首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus losses by surface runoff from agricultural lands have been of public concern due to increasing P contamination to surface waters. Five representative commercial citrus groves (C1-C5) located in South Florida were studied to evaluate the relationships between P fractions in soils, surface runoff P, and soil phosphatase activity. A modified Hedley P sequential fractionation procedure was employed to fractionate soil P. Soil P consisted of mainly organically- and Ca/Mg-bound P fractions. The organically-bound P (biological P, sum of organic P in the water, NaHCO3 and NaOH extracts) was dominant in the acidic sandy soils from the C2 and C3 sites (18% and 24% of total soil P), whereas the Ca/Mg-bound P (HCl-extractable P) accounted for 45-60% of soil total P in the neutral and alkaline soils (C1, C4 and C5 soils). Plant-available P (sum of water and NaHCO3 extractable P fractions) ranged from 27 to 61 mg P kg−1 and decreased in the order of C3>C4>C1>C2>C5. The mean total P concentrations (TP) in surface runoff water samples ranged from 0.51 to 2.64 mg L−1. Total P, total dissolved P (TDP), and PO43−-P in surface runoff were significantly correlated with soil biological P and plant-available P forms (p<0.01), suggesting that surface runoff P was directly derived from soil available P pools, including H2O- and NaHCO3- extractable inorganic P, water-soluble organic P, and NaHCO3- and NaOH-extractable organic P fractions, which are readily mineralized by soil microorganisms and/or enzyme mediated processes. Soil neutral (55-190 mg phenol kg−1 3 h−1) and natural (measured at soil pH) phosphatase activities (77-295 mg phenol kg−1 3 h−1) were related to TP, TDP, and PO43−-P in surface runoff, and plant-available P and biological P forms in soils. These results indicate that there is a potential relationship between soil P availability and phosphatase activities, relating to P loss by surface runoff. Therefore, the neutral and natural phosphatase activities, especially the natural phosphatase activity, may serve as an index of surface runoff P loss potential and soil P availability.  相似文献   

2.
Organic amendments could be used as alternative to inorganic P fertilisers, but a clear understanding of the relationship among type of P amendment, microbial activity and changes in soil P fractions is required to optimise their use. Two P-deficient soils were amended with farmyard manure (FYM), poultry litter (PL) and biogenic waste compost (BWC) at 10 g?dw?kg?1 soil and incubated for 72 days. Soil samples were collected at days 0, 14, 28, 56 and 72 and analysed for microbial biomass C, N and P, 0.5 M NaHCO3 extractable P and activity of dehydrogenase and alkaline phosphomonoesterase. Soil P fractions were sequentially extracted in soil samples collected at days 0 and 72. All three amendments increased cumulative CO2 release, microbial biomass C, N and P and activity of dehydrogenase and alkaline phosphomonoesterase compared to unamended soils. The increase in microbial biomass C and N was highest with PL, whereas the greatest increase in microbial biomass P was induced with FYM. All three biomass indices showed the same temporal pattern, with the highest values on day 14 and the lowest on day 72. All amendments increased 0.5 M NaHCO3 extractable P concentrations with the smallest increase with BWC and the greatest with FYM, although more P was added with PL than with FYM. Available P concentrations decreased over time in the amended soils. Organic amendments increased the concentration of the labile P pools (resin and NaHCO3-P) and of NaOH-P, but had little effect on the concentrations of acid-soluble P pools and residual P except for increasing the concentration of organic P in the concentrated HCl pool. Resin P and NaHCO3-Pi pools decreased over time whereas NaOH-Pi and all organic P pools increased. It is concluded that organic amendments can provide P to plants and can stimulate the build-up of organic P forms in soils which may provide a long-term slow-release P source for plants and soil organisms.  相似文献   

3.

Purpose

It is critical to understand the effect of manure application on the availability of phosphorus (P) and the potential environmental contamination by runoff and leaching. However, previous studies generally focused on cultivated soil layer in single cropping systems. The aim of this study was to evaluate the effect of manure application on soil P forms and quantities to the 200 cm depth in a Chinese alkaline Cambisol in different cropping systems and the potential environmental implications.

