首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behaviour of heavy metals in soils. 2. Extraction of mobile heavy metals with CaCl2 and NH4NO3 156 soil samples from arable fields, grassland and forest stands were analysed for the CaCl2? and NH4NO3? extractable contents of Cd, Zn, Mn, Cu and Pb. The average amounts of Cd, Zn, Cu and Pb extracted with CaCl2 are higher compared with NH4NO3 whereas the relation for Mn is vice versa. The proportion of the NH4NO3? extractable contents in percent of the CaCl2? extractable contents of Cd, Zn and Pb decrease with increasing pH, whereas the contents of Mn and Cu increase. Inspite of a differing extraction behaviour of the two salt solutions the CaCl2? and NH4NO3? extractable amounts of Cd, Mn, Zn und Pb are highly correlated and can be converted one into another. The mobile (CaCl2, NH4NO3) proportion of the corresponding total, EDTA and DTPA heavy metal contents is in close relation to the pH of the soils. Using CaCl2 solution the threshold pH values for an increasing mobility decrease in the order Cd > Mn > Zn > Cu > Pb, using NH4NO3 as extractant the order is Mn > Cd > Zn > Cu > Pb. In the case of CaCl2 as extractant soluble chloro-Cd-complexes will be formed so that the Cd mobility in soils will be overestimated in most cases.  相似文献   

2.
Abstract

Effects of long-term use of phosphate fertilizers on extractable soil Cd in relation to its concentrations in plants were investigated. “Paired” soil samples were collected from newly and long-term cultivated fields and analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. Plant samples were also collected and analyzed for Cd. Significant differences in extractable Cd by all the extractants except NH4NO3 were observed between the newly and long-term cultivated soils. The Cd concentrations in plants were not increased by the elevated extractable Cd. Although significant relationships were observed between plant Cd and extractable soil Cd, none of the extractants used alone gave a good assessment of plant-available Cd for all the samples used in this study.  相似文献   

3.
Abstract

Alfisols, Vertisols, Inceptisols, Aridisols, Mollisols, and Entisols were sampled (0–30 cm) from 32 locations across Ethiopia. The soils were analyzed for copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) contents using 0.005 M diethylene triamine pentaacetic acid (DTPA), 0.05 M hydrochloric acid (HC1), and 0.02 M ethylene diamine tetraacetic acid (EDTA) extractants. EDTA extracted more of each micronutrient than DTPA, which extracted greater amounts than HC1. The quantities of EDTA and DTPA‐extractable micronutrients were significantly correlated, and were in the order: Mn>Fe>Cu>Zn. The order of HCl‐extractable micronutrients was Mn>Fe>Zn>Cu. Micronutrient contents of Mollisols, Vertisols, and Alfisols were usually greater than those of the other soils, and Entisols usually had the lowest micronutrient contents. The contents were mostly positively correlated with clay and Fe2O3 contents, but negatively correlated with soil pH and A12O3contents. While comparison of DTPA‐ and EDTA‐extractable micronutrients with critical levels showed that most soils had adequate amounts of the micronutrients for crops, the amounts extracted by HC1 were below critical levels in most soils. Since the critical levels that were used in the comparisons were not established in Ethiopia, calibration of the soil contents of these micronutrients with crops grown in Ethiopia is required to identify the most suitable extractant(s).  相似文献   

4.
Abstract

Five soil extractants, namely, 0.005 M diethylene triamine pentaacetic acid (DTPA) (pH 7.3), 0.005 M DTPA+1 M ammonium bicarbonate (pH 7.6), Mehlich 3, 0.01 M ethylene diamine tetraacetic acid (EDTA)+0.05 M ammonium carbonate (pH 8.6), and 1 M magnesium chloride (MgCl2) (pH 6.0), were evaluated to predict the response of wheat to zinc (Zn) application in Mollisols. These extractants could be arranged in the following decreasing order of their Zn extracting power: Mehlich 3>0.005 M DTPA+1 M ammonium bicarbonate>0.01 M EDTA+0.05 M ammonium carbonate>0.005 M DTPA>1 M MgCl2. The critical limits of Zn in soil, below which the yield response to late sown wheat (var. UP‐2338) to Zn application could be expected, were 0.57 mg 0.005 M DTPA (pH 7.3) extractable and 1.72 mg Mehlich 3–extractable Zn kg?1 soil. The critical limit of Zn in whole shoot at 60 days after emergence was found to be 26.1 mg Zn kg?1 plant tissue. The DTPA and Mehlich 3–extractable soil Zn also correlated significantly and positively with Zn concentration in whole shoot at 60 days after emergence and total Zn uptake by wheat at harvest.  相似文献   

