首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT

Controlled-release fertilizers (CRF) are used to reduce leaching of nutrients, especially nitrate-nitrogen (NO3 ?-N) to groundwater, caused mainly by application of soluble N fertilizers to sandy soils in Florida. A leaching column study was conducted to evaluate N release and transformation from a CRF (CitriBlen) over a 16-week period when it was applied on the soil surface or incorporated into the soil. When one pore volume of water was applied to column weekly or biweekly, the CRF released urea-N slowly over time with three peaks of release on 3–4, 8, and 12 week after application. Both ammonium-nitrogen (NH4 +-N) and NO3 ?-N were leached in large amounts on week 2, likely from soluble forms of N. Cumulatively, the most leached N at the end of study was in the NH4 + form, followed by the NO3 ? form. The sum of all N forms leached and volatilized accounted for 53–69% of total N applied. Total N recovery was 70% and 93% of total N applied for surface and sub-surface application of the fertilizer, respectively. It was indicated that the better recovery rate found with sub-surface application may have been due to minimized N loss by volatilization. Sub-surface application of fertilizer resulted in more than three times NH4 +-N remained in soil, compared with surface application. On average for both application treatments throughout 16-week period, 5.8 h was required for ammonification and 4.7 d for nitrification to occur after N release from the fertilizer. Characterization of CRFs for specific soil type, leaching volume and cycle, and application manner as well as knowledge of N requirement of the crop will allow for the Best Management Practices of these fertilizers, thus obtaining optimum yields and minimizing nutrient losses from CRFs.  相似文献   

2.
Non-point source pollution from the Agri-sector (especially nitrogen (N)) due to the application of conventional urea with heavy rates not only depleted the water quality of Erhai Lake but also declined the nitrogen use efficiency (NUE) of different crops grown in the Erhai Lake Basin, Dali, Yunnan, China. It is imperative to mitigate the total nitrogen and its forms (nitrate (NO3?)-N and ammonium (NH4+)-N) loading to the surface and subsurface water flow through optimum fertilizer management for crop production in the region. To achieve this goal, a balanced crop nutrition system was practiced with different fertilizer types for rice-broad bean crop rotation system. The crop nutrition system consisted of No Fertilizers (CK), Conventional Fertilizer Practice (CF), Conventional urea as environmental Fertilizer (T1), Refined Organic Fertilizer applied solely (T2), Refined Organic Fertilizer applied with conventional urea (T3), Refined Organic Fertilizer applied in T2 was increased 4 times (T4), Refined Organic Fertilizer applied in T3 was increased 4 times but the same amount of conventional urea (T5), and Controlled Release Fertilizer (CRF) application (T6). The same rate of nitrogen (20% lower than CF) was applied in T1, T2, T3, and T6. All the former mentioned treatments were compared to CF with respect to different variables. In case of crop production, T6 gave maximum rice grain yield (9.9 t ha?1) and broad bean yield (5.1 t ha?1). Treatments T1 and T5 were at par for rice grain yield (7.8 t ha?1) and this quantity was not significantly lower than CF. Treatments T6, T5, and T1 were observed 29%, 47%, and 46%, respectively lower in TN loading to the surface and percolating water than the CF. Conventional urea and refined organic fertilizer combined with conventional urea at reduced nitrogen rates can be a reliable option for crop production in the Erhai Lake Basin with optimum yield under the rice-broad bean crop rotation system. CRF at reduced nitrogen rate can be a better option for higher yield and lower NO3N, NH4+-N and total nitrogen losses to the surface runoff and leached water.  相似文献   

