additive effects (A) and additive-by-additive epistasis (AA) explained a major portion of the phenotypic variation (76.5%) for FHB response. Xgwm533-3B and Xgwm335-5B were the closest markers to QTLs, and have potential to be used as selectable markers for marker-assisted selection (MAS) in wheat breeding programs.  相似文献   

13.
Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis (F.o.m), is a worldwide soil-borne disease of melon (Cucumis melo L.). The most effective control measure available is the use of resistant varieties. Resistance to races 0 and 2 of this fungal pathogen is conditioned by the dominant gene Fom-1. An F2 population derived from the ‘Charentais-Fom1’ × ‘TRG-1551’ cross was used in combination with bulked segregant analysis utilizing the random amplified polymorphic DNA (RAPD) markers, in order to develop molecular markers linked to the locus Fom-1. Four hundred decamer primers were screened to identify three RAPD markers (B17649, V01578, and V061092) linked to Fom-1 locus. Fragments amplified by primers B17649 and V01578 were linked in coupling phase to Fom1, at 3.5 and 4 cM respectively, whereas V061092 marker was linked in repulsion to the same dominant resistant allele at 15.1 cM from the Fom-1 locus. These RAPDs were cloned and sequenced in order to design primers that would amplify only the target fragment. The derived sequence characterized amplified region (SCAR) markers SB17645 and SV01574 (645 and 574 bp, respectively) were present only in the resistant parent. The SV061092 marker amplified a band of 1092 bp only in the susceptible parent. These markers are more universal than the CAPS markers developed by Brotman et al. (Theor Appl Genet 10:337–345, 2005). The analysis of 24 melon accessions, representing several melon types, with these markers revealed that different melon types behaved differently with the developed markers supporting the theory of multiple, independent origins of resistance to races 0 and 2 of F.o.m.  相似文献   

14.
The wheat (Triticum aestivum L.) gene Lr34/Yr18 conditions resistance to leaf rust, stripe rust, and stem rust, along with other diseases such as powdery mildew. This makes it one of the most important genes in wheat. In Canada, Lr34 has provided effective leaf rust resistance since it was first incorporated into the cultivar Glenlea, registered in 1972. Recently, molecular markers were discovered that are either closely linked to this locus, or contained within the gene. Canadian wheat cultivars released from 1900 to 2007, breeding lines and related parental lines, were tested for sequence based markers caSNP12, caIND11, caIND10, caSNP4, microsatellite markers wms1220, cam11, csLVMS1, swm10, csLV34, and insertion site based polymorphism marker caISBP1. Thirty different molecular marker haplotypes were found among the 375 lines tested; 5 haplotypes had the resistance allele for Lr34, and 25 haplotypes had a susceptibility allele at this locus. The numbers of lines in each haplotype group varied from 1 to 140. The largest group was represented by the leaf rust susceptible cultivar “Thatcher” and many lines derived from “Thatcher”. The 5 haplotypes that had the resistance allele for Lr34 were identical for the markers tested within the coding region of the gene but differed in the linked markers wms1220, caISBP1, cam11, and csLV34. The presence of the resistance or susceptibility allele at the Lr34 locus was tracked through the ancestries of the Canadian wheat classes, revealing that the resistance allele was present in many cultivars released since the 1970s, but not generally in the older cultivars.  相似文献   

15.
Leaf and stripe rusts are severe foliar diseases of bread wheat. Recently, chromosomes 5Mg from the related species Aegilops geniculata that confers resistance to both leaf and stripe rust and 5Ut from Ae. triuncialis conferring resistance to leaf rust have been transferred to bread wheat in the form of disomic DS5Mg(5D) and DS5Ut(5A) chromosome substitution lines. The objective of this study was to shorten the alien segments in these lines using Ph I-mediated, induced homoeologous recombination. Putativerecombinants were evaluated for their rust resistance, and by genomic in situ hybridization and microsatellite analyses. One agronomically useful wheat-Ae. geniculata recombinant resistant to leaf and stripe rust was identified that had only a small terminal segment of the 5MgL arm transferred to the long arm of an unidentified wheat chromosome. This germplasm can be used directly in breeding programs. Only one leaf rust-resistant wheat-Ae. triuncialis recombinant, which consists of most of the complete 5Ut chromosome with a small terminal segment derived from 5AS, was identified. This germplasm will need further chromosome engineering before it can be used in wheat improvement. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Linked leaf rust and stripe rust resistance genes introduced from Triticum dicoccoides protected common wheat seedlings against a range of pathotypes of the respective pathogens. The genes were chromosomally mapped using monosomic and telosomic analyses, C-banding and RFLPs. The data indicated that an introgressed region is located on wheat chromosome arm 6BS. The introgressed region did not pair with the ‘Chinese Spring’ 6BS arm during meiosis possibly as a result of reduced homology, but appeared to pair with 6BS of W84-17 (57% of pollen mother cells) and ‘Avocet S’. The introgressed region had a very strong preferential pollen transmission (0.96–0.98) whereas its transmission through egg cells (0.41–0.66) varied with the genetic background of the heterozygote. Homozygous resistant plants had a normal phenotype, were fertile and produced plump seeds. Symbols Lr53 and Yr35 are proposed to designate the respective genes.  相似文献   