5.
Abstract

Eighty four soil samples collected from southeastern Norway were analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. The total Cd, pH, exchangeable K and Ca, dithionite-extractable Mn, available P and fine sand (0.2–0.02 mm) contents were the principal factors related to the extractable Cd, with some inter-extractant variations. Cadmium extracted by NH4NO3, NH4OAc, HCl and CaCl2 decreased with increasing soil pH, but the Cd extracted by all the extractants increased with increasing total Cd, exchangeable K and Ca, available P, and Mn-oxide contents in the soils. The Cd concentrations in plants were significantly related to the extractable Cd, exchangeable Ca and Mg, pH, Mn-oxides and organic matter content.  相似文献   

6.
Behaviour of heavy metals in soils. 1. Heavy metal mobility 158 soil samples with widely varying composition were analysed for their total, EDTA, DTPA and CaCl2 extractable contents of Cd, Zn, Mn, Cu and Pb. By means of single and multiple regressions the relations between the different heavy metal fractions and the pH, organic carbon and clay content were considered. The correlations between the total, EDTA and DTPA extractable contents are very close, whereas the CaCl2 extractable contents are not or only weakly correlated with these fractions. According to these statistical results the former fractions are considered to be the total quantity (total content) and the reactive quantity (EDTA and DTPA extractable contents) of the heavy metals, whereas the CaCl2 extractable fraction represents the mobile fraction of the heavy metals in soils. The multiple regressions show that the mobile content of heavy metals is closely correlated with each of the quantity fractions and with soil pH. In the same way the proportion of the mobile fraction (in %) of the total, EDTA and DTPA extractable heavy metal content of the soil samples is closely related to the soil pH. Hereby the proportion of the mobile content of the various elements increases in the pH range 6,5 - 3 below element-specific threshold pH values (in brackets) in the order Cd (6,5) > Mn (5,7) > Zn (5,3) > Cu (4,5) > Pb (3,5). In the pH range 6,5 - 7,5 mainly Cu and to a lesser degree also Pb show an increasing mobility due to the influence of soluble organic substances.  相似文献   

7.
Abstract

The proportion of copper (Cu) that can be extracted by soil test extractants varied with the soil matrix. The plant‐available forms of Cu and the efficiency of various soil test extractants [(0.01 M Ca(NO3)2, 0.1 M NaNO3, 0.01 M CaCl2, 1.0 M NH4NO3, 0.1 M HCl, 0.02 M SrCl2, Mehlich‐1 (M1), Mehlich‐3 (M3), and TEA‐DTPA.)] to predict the availability of Cu for two contrasting pasture soils were treated with two sources of Cu fertilizers (CuSO4 and CuO). The efficiency of various chemical reagents in extracting the Cu from the soil followed this order: TEA‐DTPA>Mehlich‐3>Mehlich‐1>0.02 M SrCl2>0.1 M HCl>1.0 M NH4NO3>0.01 M CaCl2>0.1 M NaNO3>0.01 M Ca(NO3)2. The ratios of exchangeable: organic: oxide bound: residual forms of Cu in M1, M3, and TEA‐DTPA for the Manawatu soil are 1:20:25:4, 1:14:8:2, and 1:56:35:8, respectively, and for the Ngamoka soil are 1:14:6:4, 1:9:5:2, and 1:55:26:17, respectively. The ratios of different forms of Cu suggest that the Cu is residing mainly in the organic form, and it decreases in the order: organic>oxide>residual>exchangeable. There was a highly significant relationship between the concentrations of Cu extracted by the three soil test extractants. The determination of the coefficients obtained from the regression relationship between the amounts of Cu extracted by M1, M3, and TEA‐DTPA reagents suggests that the behavior of extractants was similar. But M3 demonstrated a greater increase of Cu from the exchangeable form and organic complexes due to the dual activity of EDTA and acids for the different fractions and is best suited for predicting the available Cu in pasture soils.  相似文献   

