首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potential for carbon dioxide (CO2) biosequestration was determined during the reclamation of highly saline–sodic soils (Aridisols) after rice (2003) and wheat (2003–2004) crops at two sites in District Faisalabad, Pakistan. Two treatments were assessed: T1, tube-well brackish water only; and T2, soil-applied gypsum at 25% soil gypsum requirement?+?tube-well brackish water. The irrigation water used at both sites had different levels of salinity (EC 3.9–4.5 dS m?1), sodicity (SAR 21.7–28.8), and residual sodium carbonate (14.9 mmolc L?1). Composite soil samples were collected from soil depths of 0–15 and 15–30 cm at presowing and postharvest stages and analyzed for pH, ECe, and sodium adsorption ratio (SAR). After rice harvest, there was no significant effect of gypsum application on ECe, pH, and SAR at both sites, except pH at 0–15 cm depth decreased significantly with gypsum at site 1. After wheat harvest, ECe, pH, and SAR decreased significantly with gypsum at site 1, whereas the effect of gypsum on these parameters was not significant at site 2. Compared to initial soil, ECe and SAR in soil decreased considerably after rice or wheat cultivation, particularly at site 1, whereas pH increased slightly due to cultivation of these crops. For rice, the total CO2 sequestration was significantly increased with gypsum application at both sites and ranged from 1499 to 2801 kg ha?1. The total sequestration of CO2 was also significantly increased with gypsum application in wheat at both sites and ranged from 2230 to 3646 kg ha?1. The amounts of CO2 sequestered by crops due to gypsum application were related to seed and straw yield responses of rice and wheat to gypsum, which were greater at site 1 than site 2. Also, the yield response to applied gypsum was greater for rice than wheat at site 1, whereas the opposite was true at site 2. Overall, the combined application of gypsum with brackish water reduced soil ECe and SAR compared to brackish water alone, particularly at site 1. Our findings also suggest that the reclamation strategies should be site specific, depending on soil type and quality of brackish water used for irrigation of crops. In conclusion, the use of gypsum is recommended on brackish water–irrigated salt-prone soils to improve their quality, and for enhancing C biosequestration and crop production for efficient resource management.  相似文献   

2.
Biological, chemical and bio‐chemical strategies have been tested in the past for reclamation of saline‐sodic and sodic soils. The efficiency of two crop rotations (rice‐wheat and Sesbania‐wheat) alone or in combination with either gypsum (CaSO4.2H2O) or sulfuric acid (H2SO4) was tested for ionic displacement from four saline‐sodic soils. Pure gypsum was applied at 50 per cent of soil gypsum requirement at the time of planting rice and Sesbania, whereas 95 per cent pure sulfuric acid was added at 50 per cent soil gypsum requirement as one‐third applications by mixing with the first three irrigations. The rice crop biomass decreased at a soil saturation extract electrical conductivity (ECe) of 8 dS m−1, whereas wheat and Sesbania were influenced at a sodium adsorption ratio (SAR) of ≥40. Gypsum treatment helped the crops flourish well at these ECe and SAR levels. The infiltrated volume of water dropped with decrease in ECe : SAR ratio of soils and increase in crop biomass production. Crops rotation treatments alone helped leach sodium (Na+) and other ions successfully at SAR ≤ 21 but were less effective at SAR ≥ 40 at which point plants growth was also curtailed. Gypsum and H2SO4 treatments significantly aided leaching of Na+ and other ions with water at SAR ≥ 40 under both the crop rotations. Hence, crops effectively reclaimed soil at low sodicity level, whereas at high SAR, chemical amendments are obligatory in order to reclaim soils. This study also suggests that the required dose of H2SO4 should be applied with pre‐planting irrigation for better yield of the first crop. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
An experiment was conducted to test whether foliar application of KNO3 on wheat in the heading stage could reduce salinity‐induced injuries, produce high grain yield, and improve grain quality. Salt‐resistant DK961 and salt‐sensitive JN17 wheat cultivars under 0 or 100 mM–NaCl conditions were foliarly watered with distilled water or a 10 mM–KNO3 solution. The four treatments included: T1 (CK1), 0 mM NaCl + distilled water; T2, 0 mM NaCl + 10 mM KNO3; T3 (CK2), 100 mM NaCl + distilled water; T4, 100 mM NaCl + 10 mM KNO3. The results indicate that there were no differences (p > 0.05) in plant growth, grain yield, and grain quality between T2 and T1 in both cultivars, but these response variables were significantly lower in T3 than in T1. K+ : Na+ ratio, chlorophyll content, photosynthetic capacity, grain yield, flour yield, water absorbance, ash content, dough‐development time and dough‐stability time were significantly higher in T4 than in T3, while protein concentration, wet‐gluten concentration, and antioxidant enzyme activities were lower. Although foliar application of KNO3 on JN17 enhanced plant growth, grain yield, and grain quality, these parameters were still lower in T4 than in T1. Our findings suggest that cultivating the salt‐resistant wheat cultivar combined with foliar application of KNO3 at heading stage may alleviate salinity injuries and produce higher grain yield and better grain quality under saline conditions.  相似文献   