Materials and methods

The sampling site, Shunyi District, is located in the peri-urban area of Beijing in the North China Plain, where large quantities of manure generated from intensive animal operations have been applied to agricultural fields. A field survey was carried out before sampling to identify soil sampling sites with long-term manure application and an adjacent area receiving no manure used for the same crop production. Soil samples from three cropping systems (vegetables, cereals, and trees) were vertically collected to a depth of 200 cm with the following depth increments: 0–20, 20–60, 60–90, 90–120, 120–160 and 160–200 cm. Soil samples were analyzed for plant-available P (Olsen P) and various P fractions by sequential P fractionation. Degree of P saturation (DPS) was also determined.

Results and discussion

Soil calcium bound P was the most abundant P fraction, followed by the residual P. Organic P only accounted for less than 5 % of total P in most of the soils. Manure application increased the levels of inorganic P (Pi), with higher proportions of Pi in labile forms than stable forms. After manure application for 8–15 year, available P (Olsen P) and DPS values of the 0–20 cm layer in all sites exceeded the threshold for Olsen P (60 mg?kg?1) and DPS (30 %) and the risk of P loss by runoff is expected to significantly increase. The DPS values were generally lower than 30 % below 20 cm, indicating a minimal risk of P loss via leaching from deeper soil.

Conclusions

The results indicated that in typical peri-urban areas of the North China Plain, the on-going practice of manure application not only increased the size of each of the labile and non-labile P pools, but also caused a shift in the relative sizes of the different pools, regardless of the cropping systems. However, contrary to what was expected, soil P loss through surface runoff would be a greater concern than leaching following long-term manure amendment.  相似文献   

4.
Application of manure on the basis of crop nitrogen (N) need increases the level of soil phosphorus (P), which is concern for deterioration of surface water quality. Soil samples were collected from a long-term field study to investigate the impact of crop N need–based manure application on soil P fractions and P adsorption and release kinetics. The field experiment was initiated in 1990. The soil was moderately well-drained Kennebec (fine silty, mixed, mesic Cumulic Hapludolls). No-tillage (NT) and conventional-tillage (CT) treatments were established in main plots, and subplots had five N treatments, including a control, and annual application of 84 or 168 kg N ha?1 applied as ammonium nitrate (NH4NO3) or beef (Bos taurus) manure. Manure at the high N application rate had significantly greater Bray 1 P under NT than under CT at 0- to 5-cm soil depth. Nitrogen fertilizer treatments were not significantly different than the control for Bray 1 P. Continuous application of manure at the high N rate significantly increased all Hedley P fractions; however, the major increase was observed in high bioavailable P pools [iron oxide (FeO) P and sodium bicarbonate (NaHCO3) Pi] and hydrochloric acid (HCl) P fractions. Soil organic P (Po) pools, including both labile (NaHCO3-Po) and resistant [sodium hydroxide (NaOH) Po], were increased by application of N from any source, suggesting biomass production and return of residue to soil surface was the responsible factor. Continuous application of manure based on N need also significantly increased FeO-P, NaHCO3-Pi, and HCl-P fractions at lower soil depths (5–15 and 15–30 cm). Results from the P-adsorption study suggest that ability of soil to adsorb additional P was decreased by manure application and that EPC0 was increased. Maximum desorbable P was observed for manure treatments under NT, although the release constant k (h?1) was significantly less than with fertilizer N treatments.  相似文献   

5.
Abstract

Anion exchange membranes (AEMs) were used to assess the P status of semi‐arid sub‐tropical soils of high P sorption capacity from the Pilbara region in northwestern Australia. We determined the most appropriate procedure for using AEMs in these soils using a factorial of extraction ratios and shaking times and compared the method with extraction by water. Significantly more inorganic P (Pi) was extracted by the membranes (AEM‐Pi) than by water, and the amount extracted increased with extraction time but was generally independent of the extraction ratio. Maximum AEM‐Pi was 3.61 μg g‐1 after eight hour extraction. The AEM procedure was compared with traditional extraction procedures using 0.5 M sodium bicarbonate (NaHCO3) and 0.1 M sodium hydroxide (NaOH) to assess ability to detect spatial heterogeneity. The amount of Pi extracted decreased in the order: AEM>NaOH>NaHCO3* The AEM method detected a significant effect of depth on Pi (P=0.0001), while the NaOH method detected both site and treatment effects (P<0.05). Inorganic P extracted by NaHCO3 did not vary by site, treatment, or depth. Coefficients of variation were generally least using the AEM method. We recommend that studies of spatial and temporal dynamics of P on highly‐weathered soils in semi‐arid regions include measurement of both AEM‐Pi and NaOH‐extractable Pi.  相似文献   

