首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The North Otago Rolling Downlands (NORD) of New Zealand is currently undergoing a large change in land use with subsequent intensification as a result of a new large community irrigation scheme. To assess the effect of this change, a 4‐year monitoring survey was established on two common Pallic soil types of the area to determine the influence of irrigation term (short, <5 years vs. long, >5 years) and grazing animal (cattle vs. sheep) on a range of physical and organic matter soil quality parameters. This 4‐year survey also included the historical land use of dryland sheep farming in the absence of irrigation water. Irrigation term had no significant (P > 0.05) effect on soil physical parameters (percentage macroporosity and bulk density) for 3 of 4 years and no significant effect (P > 0.05) on topsoil total carbon or nitrogen contents. However, irrigation term had a significant (P < 0.01) but biologically small effect on the ratio of carbon to nitrogen with narrowing of the range under longer term irrigation. A significant difference between the dryland and irrigated surveys was found for macroporosity (dryland sheep 17.3% v/v vs. irrigated sheep 13.4% v/v; P < 0.001) and for the C:N ratio (dryland sheep 10.7 vs. irrigated sheep 10.2; P < 0.05). The change in macroporosity under irrigation is likely to take effect within 1 or 2 years of land‐use change as little discernable differences in soil physical properties were evident from land under short‐ or long‐term irrigation.  相似文献   

2.
针对长期连作作物生产力低下等突出问题,研究前茬地膜覆盖作物免耕留膜,轮作后茬作物的生产效应,对于优化栽培模式,建立甘肃河西绿洲灌区作物生产的节本增效技术具有重要意义。2016—2017年,通过田间定位试验,研究了前茬地膜覆盖玉米茬口两种耕作方式(免耕留膜,NT;传统耕作,CT)、两种灌水水平(传统灌水,2400 m~3·hm~(-2),I2;传统灌水减量20%,1920 m~3·hm~(-2),I1)和3个施氮水平(传统施氮,225 kg·hm~(-2),N3;传统施氮减量20%,180 kg·hm~(-2),N2;传统施氮减量40%,135 kg·hm~(-2),N1)对轮作小麦产量、光能与灌溉水利用及经济效益的影响,以期为优化试区小麦的栽培技术提供理论依据。研究结果表明,前茬玉米免耕留膜较传统耕作小麦全生育期总叶日积提高21.6%~26.1%(P0.05),特别是小麦灌浆至成熟期提高41.3%~45.2%(P0.05),具有延缓衰老的作用。小麦灌浆至成熟期,免耕留膜集成减量20%水氮供应(NTI1N2)处理比传统耕作和水氮供应(CTI2N3)提高叶日积34.8%~50.7%。免耕留膜较传统耕作提高籽粒产量、光能利用率和灌溉水利用效率分别为10.1%~10.4%、5.6%~12.3%和10.1%~10.3%(P0.05);NTI1N2较CTI2N3处理小麦增产15.2%~22.0%、光能利用率提高8.1%~18.5%、灌溉水利用效率提高44.0%~52.5%(P0.05)。免耕留膜结合减量水氮供应可降低生产成本,提高纯收益和产投比,NTI1N2较CTI2N3处理纯收益和产投比分别提高22.9%~23.9%和34.8%~35.1%,单方水效益提高53.6%~68.9%(P0.05)。因此,前茬地膜覆盖玉米免耕留膜配套减量20%灌水(1920 m~3·hm~(-2))与施氮(180 kg·hm~(-2))可作为甘肃河西绿洲灌区发展节本增效小麦生产的关键技术。  相似文献   

