首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of uppermost fully expanded leaves is useful to detect a deficiency of mineral nutrients such as phosphorus (P) and potassium (K) in soybean. Although, the leaf P or K status aids in fertilizer management, information on nutrient seasonal relationships with growth and yield traits at maturity are limited. To investigate this, soybean was grown under varying P or K nutrition under ambient and elevated CO2 concentrations. Results show significant relationships of the relative total biomass and yield‐related traits with the foliar P and K concentrations measured several times in the season across CO2 levels. However, the relationships established earlier in the season showed that the growth period between 25 and 37 d after planting (DAP), representing the beginning of flowering and pod, respectively, is the best for leaf sampling to determine the foliar P or K status. The leaf P and K status as well as the critical leaf P (CLPC) and K (CLKC) concentrations for traits such as seed yield peaked around 30 DAP (R2 stage) and tended to decline thereafter with the plant age. The CLPC and CLKC of seed yield indicate that the leaf P and K concentration of at least 2.74 mg g?1 and 19.06 mg g?1, respectively, in the uppermost fully expanded leaves are needed between 25 and 37 DAP for near‐optimum soybean yield. Moreover, the greatest impact of P and K deficiency occurred for the traits that contribute the most to the soybean yield (e.g., relative total biomass, seed yield, pod and seed numbers), while traits such as seed number per pod, seed size, and shelling percentages were the least affected and showed smaller leaf critical concentration. The CLPC or CLKC for biomass and seed yield was greater under elevated CO2 24–25 DAP but varied thereafter. These results are useful to researchers and farmers to understand the dynamics of the relationship of pre‐harvest leaf P and K status with soybean productivity at maturity, and in the determination of suitable growth stage to collect leaf samples.  相似文献   

2.
Abstract

Inoculated soybeans (Glycine max L. Merr. cv. Eragg) were grown in an intensively managed cabbage (Brassica oleracea L. Capitata group)‐ sweetcorn (Zea mays L.) multiple‐cropping sequence on a tile‐drained Arenic Haplaquod having variable residual K levels. The study was conducted to assess the effect of residual and applied K on soybean K and N composition, nodulation, root growth, and pod formation. Sidedress treatments of 0 and 100 kg K/ha were applied at bloom to plots that received either 0 or 300 kg K/ha/acre that had been applied previously to other crops in the sequence. Treatments were arranged in a randomized complete block design witn six replications. Although leaf N conc, was uniform at bloom (R2), leaf N at pod‐fill (R6) ranged from 2.8 to 4.3% and wasquadratically related to leaf K (r2 = 0.92). Without residual K fertilizer from cabbage and sweet corn applications sidedress application of K increased leaf and nodule K and N. Root K conc. was correlated with root dry wt. (r = 0.35) at bloom stage, and with root 10 dry wt. (r = 0.54), pod number (r = 0.43), and pod dry wt. (r = 0.39) at pod‐fill stage. Root K conc. was negatively correlated with nodule number (r = ‐0.34) and nodule dry wt. (r = ‐0.41). Sidedress‐applied K did not increase root growth and pod number whereas residual fertilizer K did. A curvilinear relationship between leaf K and N conc. and a linear relationship between leaf N and soybean yield indicated that K deficiency limited the capacity of the soybean plant to supply N to the developing grain during pod‐fill, and that this response was not due to inadequate nodulation.  相似文献   