3.
Abstract

This trial was carried out to establish an appropriate nutrient solution for Aglaonema commutatum and to investigate the nutritional effects generated by modifications in the solution. Six treatments were tested: control (T0; pH 6.5, E.C. 1.5 dS m?1, 6 mmol L?1 NO3 ?‐N, and 6 mmol L?1 K+); high nitrogen (N) level (T1; 9 mmol L?1 6:3 NO3 ?–NH4 +); N form (T2; 6 mmol L?1 N‐NH4 +); high K+ level (T3; 12 mmol L?1 K+); high electrical conductivity (T4; E.C. 4 dS m?1, 25 mmol L?1 NaCl), and basic pH (T5; pH 8). At the end of the cultivation, leaf, shoot, and root dry weights and elemental concentrations were determined. Nutrient contents and total plant uptake were calculated from the dry weights and nutrient concentrations. Plant K+ uptake increased with application of K+ or basic nutrient solution. The uptake and transport of calcium (Ca) were enhanced by the use of NO3 ?‐N and inhibited by the presence of other cations in the medium (NH4 +, K+, Na+) and by basic pH. Magnesium (Mg) uptake increased with NO3 ?‐N application and with pH. Sodium (Na) uptake was the highest in the saline treatment (T4), followed by the basic pH treatment. Sodium accumulation was detected in the roots (natrophobic plant), where the plant generated a physiological barrier to avoid damage. Dry weight did not differ significantly (p<0.05) among treatments except in the NaCl treatment. These results may help in the formulation of nutrient solutions that take into account the ionic composition of irrigation water and the physiological requirements of plants.  相似文献   

4.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N.  相似文献   

5.
Three years of N application to a Cambic arenosol (Typic Udorthent) in two lysimeter series, one with and one without young saplings of Pinus sylvestris L. have produced significant changes in soil solution and leachate chemistry. An application of 30 kg N/ha*yr?1 significantly increased NO3 ? leaching from the soil. This N load was also sufficient to significantly increase the mobility of the phyto-toxic elements Al3+ and Mn2+, likewise to increase leaching of the important plant nutrients Ca2+, Mg2+ and K+. At a N load of 90 kg N/ha*yr?1 significant increase in NH4 + leaching was observed, but total leaching of NH4 + was still very low compared to NO3 ? leaching. No significant treatment effects were found for SO4 2?, Fe2+ and Cl? in the leachate. Trees grown in the lysimeters buffered the acidifying effect of N application and increased the leachate pH by 0.2 pH units compared to lysimeters without trees.  相似文献   

6.
We studied the effect of repeated application (once every 2 d) of a fertilizer solution with different ratios of NH4 + - and NO3 ?-N on N2O emission from soil. After the excess fertilizer solution was drained from soil, the water content of soil was adjusted to 50% of the maximum water-holding capacity by suction at 6 × 103 Pa. Repeated application of NH4 +- rich fertilizer solution stimulated nitrification in soil more than NO3 ?-rich fertilizer. Although the evolution of N2O through nitrifier denitrification tended to increase with the repeated addition of a fertilizer solution rich in NH4 + rather than in NO3 ?, the contribution of nitrifier denitrification remained at levels of 20 to 36% of the total emission regardless of the inorganic N composition. The total emission of N2O also tended to increase with the application of NH4 +- rather than NO3 ?-rich fertilizer. It was suggested that the coupled process of nitrification and denitrification at micro-aerobic sites became important when fertilizer rich in NH4 + was applied to soil under relatively aerobic conditions.  相似文献   

7.
The connection between moisture and nitrogen (N) transformation in soils is key to understanding N losses, particularly nitrate (NO3?) losses, and also provides a theoretical framework for appropriate water management in agricultural systems. Thus, we designed this study to provide a process-based background for management decision. We collected soil samples from the long-term field experiment in subtropical China, which was designed to examine tobacco and rice rotations under a subtropical monsoon climate. The field experiment was established in 2008 with four treatments: (1) no fertilization as control; (2) N, phosphorus (P), and potassium (K) fertilizers applied at recommended rates; (3) N fertilizers applied at rates 50% higher than the recommended amounts and P and K fertilizers applied at recommended rates; and (4) N, P, and K fertilizers applied at recommended rates with straw incorporated (NPKS). Soil samples were collected during the unsaturated tobacco-cropping season and saturated rice-cropping season and were incubated at 60% water holding capacity and under saturated conditions, respectively. Two 15N tracing treatments (15NH4NO3 and NH415NO3) and a numerical modeling method were used to quantify N transformations and gross N dynamics. Autotrophic nitrification was stimulated by N fertilizer both under unsaturated and saturated conditions. The rate of NO3? consumption (via immobilization and denitrification) increased under the NPKS treatment under saturated conditions. Secondly, the rates of processes associated with ammonium (NH4+) cycling, including mineralization of organic N, NH4+ immobilization, and dissimilatory NO3? reduction to NH4+, were all increased under saturated conditions relative to unsaturated conditions, except for autotrophic nitrification. Consequently, NO3?-N and NH4+-N concentrations were significantly lower under saturated conditions relative to unsaturated conditions, which resulted in reduced risks of N losses via runoff or leaching. Our results suggest that under saturated conditions, there is a soil N conservation mechanism which alleviates the potential risk of N losses by runoff or leaching.  相似文献   