4.
Abstract

Irrigation is becoming a more commonly used practice on glacially derived soils of the Northern Great Plains. Threshold salinity and sodicity water quality criteria for soil‐water compatibility in these sulfatic soils are not well defined. This study was conducted to relate soil salinity and sodicity to clay dispersion and saturated hydraulic conductivity (Ksat) in four representative soils. Soil salinity (EC treatment levels of 0.1 and 0.4 S m‐1) and sodicity (SAR treatment levels of 3, 9, and 15) levels were established to produce a range of conditions similar to those that might be found under irrigation. The response of each soil to changes in salinity and sodicity was unique. In general, as sodicity increased clay dispersion also increase, but the magnitude of the increase varied among the soils. In two of the soils, clay dispersion across a range of sodicity levels was lower under the 0.4 S m‐1 treatment than under the 0.1 S m‐1 treatment and in the other two soils, clay dispersion across a range of sodicity levels was similar between the two salinity treatments. Changes in Ksat were greatest in the finer textured soil (decreasing an order of magnitude across the range of sodicity levels), but was unchanged in the coarse textured soils. Results suggest that these sulfatic soils are more susceptible to sodicity induced deterioration than chloridic soils. These results and earlier field observations suggest that sustainable irrigation may be limited to sites with a water source having a SAR <5 and an EC not exceeding 0.3 S m‐1 for these sulfatic glacially derived soils.  相似文献   