8.
Abstract

Eighteen soils from northwestern Switzerland were used to study the value of seven universal extractants (CaCl2; DB‐DTPA; Mehlich 1, 2, and 3; Morgan‐Wolf; and NH4OAc‐EDTA) for predicting plant available potassium (K) as compared to a bioassay (a modified Neubauer test with winter rye). These extractants were evaluated on the basis of K uptake by the bioassay test and the soil K status. In order to create the sufficiency level of exchangeable K for plant growth, soils were treated with 0, 20, 40, 80, and 160 mg K/kg of soil. The range of K uptake by the bioassay tests was between 89.2 and 403.0 mg/kg of soil for the control pots, and 136.6 to 495.8 for the K treatments with optimal conditions for plant growth. The average amounts of K extracted by the seven universal extractants, in ascending order, were: CaCl2 < Morgan‐Wolf < Mehlich 1 < Mehlich 2 < NH4OAc‐EDTA < Mehlich 3 < DB‐DTPA. The highest simple correlation with K uptake versus the bioassay test was obtained with the DB‐DTPA (r = 0.89) extractant and the lowest with the Mehlich 1 (r = 0.53) extractant. The DP‐DTPA, NH4OAc‐EDTA and Mehlich 3‐K procedures showed an advantage over K procedures based on water soluble and exchangeable K pools in the investigated soils in order to predict the amount of plant‐available K. A simple regression and the Cate‐Nelson graphic method offer the possibility of assessing the soil‐K status using K values obtained by these universal extractants and to calibrate them against K forms as follows: exchangeable, water soluble, and non‐exchangeable.  相似文献   

9.
In this study, we selected three soil pedons on the shoulder, backslope, and footslope along a serpentine toposequence to measure cobalt (Co) extractability using six single‐extraction procedures. These extraction procedures are distilled water, 0.11 M acetic acid in the first step of the BCR sequential extraction (BCR1), 1 M ammonium acetate (NH4OAc; pH 7.0), 0.01 M calcium chloride (CaCl2), diethylenetriamine pentaacetic acid (DTPA), and 0.1 M hydrochloric acid (HCl). Although the Co concentrations in the water extracts of the study soils ranged from 0.15 to 0.93 mg kg?1, those with HCl extraction can be up to 22.1 mg kg?1. The extractable Co concentrations in the study soils demonstrate that the extraction capacity is in the order HCl > DTPA > CaCl2 ? NH4OAc > BCR1 > H2O. The percentages of extractable Co after applying the six single‐extraction procedures reveal that Co mobility is greatest in the soils on the backslope, moderate on the footslope, and least mobile on the shoulder.  相似文献   

10.
Human exposure to toxic heavy metals via dietary intake is of increasing concern. Heavy-metal pollution of a rice production system can pose a threat to human health. Thus, it was necessary to develop a suitable extraction procedure that would represent the content of metal available to rice plants (Oryza sativa L.). The aim of this study was to predict, on the basis of single extraction procedures of soil heavy metals, the accumulation of heavy metals (cadium, lead, copper, and zinc) in rice plants. Six extracting agents [Mehlich 1, Mehlich 3, EDTA (ethylenediaminetetraacetic acid), DTPA–TEA (diethylenetriaminepentaacetic acid–triethanolamine), ammonium acetate (NH4OAc), and calcium chloride (CaCl2)] were tested to evaluate the bioavailability of heavy metals from paddy soils contaminated with lead–zinc mine tailings to rice. The extraction capacity of the metals was found to be of the order EDTA > Mehlich 3 > Mehlich 1 > DTPA–TEA > NH4OAc > CaCl2. The correlation analysis between metals extracted with different extractants and concentrations of the metals in the grain and stalk of the plant showed positive correlations with all metals. The greatest values of correlation coefficients were determined between the NH4OAc- and CaCl2-soluble fractions of soil and contents in plants in all four metals studied. Therefore, NH4OAc and CaCl2 were the most suitable extractants for predicting bioavailability of heavy metals in the polluted soils to rice. The results suggested that uptake of heavy metals by rice was mostly from exchangeable and water-soluble fractions of the metals in the soils. Soil-extractable metals were more significantly correlated with metal accumulation in the stalk than in the grain. The pH had more significant influence on availability of heavy metals in the soils than total content of metals and other soil properties. The bioavailability of metals for rice plants would be high in acidic soils.  相似文献   