8.
太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响   总被引:76,自引:11,他引:76  
通过田间定位试验与土壤渗漏仪 (Lysimeter)模拟试验 ,研究太湖地区稻麦生产中氮肥过量施用带来氮肥利用率低与环境污染问题 ,探讨本区稻麦高产与减少氮肥淋洗的适宜氮肥用量。初步试验结果表明 ,氮肥适宜用量随着稻麦产量的提高而增加 ,本区两种主要土壤水稻、小麦高产的氮肥适宜用量(以N计 )分别为 2 2 5~ 2 70kghm- 2 与 1 80~ 2 2 5kghm- 2 ;适宜的氮肥用量使单位面积的有效穗数和每穗的结实颖花数均高 ,因而产量高。氮素的淋洗以NO- 3 N为主 ,主要发生在麦季与泡田插秧初期 ,其含量随着施氮量的增加而增加 ,每hm2 施N 2 2 5kg的模拟试验 ,麦季渗漏液的NO- 3 N浓度在 5 4~ 2 1 3mgL- 1,有60 %的样次超过污染标准 (NO- 3 N 1 0mgL- 1) ;田间试验 ,麦季施N量在 2 70~ 31 5kghm- 2 范围内 ,地下水NO- 3 N浓度在 1 9~ 1 1 0mgL- 1,有 2 0 %的样次接近 ,1 0 %的样次超过污染标准。长期NO- 3 N渗漏累积 ,势必对地下水构成潜在威胁。  相似文献   

9.
Results are presented from a 3-year investigation into nitrate leaching from grassed monolith lysimeters treated with double (15NH415NO3) or single (15NH4NO3) labelled ammonium nitrate at three rates, 250, 500 and 900 kg N ha?1 a?1. Over the 3 years of the experiment, 0.14%, 3.1% and 18.1% of the applied fertilizer was recovered in the leachate at 250, 500 and 900kg N ha?1 respectively. This represented 9%, 39% and 75% of the overall nitrate leaching at the three application rates. A significant proportion of the fertilizer leached as nitrate at the three application rates was derived, via nitrification, from the fertilizer ammonium. Increasing fertilizer applications caused a rise in the leaching of both soil and fertilizer derived nitrogen, although whether the increase reflected a true priming effect was not clear.  相似文献   

10.
The contribution of bacteria and fungi to NH4+ and organic N (Norg) oxidation was determined in a grassland soil (pH 6.3) by using the general bacterial inhibitor streptomycin or the fungal inhibitor cycloheximide in a laboratory incubation study at 20°C. Each inhibitor was applied at a rate of 3 mg g?1 oven‐dry soil. The size and enrichment of the mineral N pools from differentially (NH415NO3 and 15NH4NO3) and doubly labelled (15NH415NO3) NH4NO3 were measured at 3, 6, 12, 24, 48, 72, 96 and 120 hours after N addition. Labelled N was applied to each treatment, to supply NH4+‐N and NO3?‐N at 3.15 μmol N g?1 oven‐dry soil. The N treatments were enriched to 60 atom % excess in 15N and acetate was added at 100 μmol C g?1 oven‐dry soil, to provide a readily available carbon source. The oxidation rates of NH4+ and Norg were analysed separately for each inhibitor treatment with a 15N tracing model. In the absence of inhibitors, the rates of NH4+ oxidation and organic N oxidation were 0.0045 μmol N g?1 hour?1 and 0.0023 μmol N g?1 hour?1, respectively. Streptomycin had no effect on nitrification but cycloheximide inhibited the oxidation of NH4+ by 89% and the oxidation of organic N by more than 30%. The current study provides evidence to suggest that nitrification in grassland soil is carried out by fungi and that they can simultaneously oxidize NH4+ and organic N.  相似文献   