5.
Due to increased population and urbanization, freshwater demand for domestic purposes has increased resulting in a smaller proportion for irrigation of crops. We carried out a 3‐year field experiment in the Indus Plains of Pakistan on salt‐affected soil (ECe 15·67–23·96 dS m−1, pHs 8·35–8·93, SAR 70–120, infiltration rate 0·72–0·78 cm h−1, ρ b 1·70–1·80 Mg m−3) having tile drainage in place. The 3‐year cropping sequence consisted of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops in rotation. These crops were irrigated with groundwater having electrical conductivity (EC) 2·7 dS m−1, sodium adsorption ratio (SAR) 8·0 (mmol L−1)1/2 and residual sodium carbonate (RSC) 1·3 mmolc L−1. Treatments were: (1) irrigation with brackish water without amendment (control); (2) Sesbania (Sesbania aculeata) green manure each year before rice (SM); (3) applied gypsum at 100 per cent soil gypsum requirement (SGR) and (4) applied gypsum as in treatment 3 plus sesbania green manure each year (GSM). A decrease in soil salinity and sodicity and favourable infiltration rate and bulk density over pre‐experiment levels are recorded. GSM resulted in the largest decrease in soil salinity and sodicity. There was a positive relationship between crop yield and economic benefits and improvement in soil physical and chemical properties. On the basis of six crops, the greatest net benefit was obtained from GSM. Based on this long‐term study, combined use of gypsum at 100 per cent soil gypsum requirement along with sesbania each year is recommended for soil amelioration and crop production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Degradation of soils by irrigation with ground waters containing residual alkalinity poses a major threat to agriculture in semi‐arid regions, particularly in South Asia. However, there is a lack of indices to define the soil degradation and crop performance under a monsoon climate. Therefore, an experiment was conducted during 2000–2004 to determine the responses of paddy rice and wheat crops in rotation to irrigation with alkaline waters (AW) having similar salinity (electrolyte concentration 30 me L?1) but varying ionic constituents (sodium adsorption ratio irrigation water, SARiw 10 and 25; adjusted sodium adsorption ratio, adj.RNa 13.6 and 29.2; residual sodium carbonate, RSC 5 and 10 me L?1 and Cl:SO4 4:1 and 1:4, respectively). The concentration factors, ECe/ECiw (ratio of electrical conductivity of soil's saturation paste extract to that of the irrigation water) were between 1.1 and 1.8 for soils deprived of rainfall, whereas it was almost 1 for soils not sheltered from rain. Similarly, saturation paste extract, SARe, was between 1.6 and 2.0 times SARiw and 2.0–2.3 times SARiw with and without rainfall, and the exchangeable sodium per cent (ESP) 1.0–1.8 times SARiw. Yields of paddy relative to yields of crops irrigated with good‐quality water, averaged 56–74% during the period 2000–2004 compared with 81–88% for wheat, indicating the greater sensitivity of rice to irrigation with AW. Elevated levels of sulphate rather than chloride in the irrigation water lessened the impacts of the residual alkalinity. Production functions showed that the sodicity (ESP) did not solely explain the variation in crop yields because the salinity stress simultaneously inhibited growth. None of the sodicity indices (RSC, SAR and adj.RNa) adequately defined the relative impacts of AW, although residual alkalinity (RSC) was a better indicator than either of the other two. The monsoon rains played an important role in alleviating the effects of residual alkalinity. Data presented here should support the development of more reliable criteria for the assessment of sodicity/salinity hazards from AW in semi‐arid regions.  相似文献   

7.
ABSTRACT

This study reports the relationship of the leaf ionic composition with the grain yield and yield components of wheat in response to salinity x sodicity and salinity alone. The study was conducted in soil culture in pots with three treatments including control (ECe 2.6 dS m? 1 and SAR 4.53), salinity (ECe 15 dS m? 1 and SAR 9.56), and salinity x sodicity (ECe 15 dS m? 1 and SAR 35). The soil was treated before being put in the pots and the pots were arranged in a completely randomized factorial arrangement with five replications. The seeds of three wheat genotypes were sown directly in the pots and the study was continued till the crop maturity. At booting stage, the leaf second to the flag leaf of each plant was collected and analyzed for sodium (Na+), potassium (K+), and chloride (Cl?). At maturity, plants were harvested and data regarding grain yield and yield components were recorded. This study shows that salinity and sodicity in combination decreases the grain yield of wheat more than the salinity alone with a greater difference in the sensitive genotype. This study also shows that as for salinity, the maintenance of lower Na+ and higher K+ concentrations and higher K+: Na+ ratio in the leaves relates positively with the better development of different yield components and higher grain yield in saline sodic soil conditions. Although, the leaf Cl? concentration was increased significantly by salinity as well as salinity x sodicity and would have affected the growth and yield, yet it does not seem to determine the genotypic tolerance or sensitivity to either salinity or salinity x sodicity.  相似文献   