3.
ABSTRACT

Energy requirement increases rapidly in agriculture due to the increase in mechanization. The aim of the present study is to evaluate the energy use efficiency of silage maize under three different tillage practices (conventional, reduced, no-tillage) combined with four different irrigation levels (full and three deficit irrigations). The no-tillage and reduced tillage practices provided savings in input energy at the rate of 17.4 and 9.1%, respectively compared to the conventional tillage. The highest silage yields in all irrigation levels were obtained in the no-tillage practice. Therefore, in full and deficit irrigated silage maize, the highest energy ratio, energy productivity and net energy and the lowest specific energy values were manifested in the no-tillage practice. Energy rates in the no-tillage practice were higher by 34.2 and 22.9% than the conventional and the reduced tillage practices, respectively. Moreover, the direct and non-renewable energy requirements were the lowest in the no-tillage practice. In conclusion, the fully-irrigated no-tillage practice can be recommended to obtain the highest energy use ratio and productivity. However, no-tillage irrigated with up to 50% less water amount could be a better alternative for areas with a water shortage by improving the energy use ratio with better water and fuel savings.  相似文献   

4.
Water storage, water use, and maize yields were studied on a tropical alfisol derived from basement complex rocks in Western Nigeria. The objective was to determine the effects of tillage practices on these factors over a long period since a short term yield record may not be a good basis to evaluate the performance of tillage systems.The study, which lasted for five years (1976–1980) with two growing seasons per year, involved four tillage practices, namely: zero-tillage with mulch; conventional tillage (ploughing and harrowing); plough only and “manual” system which was an imitation of the local peasant practice. The experimental design was randomised complete block with four replications.Results show that in the early seasons the cultivated treatments, namely conventional and ploughing, out-yielded the zero-tillage in the first two years of the study (1976 and 1977). Yields ranged from 2639 kg ha?1 in the zero-tillage to 5240 kg ha?1 in the conventional tillage. However from 1978, the zero-tillage yields were significantly higher (P < 0.05) than yields from the cultivated treatments with the figures ranging from 4998 kg ha?1 to 5949 kg ha?1 in the cultivated plots and zero-tillage, respectively.The late season yields were also significantly higher in the zero-tillage throughout the study period. The late season is usually a period of low rainfall and the plants go through periods of stress, especially during the critical tasseling and silking period.Water use was similar for plants under the different tillage practices but water use efficiency (WUE), which for the early season ranged between 76.34 kg ha?1 cm?1 in 1980 to 118.65 kg ha?1 cm?1 in 1978, was significantly higher in the zero-tillage most of the time.The leaf stomatal resistances averaged over the measuring periods were 9.2, 9.5, 9.7 and 10.6 s per cm for plants under the zero-tillage, conventional, manual, and plough respectively. These figures were, however, not significant at five percent.There was also no significant difference (P < 0.05) in the flag leaf water potentials. The average values were ?1.39, ?1.42, ?1.49 and ?1.80 MPa for conventional, plough, zero-tillage and manual techniques, respectively.  相似文献   

5.
[目的]探讨贵州省中部喀斯特地区坡面几种典型土地利用类型及耕作措施对土壤水分、土壤侵蚀及坡面径流的调控效应,探明其差异显著性,为区域坡面水土流失防治提供参考。[方法]采用野外径流小区定位观测法,以贵州省龙里县羊鸡冲小流域及贵阳修文龙场小流域为研究对象,开展坡面不同土地利用及耕作方式水土流失调控效应的研究。[结果]林地、撂荒地及农耕地对土壤水分的调控效应差异不显著(p0.05),对土壤侵蚀的调控效应差异显著(p0.05)。3种土地利用方式对径流的调控效应相对复杂,具体为撂荒地显著低于林地(p0.05),但林地与农耕地间、撂荒地与农耕地间均无显著差异(p0.05);两种典型耕作措施研究结果显示,蔬菜种植(春甘蓝)对土壤水分、水土流失的调控效应优于玉米种植(单作),但两者对土壤水分及水土流失的调控效应均无显著差异(p0.05)。[结论]黔中喀斯特区3种土地利用方式中,撂荒地水土流失调控效应显著高于林地和耕地;蔬菜种植水土流失调控效应高于玉米单作,但是两者无显著差异(p0.05)。  相似文献   