3.
《Journal of plant nutrition》2013,36(7):1383-1402
Abstract

Narrow‐row soybean [Glycine max (L.) Merr.] production in corn [Zea mays L.]–soybean rotations results in various distances of soybean rows from previous corn rows, yet little is known about soybean responses to proximity to prior corn rows in no‐till systems. The objective of this study was to evaluate the impacts of preceding corn rows on potassium (K) nutrition and yield of subsequent no‐till soybeans. Four field experiments involving a corn–soybean rotation were conducted on long‐term no‐till fields with low to medium K levels from 1998 to 2000 near Paris and Kirkton, Ontario, Canada. In the corn year, treatments included K application rate and placement in conjunction with tillage systems or corn hybrids. Before soybean flowering, soil exchangeable K concentrations (0–20 cm depth) in previous corn rows were significantly higher than those between corn rows. At the initial flowering stage, trifoliate leaf K concentrations of soybeans in preceding corn rows were 2.0 to 5.3 g kg?1 higher than those from corresponding plants between corn rows. Yield of no‐till soybeans in previous corn rows increased 10 to 44% compared to those between previous corn rows. Positive impacts of prior corn rows on soil K fertility, soybean leaf K, and soybean yield occurred even when K fertilizer was not applied in the prior corn season. Deep banding of K fertilizer tended to accentuate row vs. between‐row effects on soybean leaf K concentrations in low‐testing soils. Corn row effects on soybeans were generally not affected by either tillage system or corn hybrid employed in the prior corn crop. Potassium management strategies for narrow‐row no‐till soybeans should take the potential preceding corn row impacts on soil K distribution into account; adjustments to current soil sampling protocols may be warranted when narrow‐row no‐till soybeans follow corn on soils with low to medium levels of exchangeable K.  相似文献   

4.
Abstract

This research was undertaken on a paleudult soil in southern Brazil, 30° south latitude, to quantify lime and P effect upon soybean (Glycine max (L.) Merrill). A lime x P factorial experience with lime treatments of 0, 0.5, 1, and 2 times SMP interpretation to pH 6.5, and 0, 44, 88, 132, and 176 kg P/ha with 3 replications were installed. The experiment was conducted for 2 years (1973–74, 1974–75), with leaf‐N, P, and K; yield; seed‐N, P, and K; Bray P2 (0.03N NH4F + 0.1N HC1) avail‐able‐P and soil pH measurements completed each year. Data was evaluated with linear, quadratic, logarithmic, polynomial, segmented line, and multiple regression using the coefficient of determination as goodness of fit.

The best model fit between P treatment and Bray P2 available‐P was a quadratic equation; the model between relative yield and Bray P2‐P with 54% of the relative yield attributed to Bray P2 available‐P, a sigmented line. This model indicated point of maximum yield (91% relative yield) was obtained at 7.4 ppm‐P, with no increase in relative yield with increasing levels of soil available‐P. To calculate the P fertilizer necessary to increase available soil‐P to the level of maximum yield of equation Yp = [1639(7.4 ‐ xs)]1/2, where Yp = kg P/ha fertilizer needed; and xs = initial Bray P2 soil available‐P in ppm's. The lime effect upon soil pH was best described as a linear relationship. Yield increase with lime at this site was not significant at the 5% level.

The leaf‐N, P, and K increased significantly with soil available‐P levels. A second degree polynomial with logarithmic function best defined these relationships. The calculated DRIS indices and sum proved useful to evaluate the plant‐N, P, and K balance of each treatment.

Only seed‐P level was directly related to soil available‐P. Both seed‐N and seed‐K were highly correlated with indirect effects of soil available‐P levels.

Results from this study suggest the segmented line model would best interpret soybean yield response to Bray P2 available‐P for this soil. To obtain maximum yield using this model rather than the second degree polynomial would require less fertilizer P. Foliar analyses interpretation confirmed adequate plant‐P level would be supplied for maximum yield at this level of fertilization.  相似文献   

5.
Abstract

The responses of corn and soybean to seed‐placed fertilizer were compared over NaHCO3‐extractable soil phosphorus (P) levels ranging from 3 to 35 ppm in a two‐year experiment. Early season corn and soybean shoot‐P concentrations were increased with increasing soil test P and were increased with seed‐placed P regardless of soil test P, although the increases were greater for corn than soybean. Corn grain yield increased with increasing soil test P to a plateau level and increased with seed‐placed P regardless of soil test P. A side‐band (5 cm × 5 cm) application of 39 kg P ha‐1 at a low soil test P increased yield more (P<0.15) than application of 7 kg P ha‐1 with the seed. A side‐band application of 9 kg P ha‐1 at a medium soil P test did not increase yield. Soybean yield was increased with increasing soil test P one year out of two, but did not respond to seed‐placed P in either year. The yield response of corn was attributed to the increased P concentration prior to the 6‐leaf stage.  相似文献   