11.
Six fertilizer trials on calcareous soils in Saudi Arabia were conducted for the prediction of Zn deficiency in soybean (Glycine max L., var Merr). Zinc level before planting was tested by using 3 different extractants, i.e. DTPA, AB-DTPA and EDTA. Zinc was applied in the form of ZnSO4 · 7H2O at 0, 5, 10, 15, 20 and 40 kg Zn ha?1. Plant samples were taken at early bloom and tissue was analysed for Zn. Two methods were used to judge the critical deficiency level of Zn: Cate-Nelson and chisquare models. The critical level estimated according to the Cate-Nelson method for DTPA extractable soil Zn was 0.43 mg kg?1 in the growing season 1991. EDTA gave a much higher level (1.80 mg kg?1) and AB-DTPA gave an intermediate level (0.68 mg kg?1). Chi-square statistical procedure gave a very similar critical level of 0.66 mg kg?1 for AB-DTPA but lower for either DTPA (0.38 mg kg?1) or EDTA (1.32 mg kg?1). The critical level based for three growing seasons ranged from 0.25 to 0.68, 0.32 to 0.82 and 1.12 to 3.4 mg Zn kg?1 for DTPA, AB-DTPA and EDTA extractants, respectively. The values obtained by the linear regression equation with soybean leaf concentration were 0.45 and 0.70 mg Zn kg?1 for DTPA and AB-DTPA, respectively. Such values are very close to those determined by using the Cate-Nelson method. On the other hand, the value obtained for EDTA (1.15 mg Zn kg?1) was comparatively lower than that calculated by applying the Cate-Nelson method.  相似文献   

12.
Abstract

Rice (Oryza sativaL. CV. Lemont) was grown on 19 soils, and eight extractants were evaluated for determining the availability of Cu to rice plants. Correlation analyses were employed as criteria for evaluating methods that would provide the best index of Cu availability. The order of removal of Cu from soils was: 0.5NHC1 + 0.05NA1C13> 0.5NHNO3> 0.5 N HC1 > EDTA + NH4OAc > 0.1NHC1 > EDTA + (NH4)2CO3? DTPA‐TEA, pH 7.3 >>> 1 N NH40Ac, pH 4.8.

Uptake of Cu by rice plants was significantly correlated with soil Cu. Among the eight extractants evaluated, Cu extracted with DTPA‐TEA, pH 7.3 was better related to the concentration (r = 0.563 ) and uptake (r = 0.673 ) of Cu by rice plants grown on the soils with different chemical and physical properties.

A significant negative correlation was found between the concentration of Cu in rice plants and the organic matter content of the soils. Each one percent increase in the organic matter of the soils resulted in a corresponding decrease of approximately one mg/kg in the concentration of Cu in the rice‐plant tissue. Multiple regressions of extractable Cu by eight methods with soil organic matter content accounted for from 53.4 to 70.0% of the variations in the prediction of the concentration of Cu in the rice plants. Combinations of other soil chemical properties measured with extractable Cu did not significantly improve the predictability  相似文献   

13.
A reliable soil test is needed for estimating mercury (Hg) availability to crop plants. In this study, four extraction procedures including 0.1 M hydrochloric acid (HCl), 1 M ammonium acetate (NH4OAc) (pH 7.0), 0.005 M diethylenetriaminepentaacetic acid (DTPA), and 0.1 M calcium chloride (CaCl2) (pH5.0) were compared for their adequacy in predicting soil Hg availability to crop plants of a rice–cabbage–radish rotation system. The amounts of Hg extracted by each of the four procedures increased with increasing equilibrium time. The optimal time required for extraction of soil Hg was approximately 30 min, though it varied slightly among the four extractants. The amounts of Hg extracted decreased with increasing soil/solution ratio, and a soil/solution ratio of 1:5 appeared to be adequate for soil Hg availability tests. The amounts of Hg extracted increased in the order of NH4OAc < CaCl2 < DTPA < HCl in silty loam soil (SLS) soil, and the order was NH4OAc < CaCl2 ≈ DTPA < HCl in yellowish red soil (YRS) soil. Significant positive correlations among the four extractants were obtained in SLS soil. In contrast, the correlations were poor in YRS soil, especially for HCl. There were significant correlations between concentrations of Hg in edible tissue of three plants and the amounts of soil Hg extractable to the four extractants for soil–rice system and soil–radish system, but not for soil–Chinese cabbage system. The 0.1M HCl extraction overall provided the best estimation of soil‐available Hg and could be used to predict phytoavailability of Hg in soil–crop systems.  相似文献   