6.
Abstract

This study was conducted on a sloping field at the Japan International Research Center for Agricultural Sciences, Okinawa Subtropical Station, Ishigaki Island, Okinawa Prefecture, Japan, to evaluate the effects of zero tillage farming combined with mucuna fallow as a cover crop on soil erosion and water dynamics. Two fallow systems (natural and mucuna) in combination with two soil tillage treatments (zero tillage and conventional tillage) were imposed on three sloping fields (2.0°, 3.5° and 5.0°). A sorghum crop (Sorghum bicolor (L) moench) was planted after the soil tillage treatment. Soil loss for zero tillage farming combined with mucuna fallow was equivalent to only 3% of that for the conventional tillage farming with natural fallow. Runoff water was also reduced by between 74% and 77% when compared with the conventional tillage system with natural fallow. These results indicate that zero tillage with mucuna fallow is a very effective measure for the control of soil erosion and water runoff. Moreover, this farming system improved water infiltration during both the fallow and the sorghum cropping periods. For the zero tillage plot, water loss as deep percolation increased 1.6-fold compared with that for the conventional farming under heavy rainfall conditions. It is expected that under less rainfall areas or seasons, the effects of zero tillage farming combined with the mucuna cover crop may be more pronounced on water runoff control and, therefore, may greatly improve soil water conditions.  相似文献   

7.
Current interest in soil‐conserving tillage in China has developed from the concern that Chinese agricultural land loses 73·8 Mg C annually. Previous research has shown that changing from conventional tillage to conservation tillage field management increases soil C sequestration. The aim of this study is to determine if no tillage with stubble retention can reduce soil carbon loss and erosion compared with conventional tillage for a cornfield in northern China. We found that soil organic C storage (kg m−2) under conservation tillage in the form of no post‐harvest tillage with stubble retention increased from 28% to 62% in the soil depths of 0–30 cm (p < 0·01) compared with the conventional tillage. Retaining post‐harvest stubble with a height of 30 cm and incorporating the stubble into the soil before seeding the next spring increased soil organic carbon the most. Carbon storage (kg ha−1) in aboveground and belowground biomass of the corn plants in seedling and harvest stages was significantly greater (p < 0·01) with stubble retention treatments than with conventional tillage. Carbon content in root biomass in all treatments with stubble retention was significantly greater than that with conventional tillage. Soil erosion estimates in the study area under conservation tillage with stubble retention was significantly lower than that under conventional tillage during the monitoring period. Given the complexities of agricultural systems, it is unlikely that one ideal farming practice is suitable to all soils or different climate conditions, but stubble retention during harvesting and incorporation of the stubble into soil in the next spring appears to be the best choice in the dry northern China where farmlands suffer serious wind erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
为了明确农业生产过程中耕作方式对田间土壤孔隙结构及土壤水分运动特性的影响,以广西农地蔗田为研究对象,基于土壤切片技术分析研究免耕和垄耕2种典型耕作方式蔗田的田间土壤孔隙结构特征,并结合土柱模拟入渗试验,探究土壤孔隙结构对土壤水分运动的影响,进一步揭示孔隙结构与土壤水分运动特性之间的相互作用关系。结果表明:随着土层深度的增加,免耕蔗田孔隙形态以聚集的团块状分布为主,垄耕蔗田孔隙形态以条状分布为主。与免耕蔗田相比,垄耕蔗田的土壤总孔隙度和>2.5 mm孔径的孔隙度分别增加32.5%和21.9%。垄耕蔗田在局部土层深度范围内显著增加上下土层孔隙的变异度(p<0.05),显著降低土壤孔隙的连通性(平均邻近指数为0.448)(p<0.05),土壤孔隙形态相对规则(平均成圆率为0.335)。对于土壤水分运动特性,免耕蔗田总体的土壤饱和导水率和质量流率显著高于垄耕蔗田(p<0.05),初始含水率显著低于垄耕蔗田(p<0.05),质量流率随时间变化强度相对较大,提高水流入渗能力。垄耕降低土壤孔隙结构连通性,使水分蓄存在表层土壤中,一定程度上可降低土壤水分的入渗现象,改变蔗...  相似文献   