6.
Abstract

Greenhouse‐pot experiments were conducted to compare wheat (Triticum aestivum L.) and soybean [Glycine max (L.) Merrill] in terms of their potassium (K) and magnesium (Mg) uptake. Previously, a field study indicated that various rates of K and Mg fertilization did not produce a significant wheat‐yield response. However, a yield increase with residual K and Mg was measured for the subsequent soybean crop. The 0 to 15 cm layer of Norfolk loamy fine sand (fine loamy, siliceous, thermic Typic Kandiudult) from two different sites was used for the pot experiments. Soil from both sites had a pH of 5.1. Potassium as potassium sulfate (K2SO4) was mixed into the soil from the K‐deficient site and Mg as magnesium sulfate (MgSO4) was mixed into the soil from the Mg‐deficient site. ‘Florida 301’ wheat and ‘Cobb’ soybean were grown in winter and summer, respectively.

Soybean and wheat were similar in K uptake/g of roots on the first and second sampling dates. However, by the third sampling date, K uptake/g of wheat roots was about twice as high as for soybean. Potassium uptake/cm of soybean roots was two to five times that of wheat at each sampling date. Magnesium uptake/g of soybean roots was about four to five times as high as wheat on each sampling date. Similarly, Mg uptake/cm of soybean roots was 10 to 30 times higher than for wheat. Soybean showed higher total K and Mg content than wheat, suggesting that soybean has a higher demand for both K and Mg. The higher demand for K and Mg by soybeans than by wheat suggests that wheat could meet its demand for K and Mg at much lower soil levels than that for soybean. This would also explain a grain‐yield response to K and Mg by soybeans in the previously reported field study, despite a lack of yield response by wheat grown on the same site.  相似文献   

7.
Abstract

Plots from a N, P, and K field fertility experiment were soil sampled each spring and fall from 1971 to 1979 to study the effect of cropping and different rates of added P and K on the content of available soil P and K (Bray I). Phosphorus and K fertilization was in the spring after soil sampling and before planting in 1971, 1972,and 1973 and in the fall after sampling in 1974, 1975, 1976, 1977, and 1978. Over the 8‐year period, available soil P increased 1 kg/ ha for every 2.3 kg/ha of added P; while available soil K increased 1 kg/ha for every 5.7 kg/ha of added K. However, within a growing season and between growing seasons, contents of available soil P and K showed cyclic patterns, increasing and decreasing to a greater extent than the long‐term response. Changes in available P and K from spring to fall and from fall to spring are presented. Variability in the content of available soil P and K for 32 plots receiving a similar treatment of either P or K was greater for P as compared to K.  相似文献   

8.
Abstract

Calcium (Ca) uptake was studied by immersing the central tip of a trifoliate leaf in various concentrations of 45CaCl2 solutions and under moisture stress conditions during the seed‐filling period of soybean. Beta‐ray gauging and the diurnal leaf temperature variation showed similar characteristics for leaf water status. The activities of 45Ca were significantly higher (p < 0.0001) at 5, 10, 20, and 30 mM concentrations for water stressed and non‐stressed leaves compared with the control. Calcium (45Ca) activities at 5, 10, and 20 mM Ca concentrations between stressed and non‐stressed leaves were not significant, but the difference in their mean values at 30 mM Ca concentration was significant (p = 0.0159). The relationship between 45Ca uptake and Ca concentration was parabolic for both stressed (R2 = 0.77) and non‐stressed (R2 = 0.81) leaves. Autoradiographs indicated Ca movement through the mid‐rib and veins of the tip‐immersed trifoliate leaf but showed no activity in other plant parts. An activity gradient developed between seeds when a pod‐tip was immersed in the radioactive solution.  相似文献   