8.
The reduction in tiller number is a major reason for a decrease in grain yield of wheat. Thus, we hypothesize that the limiting growth of tillering of wheat plant under saline conditions may be due to a different distribution of ions among tillers, which may be tested by tiller removal. Two contrasting spring wheat (Triticum aestivum L.) genotypes were subjected to five levels of detillering treatments under saline or non-saline conditions grown in a greenhouse. Sodium (Na+), potassium (K+), calcium (Ca2+), chloride (Cl?), and nitrate (NO3 ?) concentrations in the top leaves of tillers were determined at plant maturity. Regardless of genotypes, the moderate salinity significantly increased the Na+ and Cl? concentrations in the top leaves and the decreased NO3 ? in the mainstem, subtillers and whole plant. Potassium and Ca2+ concentrations in leaves were not affected or slightly increased by salinity. Under moderate salinity, Na+ and/or Ca2+ concentrations in mainstem, subtillers and the whole plant were increased with a decrease in tiller removal for both genotypes, while there was almost no effect of tiller removal on Cl? and NO3 ? concentration. The tiller removal increased the tolerance of wheat to tissue Na+ content, especially for the salt sensitive genotype. Thus, the salt-specific effects in wheat plant could be alleviated by fewer tillers per plant through the removal for the salt-sensitive genotype. However, our study did not show the competition for the mineral nutrients among tillers under saline conditions. Thus, we speculate that there is a competition for photoassimilates among the tillers under saline conditions, especially for the salt sensitive genotype, which needs to be investigated further.  相似文献   

9.
An experiment was carried out during the year 1990–91 and 1991–92 at the University farm, Mohanpur in order to study the response of manurial residue to wheat crop at different doses of fertilizer under rice‐wheat cropping sequence. Incorporation of farm yard manure @ 10 t/ha to winter paddy showed significant effect on succeeding crop, wheat as compared to only fertilizer use in both the crops. Grain yield, and number of effective tillers/m2 of wheat were significantly influenced by manurial residue and attained their highest values at 100 per cent recommended dose of fertilizer with moderate soil health. Manurial residue showed higher rate of increment in grain yield of wheat at 75 per cent dose of fertilizer but leaving the soil with poor fertility condition.  相似文献   

10.
为定量分析水稻群体茎蘖数量动态变化过程及分蘖动态特征,该研究使用双Logistic模型分别描述分蘖发生与死亡过程,建立水稻群体分蘖动态模型;根据水稻分蘖过程的时序特征定义描述分蘖过程的特征指标,并推导出分蘖特征指标的计算式;基于不同基因型品种、种植方式、种植时期、种植密度下水稻分蘖动态数据集检验模型优度和适应性;并应用分蘖动态模型和指标探索分蘖动态对种植密度的响应规律。结果表明,所建模型对不同基因型水稻品种在不同种植方式、种植时期和种植密度下的分蘖动态数据拟合优度较好,标准均方根误差SRMSE服从均值小于5%的Gamma分布,并且99%的SRMSE小于10%。基于所建模型计算的分蘖特征指标(包括模型参数)对种植密度有很好的响应;留一法检验表明模型的预测性较好,观测值与模拟值的R2=0.96。所建模型能够精确描述水稻茎蘖数量演变过程,具有很好的拟合优度、适应性和可解释性,可用于分析基因、环境、农艺措施对分蘖动态的影响,分蘖特征指标可望成为分析基因与环境互作的重要表型参数,对指导水稻精准栽培有重要理论价值和实际意义。  相似文献   

11.
Most of the crop salt tolerance studies are often conducted in a glasshouse and are limited under field conditions. Therefore, the present research study was conducted under field conditions to evaluate the performance of six wheat cultivars at five salinity levels (EC 0, 3, 6, 9, and 12 dS m?1) in split plot design with three replications. Increasing salinity significantly increased soil pH, electrical conductivity (EC), and sodium adsorption ratio (SAR). Yield parameters of different cultivars were affected more at higher salinity levels than lower in two years. Data over two years revealed that up to EC 9 dS m?1 cultivars PBW 658 and HD 2967 performed ???better on the absolute yield basis but PBW 621 produced ?higher relative yield. At EC 12 dS m?1, PBW 658 produced significantly higher grain yield (4.23 t ha?1) than cultivars HD 2967 (4.11 t ha?1) and PBW 621 (3.99 t ha?1); therefore, should be preferred at salinity more than 9 dS m?1.  相似文献   