9.
王雯  张雄 《水土保持通报》2015,35(4):213-217,222
[目的]揭示膜下滴灌(MG)、露地滴灌(DG)、沟灌(GA)、交替隔沟灌(JG)、漫灌(CK)5种灌溉方式对春玉米生长和产量的影响,筛选出适合榆林沙区的最有效的节水灌溉方式,为农业高效节水灌溉技术发展提供理论支持。[方法]基于2014年田间试验数据,运用统计分析和水分生产率计算方法。[结果](1)MG处理的春玉米植株生长发育状况优于其他灌溉方式。在各生育期,MG处理的春玉米株高、茎粗和叶片SPAD值(叶绿素相对含量)均高于DG,GA和JG,且显著高于CK(p0.05);(2)在整个生育期,MG处理的春玉米叶片光合速率、气孔导度和水分利用效率均高于其他灌溉方式,且显著高于CK(p0.05);(3)MG处理的春玉米增产节水效果显著,其产量和水分生产率均显著高于其他处理(p0.05)。[结论]同其他4种灌溉方式相比,膜下滴灌是榆林沙区玉米生产中最有效的一种节水灌溉方式。  相似文献   

10.
Conservation tillage practices great role in improving productivity of water. This study hypothesis that tied-ridging and riding tillage could enhance the yield and water use efficiency. Hence, a field experiment was carried out to investigate their potentiality in improving the water use efficiencies for different crops (cotton, groundnut, sorghum and wheat) compared to basin (control) during two excessive seasons. The experiments were organized in a spilt-plot experimental design. The water use efficacies (WUEs) were examined in term of technical, economical and hydraulic water use efficiencies for the both conservation tillage under irrigated conditions. The results indicated that both the conservation tillage techniques showed positive effect (P?≤?.05) on the WUEs. The tied-ridging gave the highest values of WUEs than ridging for all crops. Moreover, tied-ridging increased the average values of water use efficiency by 75%, 48%, 17% and 85% for cotton, sorghum, groundnut and wheat, respectively, compared to that of control treatment, which significantly differed from the ridging treatment. Accordingly, conservation tillage improved WUE and the capability of soil to keep moisture which is reflected in high crops production. This suggests that there is substantial scope for improving irrigation water use efficiency of crops by adoption of conservation tillage.  相似文献   

11.
Energy and water budget analyses are employed as methods for assessing the effects of vegetation type, cultivation practices, and irrigation methods on the microclimate. A comparison is made of vegetation types that employ water received from (1) natural precipitation and (2) irrigation. Forest lands are compared to corn cultivated by conventional tillage and no tillage methods. The forest canopy generally has a lower surface albedo, greater surface roughness, higher transpiration rates, and increased water storage than the bare soil, mulched, and vegetated surfaces of a corn field. No tillage cultivation reduces wind and water erosion, lowers soil temperatures, and improves water retention compared to standard tillage used on corn fields. Irrigated agriculture has replaced much of the drought resistant vegetation of the Central Valley of California. The energy and water budgets of irrigated crops grown in the semi-arid climate of the Central Valley and irrigated by flood or sprinkler methods exhibit microclimates in which evapotranspiration dominates the energy and mass fluxes. Drip irrigation methods, by contrast, have reduced water losses compared to flood and sprinkler methods. The drip system supplies metered amounts of water to the base of each plant; low soil evaporation and improved water supply to the growing plant results from this method. The latent heat flux is reduced over that found in fields irrigated by flooding or spraying. Generally, agricultural transformation of large stands of natural vegetation is expected to change the micro- and macroclimate of the areas affected.  相似文献   

12.
为了探讨黑河流域保护性耕作对土壤生产力的影响,设计20cm留茬(NS20),20cm留茬压倒(NPS20),40cm留茬(NS40),40cm留茬压倒(NPS40)和传统耕作(CT)5个处理,研究了黑河流域保护性耕作对农田土壤有机质、土壤微生物量C、土壤微生物量N以及作物产量和水分利用效率的影响。结果表明,保护性耕作农田0—20cm土层土壤有机质、土壤微生物量C和N的含量均高于传统耕作,且其在剖面中的变化趋势基本一致,即随土层深度增加下降;土壤微生物量N有明显的"表聚现象";相关分析表明土壤有机质和土壤微生物量C之间显著正相关(r=0.85,p0.05),与土壤微生物量N之间无明显的相关关系(r=0.47,p0.05);保护性耕作提高了春小麦的产量,NPS20和NPS40增产效果最好,较CT分别增产53.08%和46.59%,与CT之间差异达到极显著水平;保护性耕作提高了春小麦的水分利用效率(WUE),NPS20,NS40,NPS40,NS20分别较CT的WUE提高了58.02%,43.40%,47.27%,23.78%。  相似文献   