6.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

7.
Earthworms can influence incorporation of animal manures and composts into the soil. As this activity can decrease the potential for phosphorus (P) loss in runoff and increase plant nutrient availability, we evaluated the effect of manure application on earthworm activity. Earthworm activity (as indicated by surface casts of Lumbricus terrestris) and soil P distribution were determined as a function of superphosphate, manure, and compost (dairy and poultry) applied at rates of 0, 50, 100, and 200 kg P ha–1 yr–1. Surface earthworm cast production was greatest in the wet and warm months of May to July. For instance, average annual cast production was 24,520 and 13,760 kg ha–1 with respective applications of dairy manure and compost (100 kg P ha–1) compared with 9,090 kg ha–1 when superphosphate was added. This increased activity was accompanied by lower Mehlich 3 P (130 mg kg–1) at the surface (0–5 cm) of soils treated with 100 kg P ha–1 yr–1 dairy manure than those treated with superphosphate (210 mg kg–1) but greater concentrations at 5 to 10 cm deep (95 and 50 mg kg–1, respectively). While there may have been greater downward movement of organic P added in manure and compost, the stimulation of L. terrestris activity by application of manure or compost has the potential to redistribute surface-applied P within the soil profile to a greater extent than when equivalent applications of P are made in the form of inorganic fertilizer.  相似文献   

8.
Most previous studies have limited the assessments of soil phosphorus (P) status within the plow layer. This study was to assess the impacts of crop sequences and nutrient sources on P status of a Labarre silty clay (Humic Cryaquept) profile in a frigid continental climate. Soil of the 0- to 15-, 15- to 30-, 30- to 60-, and 60- to 90-cm layers was sampled from a split-plot experiment comprising a barley (Hordeum vulgare L.) monoculture and a 3-year barley-forage rotation as main plots, and receiving mineral fertilizers (MIN) or liquid dairy manure (LDM) as subplots. A modified Hedley sequential fractionation was used to characterize soil P status. Labile P pools were more affected than stable ones by the investigated treatments. After 10 years, the MIN resulted in larger resin-P and NaHCO3-Pi, and lower NaHCO3-Po and NaOH-Po pools than the LDM in the top 30 cm of soil. The rotation resulted in larger labile Pi and Po pools than the monoculture in the 30- to 60-cm layer. The rotation associated with LDM produced the largest total labile P pool, whereas the LDM resulted in an about 20% higher degree of soil P saturation as expressed by the Pox/(Feox + Alox) molar ratio than the MIN in the 0- to 30-cm layer. Our observations stressed that the impacts of crop sequences and nutrient sources on soil labile P extended deeper into the profile than the disturbance caused by primary tillage.  相似文献   

9.
In dairy farming, recirculation and continuous use of nutrients are necessary for sustainable nutrient management in both the short- and long-term. When managed effectively, nutrient recycling can improve soil fertility. On the other hand, if applied nutrients are in excess of the soil’s nutrient holding capacity, nutrients can enter surface and ground water bodies resulting in eutrophication. Phosphorus (P) characterisation in manure, pond sludge and crust, in terms of plant availability, is the first step to sustainably manage nutrients within dairy farms. In this study, pond sludge and crust were characterised for P using a sequential fractionation method. Pond sludge and crust contained significant amounts of labile P. Water extractable P (H2O-P) in primary anaerobic pond and secondary facultative pond sludges was found to be about 8 to 13 times higher than the amount found in the surface soil (0–10 cm) of a grazing paddock. Similarly, sodium bicarbonate extractable P (NaHCO3-P) in the two types of sludges was found to be about 6 times higher than in the soil. The relatively higher labile P (H2O-P and NaHCO3-P) in sludge compared to soil indicates that the sludge can be utilised as a P fertilizer on grazing pasture. In contrast, lower H2O-P compared to that of raw manure indicates that the use of sludge and crust instead of raw manure can reduce the possibility of P loss by surface runoff and leaching. Hence, it is preferable to use pond sludge and crust as fertiliser instead of raw manure.  相似文献   