9.
Abstract

Bragg soybeans [Glycine max. (L. ) Merill] were grown under field conditions near Sanford, Florida on a tile‐drained Immokalee fine sand (sandy, siliceous, hyperthermic Arenic Haplaquod). The objectives were: 1) to assess the K and P fertilizer requirements of soybeans grown in central Florida 2) to correlate soil and tissue nutritional levels with extractable soil nutrients and 3) to assess the influence of K application time on yield.

Experimental treatments were four K rates (0, 50, 100, and 200 kg K/ha), three P rates (0, 25, and 50 kg P/ha), and two sidedress K rates (0 and 50 kg K/ha) at early bloom. Treatments were arranged in a randomized complete block design and replicated four times.

Yield increased with each increase in applied K. Statistical maximum yield was obtained on plots which contained 103 ppm double‐acid extractable K during the pod‐filling stage of growth. Tissue K at early bloom exceeded 2.85% at maximum statistical yield. Potassium applied broadcast at early bloom did not significantly influence yield.

This soil contained approximately 390 ppm double‐acid extractable P prior to P application. No significant yield response to applied P was observed, indicating that the original extractable P content of the soil was adequate for the yield level obtained.

The quadratic regression of the ratio equivalents of double‐acid extractable K:Ca + Mg on the same ratio for the plant tissue is highly significant. This expression was a good predictor of tissue accumulation of these nutrients in that the coefficient for determination was 0.68.  相似文献   

10.
Abstract

Irrigated potatoes were grown on a sandy soil which ranged in available P and K from 53 to 308 and 45 to 319 kg/ha, respectively. The levels of soil P and K as measured by soil test (Bray #1) were compared with yield, specific gravity of the tubers, and P and K tissue concentrations. The response of the potato crop was correlated to soil K but not to soil P. Yields increased with increasing soil K from 45 to 196 kg/ha in the surface sample and leveled off there after. The fact that the levels of subsoil K increased with increasing surface soil K may have had somewhat of an effect on the leveling off of potato yields at 196 kg/ha of K. The lack of a yield response to soil P was associated with adequate available soil P at the lowest soil test levels.  相似文献   

11.
Abstract: Crop residues that are left on the soil surface to serve as mulch can diminish the soybean response to surface application of lime under no‐till management by ameliorating soil chemical and physical attributes and the plant nutrition. A field experiment was performed in the period from 2000 through 2003 in Paraná State, Brazil, on a clayey‐sandy Rhodic Hapludox. Soil chemical attributes and soybean [Glycine max (L.) Merrill] nutrition, grain yield, and quality were evaluated after surface application of lime and covering with crop residues of black oat (Avena strigosa Schreb) and corn (Zea mays L.) under a no‐till system. Dolomitic lime was surface applied at the rates of 0, 2.5, 5.0, and 7.5 t ha?1 on the main plots, and three treatments with vegetable covering were applied on the subplots: (i) without covering, (ii) with covering of corn straw, and (iii) with covering of corn straw and black oat residue (oat–corn–oat). After 30 months, surface‐applied lime increased soil pH and the exchangeable calcium (Ca2+) and magnesium (Mg2+) levels down to a 10‐cm depth, independent of the vegetable covering treatments. The black oat and corn residues on the soil surface increased the soil exchangeable K+ level at the 5‐ to 10‐cm depth. Liming increased leaf potassium (K) content and phosphorus (P) content in the soybean grain and reduced leaf zinc (Zn) content and manganese (Mn) content in the soybean leaf and grain. There was no effect of liming on soybean grain, oil, or protein yields, independent of the vegetable residues kept on the soil surface. The treatment with black oat covering and corn straw increased leaf N content, P content in the leaf and grain, and the contents of K, Mg, copper (Cu), and Zn in the soybean grain. It also increased soybean grain and protein yields. The corn straw left at the surface after harvesting was very important to the performance of the no‐till soybean.  相似文献   