13.
【目的】 农田固碳保水性能是影响作物产量的关键因素,研究耕作方式对耕层 (0—20 cm) 土壤碳、水含量和产量的影响,为选择适宜该地区的最佳耕作措施提供参考。 【方法】 保护性耕作长期定位试验始于2002年,种植制度为冬小麦–夏玉米一年两熟,两季秸秆全量粉碎 (3~5 cm) 还田,试验设传统翻耕、深松、旋耕和免耕4种耕作方式。对2015—2016年作物生长各时期土壤有机碳含量、土壤含水量、碳水储量、产量和等价产量等进行了测定。 【结果】 不同处理麦–玉轮作农田0—20 cm土层有机碳含量有所不同。耕作措施对土壤有机碳含量有显著 (P < 0.05) 影响,表现为深松和免耕能显著增加0—10 cm土层有机碳含量,且以深松效果最为显著 ( P < 0.05)。与传统翻耕相比,免耕和旋耕降低了10—20 cm土层土壤有机碳含量;深松比传统翻耕显著 ( P < 0.05) 增加了小麦季土壤有机碳含量,玉米季没有显著性差异 ( P < 0.05)。0—10 cm土层,玉米季旋耕和免耕处理的土壤含水量高于深松和传统翻耕;在10—20 cm土层小麦季免耕处理土壤含水量高于其他三种耕作方式。产量结果表明,深松能有效增加作物的有效穗数、穗粒数和千粒重,进而增加籽粒产量和周年等价产量;免耕显著 ( P < 0.05) 降低了亚表层 (10—20 cm) 有机碳含量,降低穗粒数和千粒重,不利于作物增产。两年小麦玉米单作产量和周年等价产量均表现为深松 > 传统翻耕 > 旋耕 > 免耕。 【结论】 深松能有效促进耕层土壤有机碳积累和保水性能提高,增加作物的有效穗数、穗粒数和千粒重,从而增加产量;免耕显著 (P < 0.05) 提高了表土层 (0—10 cm) 碳储量,有助于增强耕层土壤的保水性能。   相似文献   

14.
荒漠绿洲区交替灌溉小麦/玉米间作水分利用特征研究   总被引:5,自引:1,他引:4  
大田试验研究了小麦/玉米间作田小麦、玉米带交替供水对作物耗水特性、产量和水分利用效率(WUE)的影响。结果表明: 在同等供水水平下, 交替灌溉小麦/玉米间作全生育期的棵间蒸发量比传统灌水处理减少44.0 mm, 总耗水量增加15.4 mm, 产量和WUE分别提高13.92%和9.21%, 说明交替灌溉是提高间作产量和WUE的可行措施之一。交替灌溉条件下, 小麦/玉米间作全生育期的棵间蒸发量、耗水量随供水水平的提高而增加, 但WUE随供水量的增加而降低。  相似文献   

15.
Tillage is an important agricultural operation which influences soil properties, crop yield and environment. Nine combinations of three tillage practices including conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) were evaluated in fodder sorghum (Sorghum bicolor) + cowpea (Vigna unguiculata) – wheat (Triticum durum) cropping system for 5 years (2009–2014) on clay loam soil under limited irrigation. Continuous ZT practices significantly improved surface soil organic carbon, bulk density, infiltration rate and maximum water holding capacity. Carbon sequestration rate, soil organic carbon stock and soil enzymatic activities were relatively more under ZT than CT-CT practice. Higher fodder yield of sorghum + cowpea was recorded with CT (kharif) while wheat grain yield with ZT (rabi). However, the system productivity was statistically similar in all the tillage treatments on pooled data basis. The economic benefits were also maximum under ZT-ZT practice. The ZT-ZT practice recorded significantly lowest energy input (17.1 GJ ha?1) which resulted in highest energy use efficiency (13.6) and energy productivity (518 kg GJ?1). Thus, adoption of ZT significantly improved soil health, stabilized crop yield, increased profitability and energy use efficiency in the semi-arid agro-ecosystem.  相似文献   