10.
It is well known that compost amendment can improve soil phosphorus (P) availability, but there are few studies comparing the effect of one compost type on soil P pools of soils which differ in properties. The aim of this glasshouse experiment was to determine the effect of compost (derived from garden waste) application on P pools in soils with different properties planted with wheat. Four soils from two sites were used, with a heavier and a lighter textured soil from each site. The compost was applied as a 2.5 cm thick layer on the soil surface and wheat plants were grown for 63 days. The treatments also included soil without compost and plants. All pots were regularly watered. The soils were sampled on day 0 in the unamended soils and on day 63 in soil without compost and with compost, and plants after removal of the compost layer. Without and with compost the concentrations of most P pools were higher in the two heavier textured soils (16% and 35% clay) than in the two lighter textured soils (8% and 13% clay). Principal component analysis (PCA) showed that the concentrations of most P pools were positively correlated with organic matter, clay, and silt content of the soils. Only the concentration of water-soluble P was positively correlated with sand content. Compost addition increased the concentration of microbial P, sodium bicarbonate (NaHCO3)-Pi, sodium hydroxide (NaOH)-Pi, hydrochloric acid (HCl)-P, and residual P in all soils, whereas the concentration of NaHCO3-Po was reduced and the concentration of NaOH-Po little affected by compost addition indicating that P was transferred from the compost layer with watering. Compared with the unamended soil on day 0, the concentrations of microbial P, NaHCO3-Pi, NaOH-Pi, HCl-P, and residual P on day 63 were higher, whereas the concentrations of the two organic pools (NaHCO3-Po and NaOH-Po) were lower. This suggests mineralization of organic P pools and formation of inorganic P as well as microbial P uptake. These changes occurred in the unamended and compost-amended soils with greater increases over time in the compost-amended soils. It can be concluded that the size of the P pools is predominately affected by soil texture. Compost amendment increases P availability and microbial P uptake but also leads to the formation of less labile P pools such as HCl-P and residual P which could serve as plant P sources in the long term.  相似文献   

11.
 Soil P availability and efficiency of applied P may be improved through an understanding of soil P dynamics in relation to management practices in a cropping system. Our objectives in this study were to evaluate changes in plant-available (Olsen) P and in different inorganic P (Pi) and organic P (P0) fractions in soil as related to repeated additions of manure and fertilizer P under a soybean-wheat rotation. A field experiment on a Typic Haplustert was conducted from 1992 to 1995 wherein the annual treatments included four rates of fertilizer P (0, 11, 22 and 44 kg ha–1 applied to both soybean and wheat) in the absence and presence of 16 t ha–1 of manure (applied to soybean only). With regular application of fertilizer P to each crop the level of Olsen P increased significantly and linearly through the years in both manured and unmanured plots. The mean P balance required to raise Olsen P by 1 mg kg–1 was 17.9 kg ha–1 of fertilizer P in unmanured plots and 5.6 kg ha–1 of manure plus fertilizer P in manured plots. The relative sizes of labile [NaHCO3-extractable Pi (NaHCO3-Pi) and NaHCO3-extractable P0 (NaHCO3-P0)], moderately labile [NaOH-extractable Pi (NaOH-Pi) and NaOH-extractable P0 (NaOH-P0)] and stable [HCl-extractable P (HCl-P) and H2SO4/H2O2-extractable P (resisual-P)] P pools were in a 1 : 2.9 : 7.6 ratio. Application of fertilizer P and manure significantly increased NaHCO3-Pi and -P0 and NaOH-Pi, and -P0 fractions and also total P. However, HCl-P and residual-P were not affected. The changes in NaHCO3-Pi, NaOH-Pi and NaOH-P0 fractions were significantly correlated with the apparent P balance and were thought to represent biologically dynamic soil P and act as major sources and sinks of plant-available P. Received: 23 October 1997  相似文献   