12.
Abstract

Plant‐available phosphorus (P) measured by routine soil‐test methods is poorly correlated with rice grain yield in Arkansas. Our objective was to determine whether soil water pH (pHw) and Mehlich‐3 P were correlated with growth and yield of rice grown on silt loam soils. Data from 35 field studies were used to correlate Mehlich‐3 P and pHw with relative yield, dry matter accumulation, and P concentration at the midtillering stage. Significant linear or nonlinear relationships between pHw or Mehlich‐3 P with rice growth parameters were delineated but explained less than 27% of the variability in dry matter and P concentrations at the midtillering stage and grain yield at maturity. Mehlich‐3 P and pHw together explained 61% of the variability in midtillering P concentrations. Midtillering whole‐plant P concentrations were positively related to relative grain yield and dry matter production and will be used to identify soils with limited P availability for rice in Arkansas.  相似文献   

13.
Abstract

Long‐term tillage and crop management studies may be useful for determining crop production practices that are conducive to securing a sustainable agriculture. Objectives of this field study were to evaluate the combined effects of crop rotation and tillage practices on yield and changes in soil chemical properties after 12 years of research on the Clyde‐Kenyon‐Floyd soil association in northeastern Iowa. Continuous corn (Zea mays L.) and a corn‐soybean [Glycine max L. (Herr.)] rotation were grown using moldboard plowing, chisel plowing, ridge‐tillage, or no‐tillage methods. Tillage and crop rotation effects on soil pH, Bray P1, 1M NH4OAc exchangeable K, Ca, and Mg, total C, and total N in the top 200 mm were evaluated. Profile NO3‐N concentrations were also measured in spring and autumn of 1988. Crop yields and N use efficiencies were used to assess sustainability. Bray P1 levels increased, but exchangeable K decreased for all cropping and tillage methods. Nutrient stratification was evident for no‐tillage and ridge‐tillage methods, while the moldboard plowing treatment had the most uniform soil test levels within the 200 mm management zone. Chisel plowing incorporated fertilizer to a depth of 100 mm. Soil pH was lower with continuous corn than with crop rotation because of greater and more frequent N applications. Profile NO3‐N concentrations were significantly different for sampling depth and among tillage methods in spring 1988. In autumn the concentrations were significantly different for sampling depth and for a rotation by tillage interaction. Estimated N use efficiencies were 40 and 50 kg grain per kg N for continuous corn, and 48 and 69 kg grain per kg N for rotated corn in 1988 and 1989, respectively. The results suggest that P fertilizer rates can be reduced, but K rates should probably be increased to maintain soil‐test levels for this soil association. Crop rotation and reduced tillage methods such as ridge‐tillage or chisel plowing appear to meet the criteria for sustainable agriculture on these soils.  相似文献   

14.
Abstract

Groundnut (Arachis hypogae L.) is the most important oilseed crop of India and it is abundantly grown under rainfed conditions in vertisols of Western India. The objective of this work was to study the effect of potassium (K) basal and foliar fertilization on yield, nutrient concentration in tissue and quality parameters of groundnut. Two varieties, GAUG‐1 (bunch type) and GAUG‐10 (spreading type) were grown during Kharif (rainfed) and Rabi (irrigated) seasons at Junagadh, Gujarat. The experiment compared two foliarapplied K fertilizers (KCl and K2SO4) at two different doses (0.5 and 1.0%) with basal KCl application (0 and 50 kg K2O ha?1). Field soil was highly calcareous (pH 8.2, NH4OAc extractable K 188 kg ha?1 with 40% lime reserve) Vertic ustochrept. The results showed a significant response in pod yield with foliar and soil‐applied potassium as compared to the control treatment. Pod yields were significantly higher when basal and foliar applications were combined. The best results were achieved with foliar application of 1% KCl together with a basal fertilization with 50 kg K2O ha?1. Response to foliar‐applied K was higher in rainfed kharif crop than in irrigated rabi crop. Groundnut variety GAUG‐10 out yielded GAUG‐1. Foliar K application increased plant tissue concentration of K. Foliar fertilization with KCl and K2SO4 did not cause leaf burn. Potassium application improved the crop harvest index and grain quality parameters of boldness, protein and oil contents. Response to K in quality parameters of protein and oil contents of seed was more consistent with foliar applied K2SO4 . The results confirmed that the practice of foliar K nutrition when used as a supplement and not a substitute for standard soil fertilization, is beneficial for groundnut crop in Western India.  相似文献   