11.
ABSTRACT

Controlled-release fertilizers (CRF) were compared with ammonium nitrate (AN) in a potato (Solanum tuberosum L.) production study at the University of Florida farm in Hastings, FL, in 2002. Treatments were no nitrogen (No-N), AN, and nine CRFs at 146 kg ha?1 N and 225 kg ha?1 N. CRF7 (146 kg ha?1 N) resulted in highest total and marketable yields at 33.7 MT ha?1 and 29.4 MT ha?1, respectively. Tubers from the AN (225 kg ha?1 N) and CRF9 (225 kg ha?1 N) treatments had the highest specific gravity at 1.073. Nitrogen removal efficiency was highest in plants in CRF1 (43.0%) and CRF7 (47.3%) plots. Both were significantly higher than AN-treated plants. At 39 days after planting, NO3-N and NH4-N concentrations in lysimeter water samples were significantly higher in AN treatments. Leaf tissue N concentrations were sufficient throughout the growing season in all treatments except No-N.  相似文献   

12.
Biodegradation rates of oily waste in soil can be limited by mineral nutrients, particularly N and P. A laboratory incubation experiment was carried out to investigate the influence of N forms, nitrate (NO? 3-N) vs ammonium nitrogen (NH+ 4-N), and sources, i.e., the conjugate cations/anions, on C mineralization rate (CMR) was determined daily by measuring the CO2 evolved using gas chromatography. The CMR and the cumulative C mineralized (CCM) varied with the form and/or the source of N applied. The greatest enhancement in CMR occurred in the NO? 3-treatments in which the source conjugate cation was Ca+2. The addition of P fertilizer further enhanced C mineralization rates irrespective of the form and/or the source of N added. The results show that up to 45% of the added oily waste mineralized as CO2-C in 28 d. The residual P and N (NO? 3-N plus NH+ 4-N) data showed that approximately 90% of the added P and N were utilized for oil decomposition. The amount of residual NO? 3-N appeared to have an inverse relationship with CCM. The NO? 3-N utilization occurred at the expense of NH+ 4-N and this was particularly high in the treatments which received P.  相似文献   

13.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

14.
Corn requires high nitrogen (N) fertilizer use, but no soil N test for fertilizer N requirement is yet available in Quebec. Objectives of this research were (1) to determine the effects of soil nitrate (NO3 ?)-N, soil ammonium (NH4 +)-N, and N fertilizer rates on corn yields and (2) to determine soil sampling times and depths most highly correlated with yields and fertilizer N response under Quebec conditions. Soil samples were taken from 0- to 30-cm and 30- to 60-cm depths at seeding and postseeding (when corn height reached 20 cm) to determine soil NH4 + and NO3 ? in 44 continuous corn sites fertilized with four rates of N in two replications using a quick test (N-Trak) and a laboratory method. The N-Trak method overestimated soil NO3 ?-N in comparison with the laboratory method. Greater coefficients of determination were observed for soil NO3 ?-N analyses at postseeding compared with seeding.  相似文献   