12.
Runoff from agricultural fields amended with animal manure or fertilizer is a source of phosphorus (P) pollution to surface waters, which can have harmful effects such as eutrophication. The objectives of this study were to evaluate the impact of soil P status and the P composition of manure sources on P in runoff and characterize the effects of manure sources on mass loss of dissolved reactive P, total dissolved P, and total P in runoff. Soil boxes set at 5% slopes received 7.5 cm h?1 of simulated rainfall for 30 min. Study soils included a Kenansville loamy sand (loamy siliceous subactive thermic Arenic Hapludults, a Coastal Plain soil) and a Davidson silt loam (kaolinitic thermic Rhodic Kandiudults, a Piedmont soil). Soil test P concentrations ranged from 16 to 283 mg P kg?1. Sources of P included broiler litter, breeder manure, and breeder manure treated with three rates of aluminum sulfate (Al2(SO4)3) 0, 3.9, and 7.8 kg m?2, di-ammonium phosphate (DAP), and an un-amended control. All manure sources were surface applied at 66 kg P ha?1 without incorporation. Water extractable P represented an average of 10 ± 6% total P in manure. Runoff samples were taken over a 30-min period. Piedmont soil contained greater amounts of clay, aluminum (Al), and iron (Fe) concentrations, and higher P sorption capacities that produced significantly lower dissolved reactive P, total dissolved P, and total P losses than the Coastal Plain soil. Runoff P loss did not differ significantly for low and high STP Coastal Plain soils. Water extractable P in manures accounted for all dissolved reactive P lost in runoff with dissolved reactive P correlating strongly with water extractable P concentration (r2 = 0.9961). Overall, manures containing the highest water extractable P concentrations contributed to the largest amounts of dissolved reactive P in runoff. Manure treated with 3.9 and 7.8 kg m?2 of Al2(SO4)3 (alum) decreased dissolved reactive P in runoff by 29%. While this soil box runoff study represents a worst-case scenario for P loss, highly significant effects of soil properties and manure sources were obtained. Management based on these results should help ameliorate harmful effects of P in runoff.  相似文献   

13.
Poultry manure (PM) contains a large proportion of phosphorus (P) in mineral-associated forms that may not be readily available for plant uptake. In addition, PM application influences both chemical and biotic processes, and can affect the lability of native soil P. To investigate the effects of PM on soil P availability, we grew ryegrass (Lolium perenne) in greenhouse pots amended with poultry manure. Biomass was harvested at 4, 8, and 16 weeks following PM application, with soil separated into rhizosphere and bulk fractions. Soil was sequentially extracted by H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl, and inorganic P (Pi) and enzymatically hydrolyzable organic P (Poe) were quantitated. Root P concentrations were 37% higher and total P uptake 59% higher with PM application than Control. At week 16, there was 30% more labile-Pi (H2O- plus NaHCO3-Pi) in the rhizosphere with PM than in Control. Phosphodiesterase activity increased with PM application. Furthermore, acid phosphomonoesterase, alkaline phosphomonoesterase, and phosphodiesterase activities were all higher in the rhizosphere than in bulk soil at week 16 with PM, indicating that increased labile-Pi was due primarily to stimulation of soil phosphatases to mineralize NaOH-Poe. Soil pH increased with PM application and plant growth, and may have promoted P availability by decreasing sorption of Al- and Fe-associated inorganic and organic phosphates. These results demonstrate that whereas PM application may initially increase NaOH and HCl-Pi, these fractions can be readily changed into labile-P and do not necessarily accumulate as stable or recalcitrant P in soil.  相似文献   