14.
In a greenhouse experiment, effects of different phosphate fertilizer applications on soil Cd extracted by DTPA and NH4NO3 in relation to plant uptake of Cd were investigated. The soils used were a sand and a loam treated with lime to achieve three pHs ranging from 4.77 to 5.94 for the sandy soil and 4.97 to 6.80 for the loam soil. Oat (Avena sativa L.), ryegrass (Lolium multiflorum L.), carrot (Daucus carota L.), and spinach (Spinacia oleracea L.), were used as test species. Application of the high-Cd NPK fertilizer (adding 12.5 μg Cd kg?1 soil) significantly increased the extractable soil Cd, especially the DTPA-extractable Cd. Use of phosphate rock adding as much Cd as the high-Cd NPK fertilizer did not increase the extractable Cd in either of the soils. Both DTPA- and NH4NO3-extractable Cd decreased with the increases in soil pH. The Cd concentrations and total Cd uptake of plants were significantly correlated with the soil Cd extracted by DTPA and NH4NO3.  相似文献   

15.
A pot experiment was conducted to investigate the influence of phosphate (P) application on diethylene triamine pentaacetic acid (DTPA)–extractable cadmium (Cd) in soil and on growth and uptake of Cd by spinach (Spinacia oleracea L.). Two soils varying in texture were contaminated by application of five levels of Cd (NO3)2 (0, 20, 30, 40, and 60 mg Cd kg–1). Three levels of KH2PO4 (0, 12, and 24 mg P kg–1) were applied to determine immobilization of Cd by P. Spinach was grown for 60 d after seeding. Progressive contamination of soils through application of Cd affected dry‐matter yield (DMY) of spinach shoot differently in the two soils, with 67% reduction of DMY in the sandy soil and 34% in the silty‐loam soil. The application of P increased DMY of spinach from 4.53 to 6.06 g pot–1 (34%) in silty‐loam soil and from 3.54 to 5.12 g pot–1 (45%) in sandy soil. The contamination of soils increased Cd concentration in spinach shoots by 34 times in the sandy soil and 18 times in the silty‐loam soil. The application of P decreased Cd concentration in shoot. The decrease of Cd concentration was higher in the sandy soil in comparison to the silty‐loam soil. Phosphorus application enhanced DMY of spinach by decreasing Cd concentration in soil as well as in plants. The results indicate that Cd toxicity in soil can be alleviated by P application.  相似文献   

16.
Twenty surface (0–15 cm) samples of acidic soils were analyzed for water soluble (WS), exchangeable (EX), lead displaceable (Pb-disp.), acid soluble (AS), manganese (Mn) oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline iron (Fe) oxide occluded (CFeOX) and residual (RES) fractions of Mn, and also for extractable Mn in some common soil extractants: (diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich-3 (pH 2.0), Modified Olsen, 0.005 M calcium chloride (CaCl2), 1 M magnesium chloride (MgCl2) and ion exchange resins. The WS-Mn fraction showed a significant and positive correlation with Mn extractable in DTPA (pH 5.3) and AB-DTPA (pH 7.6), while both WS-Mn and EX-Mn fractions correlated significantly and positively with Mn concentration and uptake by maize plants grown in these soils. The AB-DTPA (pH 7.6) and DTPA (pH 5.3) appeared suitable to assess the availability of Mn in acidic soils.  相似文献   

17.
Twenty-four surface soils (0–15 cm) were collected from Tal land soils (vertisols) in the southern part of Bihar state in India. Six extractants were used to predict the extractability and their suitability for measuring available zinc (Zn) in these soils. Pot experiment with chickpea (Cicer arietinum cv. C-235) as test crop was conducted with five levels of Zn (0, 2.5, 5.0, 7.5, and 10.0 mg kg?1) to determine critical levels of Zn in soils and chickpea. The efficiency rating of different extractants in extracting available Zn from soils followed the order ethylenediaminetetraacetic acid (EDTA)–ammonium carbonate [(NH4)2CO3] > diethylenetriaminepentaacetic acid (DTPA)–ammonium bicarbonate (NH4HCO3) > DTPA– calcium chloride (CaCl2) > DTPA–sodium bicarbonate (NaHCO3) > magnesium nitrate [Mg (NO3)2] > magnesium chloride (MgCl2). The DTPA-CaCl2-extractable Zn was significantly and positively correlated with clay, organic carbon, cation exchange capacity, dry-matter yield, and plant Zn concentration and uptake but significantly and negatively correlated with soil pH. These properties attributed 87% variability in DTPA-CaCl2-extractable Zn.  相似文献   