12.
We hypothesised that digital mapping of various forms of salt‐affected soils using high resolution satellite imagery, supported by field studies, would be an efficient method to classify and map salinity, sodicity or both at paddock level, particularly in areas where salt‐affected patches are small and the effort to map these by field‐based soil survey methods alone would be inordinately time consuming. To test this hypothesis, QuickBird satellite data (pan‐sharpened four band multispectral imagery) was used to map various forms of surface‐expressed salinity in an agricultural area of South Australia. Ground‐truthing was performed by collecting 160 soil samples over the study area of 159 km2. Unsupervised classification of the imagery covering the study area allowed differentiation of severity levels of salt‐affected soils, but these levels did not match those based on measured electrical conductivity (EC) and sodium adsorption ratio (SAR) of the soil samples, primarily because the expression of salinity was strongly influenced by paddock‐level variations in crop type, growth and prior land management. Segmentation of the whole image into 450 paddocks and unsupervised classification using a paddock‐by‐paddock approach resulted in a more accurate discrimination of salinity and sodicity levels that was correlated with EC and SAR. Image‐based classes discriminating severity levels of salt‐affected soils were significantly related with EC but not with SAR. Of the spectral bands, bands 2 (green, 520–600 nm) and 4 (near‐infrared, 760–900 nm) explained the majority of the variation (99 per cent) in the spectral values. Thus, paddock‐by‐paddock classification of QuickBird imagery has the potential to accurately delineate salinity at farm level, which will allow more informed decisions about sustainable agricultural management of soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Salinity and sodicity effects on manganese (Mn) sorption in a mixed sodium‐calcium (Na‐Ca) soil system were studied. Soil samples were taken at 0–30 cm depth from Vertisols (El‐Hosh and El‐Suleimi) and Aridisols (El‐Laota) at three sites in Gezira scheme (Sudan). No Mn was applied to these soils. Prior to analysis the soils were equilibrated with NaCl‐CaCL2 mixed salt solutions to attain SAR values at different salt concentrations. The results indicated that saline soils sorbed less Mn and had higher equilibrium Mn concentrations. Sodic soils retained more Mn but had low equilibrium concentrations. Sodicity had a pronounced effect only on increasing Mn retention at higher SAR values. Salinity tended to alleviate sodicity effects on Mn retention, but soluble salts that increased soil pH decreased Mn concentration.  相似文献   

14.
Salinity and sodicity effects on respiration and microbial biomass of soil   总被引:4,自引:2,他引:2  
An understanding of the effects of salinity and sodicity on soil carbon (C) stocks and fluxes is critical in environmental management, as the areal extents of salinity and sodicity are predicted to increase. The effects of salinity and sodicity on the soil microbial biomass (SMB) and soil respiration were assessed over 12weeks under controlled conditions by subjecting disturbed soil samples from a vegetated soil profile to leaching with one of six salt solutions; a combination of low-salinity (0.5dSm−1), mid-salinity (10dSm−1), or high-salinity (30dSm−1), with either low-sodicity (sodium adsorption ratio, SAR, 1), or high-sodicity (SAR 30) to give six treatments: control (low-salinity low-sodicity); low-salinity high-sodicity; mid-salinity low-sodicity; mid-salinity high-sodicity; high-salinity low-sodicity; and high-salinity high-sodicity. Soil respiration rate was highest (56–80mg CO2-C kg−1 soil) in the low-salinity treatments and lowest (1–5mg CO2-C kg−1 soil) in the mid-salinity treatments, while the SMB was highest in the high-salinity treatments (459–565mg kg−1 soil) and lowest in the low-salinity treatments (158–172mg kg−1 soil). This was attributed to increased substrate availability with high salt concentrations through either increased dispersion of soil aggregates or dissolution or hydrolysis of soil organic matter, which may offset some of the stresses placed on the microbial population from high salt concentrations. The apparent disparity in trends in respiration and the SMB may be due to an induced shift in the microbial population, from one dominated by more active microorganisms to one dominated by less active microorganisms.  相似文献   