15.
  【目的】  分析我国北方麦区不同土壤有效磷水平下,监控施肥后小麦籽粒产量与养分吸收利用变化,为保证减施磷肥后小麦的丰产、优质、绿色生产提供理论依据。  【方法】  于2018—2020年在我国北方麦区49个地点进行了田间试验。所有试验均设农户施肥(FF)、监控施肥(RF)和监控无磷(RF-P) 3个处理,监控施肥的磷(P2O5)肥用量较农户施肥平均减少60 kg/hm2,相当于减少了46%。在小麦成熟期调查了土壤不同磷素水平下,小麦产量、产量构成、籽粒氮磷钾含量,并计算了磷素养分吸收利用率;在小麦收获期,采样测定土壤有效氮磷钾含量。  【结果】  当土壤有效磷<15 mg/kg时,小麦产量最低,为5155 kg/hm2;当土壤有效磷在25~30 mg/kg时,产量达到最高,为7217 kg/hm2;有效磷过高并不能持续提高小麦产量,反而因穗数、千粒重低导致产量降低。土壤有效磷<15、15~20、20~25、25~30和>30 mg/kg时,监控施肥处理小麦产量与农户施肥处理相比差异虽然未达显著水平,但小麦的磷肥吸收效率与磷肥偏生产力平均分别为1.03和104.7 kg/kg,分别较农户处理显著提高了119.6%和112.2%,籽粒氮磷钾含量与农户施肥处理相比无显著差异。当土壤有效磷<15 mg/kg,或速效钾达171和200 mg/kg、有效磷为15~20和>30 mg/kg时,不施磷肥小麦显著减产;但土壤速效钾为147和158 mg/kg、有效磷在20~25和25~30 mg/kg时,不施磷肥不减产。土壤有效磷含量越高,小麦籽粒平均氮含量越低、磷含量越高,籽粒平均钾含量在有效磷为20~25 mg/kg时达到最高。  【结论】  在北方麦区,过高的土壤有效磷含量有降低小麦氮素营养的风险,适当降低磷肥用量在保证产量的同时,还可大幅提高磷肥的利用率。土壤有效磷维持在20~30 mg/kg时,减施或不施磷肥依然可以实现小麦高产,但若速效钾>170 mg/kg时不施磷肥小麦有减产风险。因此,应基于对小麦目标产量、籽粒养分含量和土壤有效磷钾的监控,确定合理的磷肥用量,实现北方麦区化肥减施,小麦稳产提质增效和绿色生产。  相似文献   

16.
Abstract

The NO3‐N content of wheat samples collected in December and January did not increase with increasing rates of nitrogen, therefore no critical NO3‐N level could be established for these periods. The critical NO3‐N content of samples collected at the “joint”; stage of growth was 350 ppm.

Phosphorus concentration in the forage did not vary greatly during the growing season, therefore only one critical level for phosphorus appeared necessary. The critical level of phosphorus for all sampling dates was 0.45 percent.

Critical K levels had to be established for each stage of growth because differences in K concentrations at the various growth stages were greater than differences caused by K fertilization.