15.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

16.
ABSTRACT

In order to formulate a nitrogen (N) management strategy under continuous full amount of straw returning (CFSR) for double cropping rice production, long-term (2013–2016) paddy field experiments were conducted in double cropping rice production area in the Jiangxi province, China. Five N fertilizer treatments under CFSR were tested, that is, (i) no N fertilizer application (CK); (ii) conventional N fertilizer application (165kg N ha?1 and 195 kg N ha?1 in early and late rice variety with the ratio of basal dressing to topdressing as 6:4, respectively) (CNF6:4); (iii) recommended N fertilizer application (135 kg ha?1 N and 165 kg ha?1 N in early and late rice variety with the ratio of basal dressing to topdressing as 4:6, 6:4, and 8:2, respectively) (RNF4:6, RNF6:4, and RNF8:2). Nitrogen fertilizer treatments under CFSR had 5.70% and 8.93% higher soil total nitrogen (TN), 1.32% and 0.80% higher available nitrogen (AN), 16.55% and 22.94% higher NH4+-N, and 13.10% and 7.93% higher NO3--N than CK treatments in early and late rice variety, respectively. There were no differences in soil TN, AN, NH4+-N, and NO3--N contents between CNF6:4 and RNF6:4 treatments, while CNF6:4 treatment showed higher or significantly higher soil N contents than RNF4:6 and RNF8:2 treatments. N fertilizer treatment under CFSR showed 88.9% and 43.20% higher grain yield and 62.15% and 42.52% higher panicle numbers than CK treatments in early and late rice variety, respectively. Compared with CNF6:4, RNF treatments did not significantly reduce grain yield and yield components in early and late rice variety, respectively, except for RNF8:2. Compared with RNF6:4 and 8:2, RNF4:6 showed higher rice grain yield, while no obvious differences in yield components were obtained among all RNF treatments. We concluded that N fertilizer under CFSR was helpful to improve soil N contents and double rice grain yield and panicle numbers. Appropriate reduction of N application (18% and 15% reduction in early and late rice variety, respectively) on the basis of adjusting ratio of basal dressing to topdressing as 4:6 and 6:4 did not significantly reduce soil TN and double rice grain yield and yield components, especially, the 40% basal N dressing and 60% N topdressing was beneficial to increase double rice grain yield under CFSR.  相似文献   

17.
Agricultural systems that receive high amounts of inorganic nitrogen (N) fertilizer in the form of either ammonium (NH4+), nitrate (NO3) or a combination thereof are expected to differ in soil N transformation rates and fates of NH4+ and NO3. Using 15N tracer techniques this study examines how crop plants and soil microbes vary in their ability to take up and compete for fertilizer N on a short time scale (hours to days). Single plants of barley (Hordeum vulgare L. cv. Morex) were grown on two agricultural soils in microcosms which received either NH4+, NO3 or NH4NO3. Within each fertilizer treatment traces of 15NH4+ and 15NO3 were added separately. During 8 days of fertilization the fate of fertilizer 15N into plants, microbial biomass and inorganic soil N pools as well as changes in gross N transformation rates were investigated. One week after fertilization 45-80% of initially applied 15N was recovered in crop plants compared to only 1-10% in soil microbes, proving that plants were the strongest competitors for fertilizer N. In terms of N uptake soil microbes out-competed plants only during the first 4 h of N application independent of soil and fertilizer N form. Within one day microbial N uptake declined substantially, probably due to carbon limitation. In both soils, plants and soil microbes took up more NO3 than NH4+ independent of initially applied N form. Surprisingly, no inhibitory effect of NH4+ on the uptake and assimilation of nitrate in both, plants and microbes, was observed, probably because fast nitrification rates led to a swift depletion of the ammonium pool. Compared to plant and microbial NH4+ uptake rates, gross nitrification rates were 3-75-fold higher, indicating that nitrifiers were the strongest competitors for NH4+ in both soils. The rapid conversion of NH4+ to NO3 and preferential use of NO3 by soil microbes suggest that in agricultural systems with high inorganic N fertilizer inputs the soil microbial community could adapt to high concentrations of NO3 and shift towards enhanced reliance on NO3 for their N supply.  相似文献   