16.
Average yield of maize (Zea mays L.) in Mozambique is low, mainly due to low use of inputs in agriculture, high seasonal rainfall variability and inadequate soil preparation. A study conducted in two summer crop seasons (November–March 2012/2013 and 2013/2014) examined the impact of three tillage methods (hand hoeing, strip tillage and conventional tillage), two fertiliser levels (0 and 40% N) and two water supply regimes (rainfed and irrigated) on maize root development and grain yield on a sandy soil in a semi-arid region of Mozambique. Tillage had a major effect on soil penetration resistance, but little effect on root growth and limited effect on yield. Thus, there appears to be little need for loosening on this soil. There was also no interaction between tillage and the other experimental factors, meaning that tillage system can be chosen irrespective of fertiliser and water supply. Irrigation had the largest impact on root and shoot growth and crop yield, increasing yield in season 2 from 670 to 4780?kg ha–1.There was a very strong interaction between fertiliser and water supply, with no yield increase for fertiliser in the rainfed treatment, while combined with irrigation it increased yield by 1590?kg ha–1 in season 1 and 1840?kg ha–1 in season 2. Thus, for the conditions studied here, it was rational to add fertiliser only in combination with irrigation and not in a rainfed system.  相似文献   

17.
Research information on the effect of tillage systems on cocoyam (Xanthosoma sagittifolium (L.) Schott) growth, nutrient status and yield is lacking in Africa. The effects of zero tillage with mulch, zero tillage without mulch, manual mounding, manual ridging and conventional tillage on cocoyam yield, growth and nutrient availability were compared during 2 years on an Alfisol (Oxic Tropuldaf) at Owo in the rainforest zone of Nigeria. The surface soil (0–20 cm) was chemically analyzed before and after crop harvest and selected soil physical properties were determined. Concentration of soil organic C, N, P, K and Mg and the leaf N, P and K were significantly influenced (p = 0.05) by tillage, with zero tillage with mulch being the most effective treatment in conserving the fertility of the surface soil (0–20 cm). Soil fertility, as indicated by organic C, N, P, K, Ca and Mg, declined significantly (p = 0.05) over time in all tillage systems, but this decline was more pronounced in the conventional tillage. Zero tillage with mulch, zero tillage without mulch, manual mounding, manual ridging and conventional tillage reduced the soil organic C concentration by 20, 23, 23, 24 and 33%, respectively over the 2-year period. The decreases in soil N concentration were 25, 31, 31, 38 and 56%, soil P concentration were 13, 15, 17, 16 and 26%, and soil K concentration were 16, 26, 31, 37 and 53%, respectively. Tillage did not affect corm and cormel yields in the first year. In the second year, due to the elimination of ploughing, significant differences were obtained in the cormel yield but not of corm yield. In 2005, zero tillage with mulch produced the highest cormel yield (13.5 mg ha−1) of cocoyam followed by zero tillage without mulch (13.2 mg ha−1), manual mounding (12.7 mg ha−1) and manual ridging (12.5 mg ha−1). The lowest cormel yield (9.5 mg ha−1) of cocoyam was produced by conventional tillage. Soil water contents in zero tillage with mulch and zero tillage without mulch were significantly higher (p = 0.05) than in the other tillage systems. Soil bulk density ranging from 1.21 to 1.40 mg m−3 correlated positively with leaf nutrient concentration and yield. Cocoyam can be grown successfully on zero tillage, with mulch and without mulch or minimum tillage systems on an Alfisol of the humid tropics.  相似文献   