It was also observed that P deficient plants tended to accumulate NO3‐N much more than plants adequately supplied with P.  相似文献   

17.
Abstract

Soybean (Glycine max (L.) Merrill) and fababean (Vicar faba (L.)) were grown under field conditions on six Orthic Black Chernozemic soils over three years at two levels of fertility. At flowering, full pod and maturity the yield and N, P, K and S composition of harvested plant materials were compared. Application of fertilizer (P, K and S) increased dry matter and seed yields of both crops. At all, growth stages fababeans produced more dry matter than soybean, and at maturity produced higher yields of seed, hull and stalk. However, the ratio of seed: hull: stalk for both crops was similar and constant at 3.8: 1: 4.7 on all soils and at both levels of soil fertility. At the high level of soil fertility, at the flowering and full pod stages, the concentration of N, P, and K in fababean was higher than that in soybean, but both crops had a similar concentration of S. At low fertility both crops had similar concentrations of P, K and S. At maturity, soybean seed had the higher concentrations of the four nutrients. The concentration of P in the hull and stalk of both crops was similar, but fababean hull had a higher concentration of K and soybean stalk a higher concentration of S. Soybean seed also had a higher protein content and yielded more protein per hectare than fababean seed.  相似文献   

18.
Abstract

The supply of sulfur (S) fertilizers, such as phosphogypsum, to new agricultural frontiers has been hindered by the high cost of freight. However, this problem could be resolved by utilizing deposits of rock in the affected regions. Accordingly, a greenhouse study was designed to evaluate the effect of S source and rate on soybean yield. Five S rates (0, 50, 100, and 200?mg kg?1) and five S sources (S-phosphogypsum, S-Niquelândia rock, S-Araripina rock, S-Grajaú rock, and S-Sulfurgran [90% S0?+?10% bentonite]) were applied to soybean grown in two soil types (Typic Ultisol and Typic Oxisol), which differ in clay content. Regardless of soil type, the application of P-phosphogypsum resulted in a higher grain yield. However, application of the other S sources also improved grain yield as well as total dry weight; S application, in general, improved soybean yield components (number of grains per pod, number of pods per pot, and weight of pods per pot), photosynthetic rate, chlorophyll content, and the S levels of leaves and grains as well as the available sulfate (SO42-) levels in the soil. Therefore, for soybean grown in Typic Ultisol and Typic Oxisol, different S sources effectively improve a variety of variables that ultimately improve grain yield.  相似文献   

19.
Abstract

This study was conducted to measure season‐long uptake of P by corn grown under no‐till and conventional‐till management at three levels of P supply‐low, adequate, and high as defined by grain yield‐to test the feasibility of using whole‐plant P uptake as an indicator of the P supply in soil; and to calibrate soil P extractable with both Mehlich No. 1 (HC1 + H2SO4) and Mehlich No. 2 (HC1 + H2SO4 + NH4F) versus whole‐plant P uptake over the response region.

Rates of P uptake were essentially linear over about 10 weeks of the growing season. P uptake rates were consistently higher under no till than conventional till, and these uptake rate differences were magnified under low moisture conditions. The critical P uptake rate for corn on this Matapeake soil was between 25 and 30 mg P/plant/week. Rates below these resulted in significant grain yield reductions in a good growth year. The soil P extractant containing F was a more consistant indicator of soil P sufficiency.  相似文献   

20.
Abstract

Chlorophyll meter leaf readings were compared to grain yield, leaf N concentration and soil NH4‐N plus NO3‐N levels from N rate studies for dryland winter wheat Soil N tests and wheat leaf N concentrations have been taken in the spring at the late tillering stage (Feekes 5) to document a crop N deficiency and to make fertilizer N recommendations. The chlorophyll meter offers another possible technique to estimate crop N status and determine the need for additional N fertilizer. Results with the chlorophyll meter indicate a positive association between chlorophyll meter readings and grain yield, leaf N concentration and soil NH4‐N plus NO3‐N. Additional tests are needed to evaluate other factors such as differences among locations, cultivars, soil moisture and profile N status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号