14.
The effect of different treatments on the fate of applied P was investigated in a long-term field experiment started in 1972–1973 following a maize–wheat sequence. The soil samples were collected after 29 years of continuous addition of mineral fertilizers and amendments such as farmyard manure (FYM) and lime. The total P content of all the treatments increased compared to the original soil; NaOH-inorganic P (Pi) (NaOH-Pi) representing Fe and Al-bound P was the dominant Pi fraction. At the beginning of the experiment (1972–1973), the various P pools could be quantitatively ranked in the following order: residual P>NaOH-organic P (Po)>NaOH-Pi>NaHCO3-Po>NaHCO3-Pi>HCl-P>H2O-P. As a result of continued P fertilization and cropping, the order changed as follows: residual P>NaOH-Pi>NaOH-Po>NaHCO3-Pi>NaHCO3-Po>HCl-P>H2O-P. Compared to the imbalanced mineral fertilizer application, the balanced as well as integrated application of nutrients resulted in significantly lower P adsorption capacity of soils. The Olsen extractable-P fraction (plant-available P) increased from about 12 mg kg–1 soil in 1972 to about 81 mg kg–1 soil in the treatments receiving P for the last 29 years.  相似文献   

15.
ABSTRACT

Soil phosphorus (P) forms have been practically defined as chemically fractionated pools. A knowledge of the abundance and diversity of P forms in soil, and the factors affecting them, will lead to better soil management. However, little is known about the differences in P forms among soils with different geological properties in tropical Africa. The aim of this study was to investigate the P forms in soils with different physicochemical properties formed under different geological conditions in southern Tanzania and to identify the factors affecting the P forms in these soils. In total, 37 surface soil samples were collected from three geological groups; the plutonic (mainly granite) rock (PL) group, the sedimentary and metamorphic rock (SM) group, and the volcanic ash (V) group. Soil P was sequentially extracted by NH4Cl, NH4F, NaHCO3, NaOH + NaCl, and HCl, and inorganic (Pi) and organic P (Po) in each fraction were determined. The lowest total P was in the PL group (average, 360 mg P kg-1) because of the high sand content. Iron (Fe)-P (NaOH-Pi) was the major form in this group, accounting for 8.4% of total P. In the SM group (average total P, 860 mg P kg-1), Fe-P was the major form in most, accounting for 7.8% of total P. Soils in the SM group occasionally had high calcium (Ca)-P due to application of chemical fertilizer at the collection site. The V group had the highest total P (average, 1600 mg P kg-1) and its major P form was Ca-P, which was possibly derived from primary minerals (i.e., apatite), accounting for 14% of total P. In addition, the high oxalate-extractable Al possibly caused the accumulation of Al-P in the V group. Oxalate-extractable Fe generally increased with increasing Fe-Pi, while oxalate-extractable Al increased with increasing organic P and Al-Pi in soils in all three geological groups. These results demonstrate that the soil P forms differ greatly among sites in southern Tanzania with different geological conditions and associated soil properties.  相似文献   

16.
Abstract

Transformation of native P and changes in water pH and cation exchange capacity (CEC‐pH 7) were investigated in acid (I) and neutral (IV) soil incubated with 0, 50 and 100 mg Cr/kg for 3 months. Phosphorus was sequentially obtained as P‐resin, P‐NaHCO3, P‐NaOH and P‐HCl, with the P‐NaHCO3 and P‐NaOH being separated into organic and inorganic fractions. The low Cr level had little impact on the parameters. The high level increased the pH from 5.1 to 7.3 and from 6.8 to 7.5 in soils I and IV, respectively, while also significantly (P=5%) increasing CEC and decreasing P‐resin content. Subsequent to the Cr treatment, total P‐NaHCO3 significantly declined in Soil I, but did not change markedly in Soil IV. Although total P‐NaOH was not affected by the Cr applications, its inorganic form doubled in Soil IV. Most of the total P‐NaHCO3 and P‐NaOH was in organic form. Whereas P‐HCl was stable in Soil IV, the P nearly doubled in Soil I at the expense of P‐NaHCO3 (r = ‐0.94**). pH was correlated with CEC (0.62*), total P‐NaHCO3 (‐0.83**) and P‐HCl (0.76**), while CEC was correlated with P‐resin (‐0.70**), total NaHCO3 (‐0.88**) and P‐HCl (0.94**).  相似文献   