17.
Many stem rust resistance genes have been formally named in wheat. Adult plant stem rust resistance gene Sr2 was mapped in the short‐arm of chromosome 3B. Stripe rust resistance gene Yr57, identified in Aus91463, was mapped about 5 cM away from Sr2 based on its linkage with Sr2‐linked marker gwm533. The objective of this study was to combine Sr2 and Yr57 in a single genotype. A mapping population containing 107 recombinant inbred lines was developed from a cross between Aus91463‐Yr57 and Hartog‐Sr2. This population was tested at the seedling stage in the glasshouse for variation in stripe rust response, and high temperature induced Sr2‐linked seedling chlorosis. The RIL population was screened for Sr2‐linked pseudo black chaff phenotype at the adult plant stage in field. Five recombinants carrying Sr2 and Yr57 in coupling were detected using phenotypic and marker data. Four recombinants also carried leaf rust resistance gene Lr23 from Aus91463. These recombinants are being used as triple rust resistance source in the Australian Cereal Rust Control Program.  相似文献   

18.
Wheat is the most important cereal in Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and the Caucasus (Armenia, Azerbaijan and Georgia). Stripe rust, caused by Puccinia striiformis f. sp. tritici is considered the most important disease of wheat in Central Asia and the Caucasus (CAC). Although stripe rust has been present in the region for a long time, it has become a serious constraint to wheat production in the past 10 years. This is reflected by the occurrence of five epidemics of stripe rust in the CAC region since 1999, the most recent in 2010. Several wheat varieties occupying substantial areas are either susceptible to stripe rust or possess a low level of resistance. Information on the stripe rust pathogen in terms of prevalent races and epidemiology is not readily available. Furthermore, there is an insufficient understanding of effective stripe rust resistance genes in the region, and little is known about the resistance genes present in the commercial varieties and advanced breeding lines. The deployment of resistant varieties is further complicated by putative changes in virulence in the pathogen population in different parts of the CAC. Twenty four out of 49 improved wheat lines received through international nurseries or other exchange programs showed high levels of resistance to stripe rust to local pathogen populations in 2009. Fifteen of the 24 stripe rust resistant lines also possessed resistance to powdery mildew. It is anticipated that this germplasm will play an important role in developing stripe rust resistant wheat varieties either through direct adoption or using them as parents in breeding programs.  相似文献   

19.
Flowering time is an important trait for the adaptation of wheat to its target environments. To identify chromosome regions associated with flowering time in wheat, a whole genome scan was conducted with five sets of field trial data on a recombinant inbred lines (RIL) population derived from the cross of spring wheat cultivars ‘Nanda 2419’ and ‘Wangshuibai’. The identified QTLs involved seven chromosomal regions, among which QFlt.nau-1B and QFlt.nau-2B were homoeologous to QFlt.nau-1D and QFlt.nau-2D, respectively. Nanda 2419, the earlier flowering parent, contributed early flowering alleles at five of these QTLs. QFlt.nau-1B and QFlt.nau-7B had the largest effects in all trials and were mapped to the Xwmc59.2Xbarc80 interval on chromosome 1BS and the Xgwm537Xgwm333 interval on 7BS. Most of the mapped QTL intervals were not coincident with known vernalization response or photoperiod sensitivity loci and QFlt.nau-1B seems to be an orthologue of EpsA m 1. Four pairs of loci showed significant interactions across environments in determining flowering time, all of which involved QFlt.nau-1B. These findings are of significance to wheat breeding programs.  相似文献   

20.
Fusarium wilt incited by Fusarium oxysporum f. sp. melonis (F.o.m) is one of the most widespread and devastating melon diseases. While resistance to physiological races 0, 1, and 2 is relatively frequent in different botanical varieties, sources of resistance to race 1,2 are restricted to a few Far-Eastern accessions. In this work, the results of a screening for resistance to F.o.m. race 1,2 among 32 accessions are presented. Three Japanese accessions (‘Kogane Nashi Makuwa’, ‘C-211’, and ‘C-40’) showed the highest resistance levels, but useful levels of resistance were also detected in one Russian ‘C-160’ and two Spanish (‘C-300’ and ‘Mollerusa-7’) accessions. These resistant materials, together with other accessions previously described as resistant to F.o.m. races 0, 1, and/or 2 have been morphologically and molecularly characterized. Based on cluster analysis, these accessions have been grouped according to the botanical subspecies they belong to. Assessment of genetic diversity indicated that the resistant accessions to races 0, 1 and 2, are scattered along the established clusters. On the other hand, high levels of resistance to the race 1,2 could be found only among accessions belonging to Cucumis melo subsp. agrestis, nevertheless, a certain degree of resistance to this race could also be found within some accessions belonging to subsp. melo. As far as we know, this is the first report of resistance to F.o.m race 1,2 found out from the Far-Eastern melon material. Based on fruits characteristics, it appears that several inodurus and cantalupensis accessions could be exploited in breeding programs as resistance sources to F.o.m races 0, 1 and/or 2 for the improvement of these melon types. The accessions with the highest levels of resistance to the race 1,2 appeared to be very distant both molecularly and morphologically from the commercial types. Nevertheless ‘C-160’, ‘C-300’, and ‘Mollerusa-7’ classified as var. inodorus are morphologically very similar to the Spanish commercial types and might be used as resistant sources in breeding these melon types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号