18.
Evaluation of nutrient status in soil is important for nutritional, environmental, and economical aspects. The objective of this work was to find out the most suitable universal extractant for determination of available phosphorus (P) and nitrate (NO3-) and exchangeable potassium (K), calcium (Ca), and magnesium (Mg) from soils using 0.01 M calcium chloride (CaCl2), 0.01 M barium chloride (BaCl2), 0.1 M BaCl2, 0.02 M strontium chloride (SrCl2), Mehlich 3, and ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractants. Composite surface soil samples (0–20 cm) were collected from the Eastern Harage Zone (Babile and Haramaya Districts), Wolaita Zone (Damot Sore, Boloso Bombe, Damot Pulasa, and Humbo Districts), and Dire Dawa Administrative Council by purposive sampling. The experiment was carried out in a completely randomized design (CRD) with three replications. Results indicated that the greatest correlations were found between Mehlich 3 and Olsen method and also between 0.02 M SrCl2 and Olsen method for available P. The amount of NO3 extracted by 0.02 M SrCl2 was significantly correlated to the amount determined by 0.5 M potassium sulfate (K2SO4). The amounts of exchangeable K, Ca, and Mg determined by ammonium acetate (NH4OAc) method were significantly correlated to the amount determined by universal extractants tested. In general, both 0.02 M SrCl2 and Mehlich 3 can serve as universal extractants for the macronutrients considered in this study with the former being more economical when NO3 is included.  相似文献   

19.
Abstract

The purposes for this research were: to examine the long‐term residual effects of farmland applications of municipal sludges from four treatment technologies on the total and extractable Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations in Coastal Plain soils; to investigate the effects of sludge sources and rates on the effectiveness of soil extractants to remove the various metals; and to determine correlation coefficients for soil extractable versus plant accumulation in tobacco. The extractants evaluated were Mehlich 1 and 3, and DTPA‐pH 7.3. Composite Ap horizon soil samples and tobacco leaf samples were obtained in 1984 from research plots at two sites in Maryland that were established in 1972 and 1976, respectively, using sludge materials from three wastewater treatment facilities in the Washington, D.C. metropolitan region. Similar application rates were used at both sites.

A wide range in soil pH values was found among treatments at each site. Significant (p ≤ 0.05) increases were observed in total Zn, Cu, Fe, Pb, Ni, and Cd for all sludge sources with increased rates; however, values for total soil Mn exhibited high variability in all cases. The rankings among the extractants varied for some elements depending on the sludge sources. For Zn, the rankings were Mehlich 1 > Mechlich 3 > DTPA‐pH 7.3 across all sources and rates. For Cu, Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was found for soils amended with Blue Plains digested (BPD) and Piscataway limeddigested (PLD) sludges but Mehlich 1 ≥ DTPA pH 7.3 > Mehlich 3 for Blue Plains limed compost (BPLC) and Annapolis Fe and heat treated (AFH) sludges. Concerning extractable Mn, Mehlich Mehlich 1 > Mechlich 3 > DTPH pH 7.3 was the order for BPLC and AFH sludges but Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was observed for BPD and PLD sludges. The rankings among extractants for Fe (Mehlich 3 > Mehlich 1 > DTPA‐pH7.3), Ni (Mehlich 3 ≥ Mehlich 1 > DTPA‐pH 7.3), Pb (Mehlich 3 > DTPA‐pH 7.3 > Mehlich 1) and Cd (Mehlich 1 > Mehlich 3 > DPTA‐pH7.3) were somewhat similar across all sludge sources. Significant correlation coefficients were obtained for all three extractants for soil extractable vs. plant Zn, Cu, Ni, and Cd at both sites; however, Mehlich 3 was not significant for Mn. Also, neither of the extractants produced significant coefficients for Fe and Pb.  相似文献   

20.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号