17.
Phosphorus (P) forms were sequentially extracted from peat derived soils (Eutric Histosols and Gleysols) at eight sites in Saxony‐Anhalt (Germany) to disclose general differences in P pools between mineral and organic soils and to investigate effects of peat humification and oxidation in conjunction with land use and soil management on the P status of soils. Overall 29 samples providing a wide variety of basic chemical properties were subjected to the Hedley fractionation. The Histosol topsoils contained more total P (Pt) (1345 ± 666 mg kg—1) than the Gleysol topsoils (648 ± 237 mg kg—1). The predominant extractable fractions were H2SO4‐P (36—63 % of Pt) in calcareous and NaOH‐Po (0—46 % of Pt) in non‐calcareous Histosols. These soils had large pools of residual P (13—93 % of Pt). Larger contents and proportions of Po and of labile P fractions generally distinguished organic from mineral soils. Regression analyses indicated that poorly crystalline pedogenic oxides and organic matter were binding partners for extractable and non‐extractable P. Intensive management that promotes peat humification and oxidation results in disproportional enrichments of labile P fractions (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po). These changes in P chemistry must be considered for a sustainable management of landscapes with Histosols and associated peat derived soils.  相似文献   

18.
A plot scale study was conducted to determine bacterial transport in runoff from cropland treated with poultry litter and dairy manure applied at phosphorus (P) agronomic rates. Treatments included surface application of dairy manure, surface application of poultry litter, incorporation of dairy manure and control. A rainfall simulator was used to induce runoff 1 and 2 days after manure application. Runoff was analyzed to determine the concentration of indicator bacteria-fecal coliform, Escherichia coli, and Enterococcus. Observed edge-of-field bacterial concentrations were 102 to 105 times higher than Virginia’s in-stream bacteria criteria for primary contact recreation waters. No significant treatment effects were observed on edge-of-field bacteria concentration or yield. Results suggest that the manure application based on agronomic P rates may yield significant bacterial loading to downstream waterbodies if rainfall occurs soon after manure application. This research underscores the need for BMPs that reduce runoff volumes and filter pollutants associated with animal manures.  相似文献   

19.
Although many studies have examined the effect of different application rates of cattle manure, swine manure, and urea fertilizer on the distribution of phosphorus (P) fractions in soil, few studies have correlated P fractions in soil with inorganic P (Pi) and organic P (Po) in leachates. As part of a long-term field study, cattle and swine manures were applied to a loamy soil based on a nitrogen (N) content equivalent of 100 (low) and 400 (high) kg total N ha?1 yr?1 and were compared to urea fertilizer at 100 kg N ha?1 yr?1 and an unamended control soil. Readily available Pi [resin and sodium bicarbonate (NaHCO3)] was significantly greater in cattle manure– and swine manure–amended soil at a high application rate than in the control. With some exceptions, urea did not significantly affect P fractions in sequentially extracted P pools. Leaching of Pi and Po was at levels of environmental concern when cattle and swine manures were applied at the high application rate but not at the low application rate. Cattle manure had significantly greater concentrations of Pi and Po removed by leaching compared to swine manure, most likely because of its narrow N/P ratio and greater amount of P added. Positive correlations were observed between resin Pi and total leachate Pi and between NaHCO3-Pi and total leachate Pi, indicating the value of these measurements in predicting P mobility. The results suggest that a threshold (40 μg P g?1 of soil) must be exceeded before a positive correlation occurs.  相似文献   

20.
ABSTRACT

The effect of deficit irrigation (DI) on wheat crop yield, soil physical parameters and on nitrate nitrogen movement in soil profile was evaluated under application of dairy manure and nitrogen fertilizer. Two levels of DI were taken as I0.6 (60% FC) and I0.8 (80% FC) along with two dairy manure levels (20 and 25 Mg ha?1) and three nitrogen levels (80, 100, and 120 kg ha?1). The grain yield was high under I0.8 than I0.6, whereas the irrigation level has no significant effect on soil organic carbon contents. Dairy manure, irrigation, and nitrogen indicated strong interaction with each other for all yield-related parameters during both years of study, however, results for 2nd year were highly positive. Soil nitrate nitrogen movement was significantly affected under I0.8 with high rate of dairy manure (25 Mg ha?1) and nitrogen fertilizer (120 kg ha?1). Results concluded that combined application of dairy manure (25 Mg ha?1) and nitrogen fertilizer (120 kg ha?1) under DI level I0.8 resulted in high grain yield. To overcome water scarce conditions, further experiments can be designed by addition of various organic matters in different combination that enhances the yield and soil health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号