18.
Field experiments were conducted for two years to find out the appropriate sowing configuration and rate of nitrogen (N) for sustained yield and improved water use efficiency of hybrid Bt cotton irrigated through surface drip irrigation. Drip irrigation under normal sowing, in which equal quantities of water and N were applied as check-basin irrigation, resulted in an increase of 389 and 155 kg ha?1 in seed cotton yield compared with check-basin irrigation during the first and second year, respectively. Normal paired row sowing under a drip irrigation system, in which only 50% of irrigation water was applied compared with normal sowing, produced a yield similar to normal sowing under drip irrigation during both years, resulting in 22% higher water use efficiency. Dense paired row sowing under drip irrigation, in which only 75% irrigation water was applied compared with normal sowing, increased the mean seed cotton yield by 5% and water use efficiency by 19%. Decrease in the rate of nitrogen application (from 150 to 75 kg N ha?1) caused a decline in seed cotton yield and water use efficiency under all the methods of sowing, but the reverse was true for agronomic efficiency of N.  相似文献   

19.
Three different experiments have been carried out in the area to the northeast of Madrid (central Spain) over 10 years with winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.), spring barley and vetch (Vicia sativa L.) grown for hay. In these experiments, three tillage systems were compared: conventional tillage (primary tillage was mouldboard ploughing to 300 mm depth), minimum tillage (primary tillage was spring tine cultivation either with a chisel or a cultivator to 150 mm depth) and zero tillage (direct drilling), in relation to energy consumption, production costs, energy efficiency and productivity, and economic returns. The experiments were performed on a Vertic Haploxeralf of a clay loam texture.The aforementioned variables were calculated considering every input (i.e. fertilisers, seeds, herbicides, machinery and fuel) including all the labour practices performed to harvesting. Post-harvesting activities were not included.The results showed that important energy and production cost savings may be achieved through minimum tillage and zero tillage, compared with conventional tillage. These energy savings ranged from 7 to 11% for cereal crops, whereas for vetch crops the reduction was 10% for minimum tillage and 15% for zero tillage. Production costs for minimum tillage were 13–24% less than for conventional tillage. For zero tillage these reductions ranged from 6 to 17%. For cereal crops, minimum tillage and zero tillage had energy productivities which were 18% and 20%, respectively, greater than that for conventional tillage. In most cases, yields of winter crops were similar, regardless of the tillage system considered. Only spring barley showed lower yields with zero tillage. For winter cereals the profitability with minimum tillage and zero tillage is higher than that with conventional tillage. However, spring barley is less profitable when using zero tillage.  相似文献   

20.
This study assessed the soil organic C (SOC) and soil nutrients in smallholding home garden, woodlot, grazing land, and cropland at two soil depths and two sites in Wolaita Zone, southern Ethiopia. The results showed that soil properties were significantly influenced by land use. The home garden had significantly higher (p < 0.05) SOC and soil nutrients when compared to the cropland. When the home garden was compared to the woodlot and grazing land uses, it had significantly higher (p < 0.05) values except in SOC, total N (TN), cation exchange capacity (CEC), and exchangeable Ca. Cropland, in comparison with grazing land and woodlot, had a non‐significant difference except TN. The SOC stock (0–40 cm) in the home garden, woodlot, grazing land and cropland was 79.5, 68.0, 65.0, and 58.1 Mg ha?1, respectively. Home garden significantly differed (p ≤ 0.05) in SOC only from cropland, and this was attributed not only to the relatively higher organic input in the home garden but also to the little organic matter input and frequently tillage of the cropland. The similar SOC among the home garden, woodlot and grazing lands may imply that the balance between inputs and outputs could be nearly similar for the land uses. Soil TN and CEC had a nearly similar pattern of difference as in SOC among the land uses because of their close relationship with SOC. In general, the land use influence on soil nutrients can be in the order: home garden > wood land ≈ grazing land ≈ cropland, with home garden showing the least difference from the woodlot and the greatest from the cropland. In the agroecosystem, in general, the influence of smallholding home garden on SOC and soil nutrient was marginally different from Eucalyptus woodlot and grazing lands but evidently different from cropland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号