15.
Abstract

Contribution of sesbania green manure, rice straw, and FYM (farm yard manure) was studied along with that of urea and A/SO4 (ammonium sulphate) for the cultivation of lowland rice and for the residual soil fertility. The results revealed that A/SO4 application resulted in a larger number of productive tillers, higher straw production, and higher grain yield compared to urea. Among the organic manures, sesbania green manure and FYM exerted almost similar effects on the number of productive tillers and paddy yield while the yield increase compared to the incorporation of rice straw. A similar affect of these organic manures on nitrogen uptake by rice straw, grain, and straw + grain was observed. Additional uptake of N due to the application of sesbania green manure, FYM and rice straw amounted to 15, 13, and 2.85 kg ha?1, respectively. Residual N fertility was the highest when of sesbania green manure was applied followed by FYM and rice straw. Residual P fertility was higher in the case of FYM than other treatments whereas the residual K fertility was the highest in the case of rice straw incorporation.  相似文献   

16.
A study was conducted to determine the effect of macronutrients (NPK) in alleviating the adverse effects of simulated acid rain (SAR) on sunflower (Helianthus annuus L.). In addition to control (T0), three different treatments, i.e., SAR (HNO3) of pH 3 (T1), NPK (T2), and SAR + NPK (T3), were applied on two sunflower cultivars, i.e., FH-37 and FH-385. The experiment was set up in CRD (completely randomized design) with four replicates of each treatment. Chlorophyll a, b, total chlorophyll, carotenoids, ion contents (NPK), and gas exchange characters were determined. Acid rain remarkably reduced the chlorophyll pigments, NPK ionic content, photosynthetic rate, transpiration rate, and stomatal conductance, while an increase in internal CO2 concentration and water use efficiency was noted in both the cultivars. The mixture of NPK with SAR exhibited positive impact to lessen the toxicity caused by acid. Among cultivars, FH-385 showed better performance as compared to FH-37.  相似文献   

17.
When grown with mixtures of nitrate‐nitrogen (NO3‐N) and ammonium‐nitrogen (NH4‐N) (mixed N) spring wheat (Triticum aestivum L.) plants develop higher order tillers and produce more grain than when grown with only NO3. Because similar work is lacking for winter wheat, the objective of this study was to examine the effect of N form on tillering, nutrient acquisition, partitioning, and yield of winter wheat. Plants of three cultivars were grown to maturity hydroponically with nutrient solutions containing N as either all NO3, all NH4, or an equal mixture of both forms. At maturity, plants were harvested; separated into shoots, roots, and grain; and each part analyzed for dry matter and chemical composition. While the three cultivars varied in all parameters, mixed N plants always produced more tillers (by a range of 16 to 35%), accumulated more N (28 to 61%), phosphorus (P) (22 to 80%), and potassium (K) (11 to 89%) and produced more grain (33 to 60%) than those grown with either form alone. Although mixed N‐induced yield increases were mainly the result of an increase in grain bearing tillers, there was cultivar specific variation in individual yield components (i.e., tiller number, kernels per tiller, and kernel weight) which responded to N form. The presence of NH4 (either alone or in the mixed N treatment), increased the concentration of reduced N in the shoots, roots, and grain of all cultivars. The effect of NH4 in either treatment on the concentrations of P and K was variable and depended on the cultivar and plant part. In most cases, partitioning of dry matter, P, and K to the root decreased when NH4 was present, while partitioning of N was relatively unaffected. Changes in partitioning between the shoot and grain were affected by N treatment, but varied according to cultivar. Based on these data, the changes in partitioning induced by NH4 and the additional macronutrient accumulation with mixed N are at least partially responsible for mixed‐N‐induced increases in tillering and yield of winter wheat.  相似文献   