18.
ABSTRACT

The source of nitrogen (N) used in soil fertility practices affects plant growth, nutrient absorption, and the availability of nutrients. Consequently, the potential of plants to extract zinc (Zn) from soils may be increased by controlling the ratio of NH4 + to NO3 ? to maximize growth and Zn accumulation. The objectives of this research were to determine the effects of Zn supply and different molar ratios of NH4 + to NO3 ? on growth and Zn accumulation in Indian mustard (Brassica juncea Czern.). In a factorial experiment with solution culture, Indian mustard (accession 182921) was supplied with two concentrations of Zn (0.05 and 4.0 mg L?1) in combination with six N treatments with different molar percentage ratios of NH4 + to NO3 ? (0:100, 10:90, 20:80, 30:70, 40:60, and 50:50) for three weeks. Zinc supplied at 0.05 mg Zn L?1 represented a common concentration of Zn in solution culture, whereas 4.0 mg Zn L?1 was excessive for plant nutrition. If the supply of Zn in solution was excessive, plants developed symptoms of foliar chlorosis, which became severe if plants were supplied with 80% of N as NO3 ?. Supplying high proportions of NO3 ? in the nutrient medium stimulated Zn accumulation, whereas increasing proportions of NH4 + (up to 50% of the total N) enhanced shoot growth. The pH of nutrient solutions generally decreased with increasing proportion of NH4 + in solutions and with increased Zn supply. The Zn phytoextraction potential of Indian mustard was maximized, at about 15 mg Zn plant?1, if plants received 10% of the total N as NH4 + and 90% as NO3 ?.  相似文献   

19.
Maximizing nitrogen use efficiency (NUE) involves synchronizing the interplay between nitrogen preferential crops and the nitrogen transformation pathways of soil. Biochar may benefit specific N-preference crops in relatively unsuitable soil environments; however, experimental data are lacking. This study tested eight treatments, consisting of four nitrogen treatments (N0 = control; N1 = NH4Cl; N2 = NaNO3; and N3 = 1:1 ratio of NH4+ and NO3) each with biochar applied at 0% or 2% (w/w). The results show that biochar and/or nitrogen application enhanced maize seedling biomass and NO3-based fertilizer resulted in higher seedling biomass than NH4+-based fertilizer. With the application of biochar and NH4+-based fertilizer, maize seedling biomass increased and soil NH4+-N content was significantly reduced compared with NH4Cl sole application. Correlation analysis and redundancy analysis revealed that SOC content and inorganic nitrogen content were the main factors influencing maize growth and N absorption. Biochar with or without nitrogen fertilizer (except N1 treatment) significantly increased β-1,4-glucosidase (BG) activity. Co-application treatments also resulted in higher vector length, an indicator of C limitation—the increment might add to the risk of microbial C limitation. The activity of ammonia monooxygenase (AMO), a key enzyme in nitrification, decreased with the co-application of biochar and nitrogen, suggesting the alteration of nitrogen transformation.  相似文献   

20.
Bypass flow, the vertical flow of free water along the walls of macropores or preferential flow paths in the soil, can lead to movement of fertilizer nutrients beyond the reach of plants. Fertilizer type and the rate of application, as well as the amount, frequency, and intensity of rainfall, can influence the amount of fertilizer nitrogen (N) loss in leaching or bypass flow. The effect of fertilizer N form and rate of application on N recovery in bypass flow in a Kenyan Vertisol was determined. Calcium nitrate and ammonium sulfate, used to supply nitrate (NO3 ?)‐N and ammonium (NH4 +)‐N, respectively, were surface‐broadcast to 40‐cm‐long undisturbed soil columns at equivalent rates of 50, 100, and 200 kg N ha?1. Using a rainfall simulator, two rainfall events (30 mm of water applied in 1 h) were applied to the soil columns, one before and the other after fertilizer application. Total N, NO3 ?‐N, and NH4 +‐N concentrations in the bypass flow were determined after the second rainfall event. The application of NH4 +‐N, regardless of the rate, had no effect on N recovery in the bypass flow. When nitrate N was applied, the amount of fertilizer N recovered in the bypass flow significantly increased with the rate of NO3 ?‐N application. Of the total N in the bypass flow, 24 to 48% was derived from the soil, the bulk of which was organic N. It is concluded that following the application of NO3 ?‐N, bypass flow is an important avenue of loss of both fertilizer and soil N from Vertisols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号