18.
ABSTRACT

Field experiments were conducted for 2 years in sandy loam soil, to study the direct effect of organic manures i.e. sewage sludge (SS), vermicompost (VC) and sesbania (SB) and chemical fertilizers on rice (Oryza sativa) and their residual effect on wheat (Triticum aestivum) grown in sequence in winter (Rabi) and summer (Kharif) season during 2015–2016 to 2016–2017 at Varanasi, Uttar Pradesh. Residual effect of organic sources of nutrients as SS, VC and SB were monitored up to fourth crop (II wheat) in sequence applied in conjunction with 75% recommended dose of fertilize (RDF). Among the nutrient sources, the maximum grain yield in I rice (4.89 t ha?1), II rice (4.95 t ha?1), was recorded in treatment T3 (100% RDF with S, Zn, B) whereas in I wheat (4.68 t ha?1) and II wheat (4.59 t ha?1), it was recorded in T4 (customized fertilizer). The maximum straw yield during all four crops was recorded in T3 (100% RDF with S, Zn, B) in rice and T4 (customized fertilizer) in wheat crop, which showed 25, 32, 23 and 28% increase over 100% RDF (T2). Application of 100% RDF along with S, Zn, B and customized fertilizer increased the total uptake of N, P, K, S and B and also in net returns and B:C ratio followed by organic treatments.  相似文献   

19.
Osmotic potential (OP) of soil solution may be a more appropriate parameter than electrical conductivity (EC) to evaluate the effect of salts on plant growth and soil biomass.However,this has not been examined in detail with respect to microbial activity and dissolved organic matter in soils with different texture.This study evaluated the effect of salinity and sodicity on respiration and dissolved organic matter dynamics in salt-affected soils with different texture.Four non-saline and non-sodic soils differing in texture (S-4,S-13,S-24 and S-40 with 4%,13%,24% and 40% clay,respectively) were leached using combinations of 1 mol L-1 NaC1 and 1 mol L-1 CaC12 stock solutions,resulting in EC (1:5 soil:water ratio) between 0.4 and 5.0 dS m-1 with two levels of sodicity (sodium absorption ratio (SAR) < 3 (non-sodic) and 20 (sodic),1:5 soil:water ratio).Adjusting the water content to levels optimal for microbial activity,which differed among the soils,resulted in four ranges of OP in all the soils:from-0.06 to--0.24 (controls,without salt added),-0.55 to-0.92,-1.25 to-1.62 and-2.77 to-3.00 Mpa.Finely ground mature wheat straw (20 g kg-1) was added to stimulate microbial activity.At a given EC,cumulative soil respiration was lower in the lighter-textured soils (S-4 and S-13) than in the heavier-textured soils (S-24 and S-40).Cumulative soil respiration decreased with decreasing OP to a similar extent in all the soils,with a greater decrease on Day 40 than on Day 10.Cumulative soil respiration was greater at SAR =20 than at SAR < 3 only at the OP levels between-0.62 and-1.62 MPa on Day 40.In all the soils and at both sampling times,concentrations of dissolved organic C and N were higher at the lowest OP levels (from-2.74 to-3.0 MPa) than in the controls (from-0.06 to-0.24 MPa).Thus,OP is a better parameter than EC to evaluate the effect of salinity on dissolved organic matter and microbial activity in different textured soils.  相似文献   

20.
To evaluate the effects of different irrigation and nutrient concentration strategy on growth, yield, water use efficiency (WUE), fruit quality and substrate salt accumulation, tomatoes were grown with five different levels of water (W: 50%, 75%, 100%, 125% and 150%) and nutrient concentrations (N: 0.5, 0.75, 1.0, 1.5 and 2.0 times of Hoagland strength(X)). Fruit quality index was determined by normalization of fruit quality parameters. Deficit irrigation at standard concentration of nutrients reduced yields by 17.43% and 15.52% for T7 (W75%-N1.0x) and 49.54%–51.99% for T8 (W50%-N1.0x) during spring-summer (SS) and fall-winter (FW) seasons, respectively. Contents of total soluble solids (TSS), titrable acidity (TA) and sugar acid ratio (SAR) were all increased in water-deficit treatments. T8 was found to be highest in TSS, TA and SAR except SAR in FW. Over-irrigation with excessive and standard Hoagland nutrient concentration caused non-significant reduction in yield except T6 (W125%-N1.0x) in SS. T2 (W100%-N2.0x) and T4 (W100%-N1.5x) caused more substrate salt accumulation which resulted in significant decrease in yield and WUE. Through economic analysis, over-watering along with excessive nutrients caused profit reductions. Considering water saving, yield and fruit quality through economic analysis, T7 found to be optimal strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号