首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Abstract

Although the application of manure to upland fields is believed to induce changes in the quality of humic substances in soil as well as the quantity, the direction and extent of these changes have not been elucidated. To understand temporal variations in humic acids, periodically collected soil samples from two fields, a Typic Hapludult (Togo) and a Pachic Melanudand (Kuriyagawa), with cattle manure and chemical fertilizer (CF) were examined. The content and degree of humification (darkening) of the humic acids were distinctly greater in Kuriyagawa than in Togo soil. Corresponding to the difference in the degree of humification, molecular size distribution, elemental composition, infrared (IR) spectra, and 13C cross polarization/magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectra of humic acids differed between the two soils. Manure application at 40 Mg ha?1 year?1 for 16 years (Togo) and at 80 or 160 Mg ha?1 year?1 for 19 years (Kuriyagawa) resulted in greater humic acid content compared with plots with CF only because of its increase in the manured plots and/or decrease in the CF plots. Manure application at an extremely high rate (160 Mg ha?1 year?1) resulted in higher H content and greater signal intensities of alkyl C, O-alkyl C and amide C=O in the 13C CPMAS NMR and/or IR spectra. Although humic acids with larger molecule sizes increased in all the manured plots, differences between the humic acids from the plots with and without manure applied at practical levels in the elemental and spectroscopic analyses were small or scarce. These results were considered to be because of the similarity between the indigenous soil humic acids and the manure-derived ones in Togo soil (a low degree of humification) and because of the abundance of highly-humified humic acids in Kuriyagawa soil.  相似文献   

2.
We investigated the effect of continuous compost application on humus composition and N fertility of soils in a field subjected to double cropping (paddy rice and barley) for 25 years. Soil samples were collected from three different plots: (a) No-NF, fertilizer containing P and K but no N; (b) F, fertilizer containing N, P, and K; and (c) F+C, fertilizer plus compost. The amounts of total humus, extracted humus, and humic and fulvic acids increased in the order No-NF<F≪F+C. The amounts of humic and fulvic acids were 2.7 and 1.7 times larger in the F+C plot than in the F plot, respectively. The degree of humification of the humic acids decreased in the order No-NF<F<F+C. The absorption curves and 13C-NMR spectra (TOSS method) of the humic acids indicated the presence of lignin-like structure, and its degree was the strongest in the F+C plot. The 13C-NMR spectra showed distinct differences in the distribution of carbon species between humic and fulvic acids. In humic acids, the content of aromatic-C, ranging from 37 to 44%, was the highest among carbon species. In fulvic acids, the content of O-alkyl-C, ranging from 45 to 51%, was the highest. The amounts of phosphate buffer-extractable N (PEON) and total N (TN) increased in the order No-NF<F<F+C. The amounts of PEON and TN were 1.2 and 1.7 times larger in the F+C plot than in the F plot, respectively. Present and previous findings indicated that continuous compost application could improve various properties of soils in a field subjected to long-term double cropping.  相似文献   

3.
ABSTRACT

In vitro grown kiwifruit (Actinidia deliciosa, Liang and Ferguson) plantlets were treated with two humic fractions distinguished by two different relative molecular mass and characterized through their elemental composition and 13Carbon (C) nuclear magnetic resonance. The effects exerted on plant growth, root morphology, and nutrition were evidenced by means of leaves and roots mineral content, root respiration, and nitrate reductase activity. The two humic substances differentially influenced the studied parameters. The lower molecular fraction humic substance, endowed with a higher content of phenolic and carboxylic groups, caused an enhanced content of micro- and macro-elements, together with a higher root respiration at lower concentrations (0.5–1 mg C L? 1). The high molecular fraction humic substance, needed higher concentrations (> 5 mg C L? 1) in order to achieve similar effects. This fraction also caused major changes on root morphology. The ability to improve micronutrient assimilation, in particular iron, confirmed the agronomic importance of humic substances on soil fertility.  相似文献   

4.
The effects of direct extracts of compost (DEC), aerated fermentation extracts of compost (AFEC) and non-aerated fermentation extracts of compost (NAFEC) on cucumber growth and the action mechanisms were evaluated based on the structure and activity analysis of humic-like substances. AFEC increased cucumber growth most significantly, followed by DEC and NAFEC, which was insignificant compared to the control treatment. Humic-like substances from compost extracts played an important role in promoting cucumber growth. Application of humic-like substances stimulated auxin-like activity and increased chlorophyll content and nitrogen accumulation in plants. The positive auxin-like activity of humic-like substances could be attributed to the relative distribution of special carbon groups, such as those with a large amount of peptidic and carbohydratic groups or with a low content of phenolic groups. In conclusion, the best growth promotion by application of AFEC was mainly attributed to the humic-like substances in the AFEC.  相似文献   

5.
A glasshouse incubation experiment was conducted to study the carbon (C) and nitrogen (N) mineralization of municipal solid waste compost (MSWC) added at differential rates to a laterite soil where cassava has been continuously cultivated for the past 10 years. The rate of C mineralization from added substrates increased with increasing rates of addition of MSWC. Available N significantly increased with increase in the rate of application of MSWC. There was a decreasing trend in E465/E665 ratio of humic acid as we increased the rate of application of MSWC from 2.5 to 20 t ha?1. The Cross Polarization Magic Angle Spinning (CPMAS) 13C NMR spectral analysis revealed that there are differences in the rate of humification of added MSWC, and application of MSWC at 15 t ha?1 resulted in least humification with the greatest alkyl C, lowest aromatic C, and greater O-alkyl C content. The decomposition rate (R) was found to be greater for this treatment. The residual C in soil was found to increase over time coincident with greater rates of MSWC application, indicating increased C stabilization, which could improve soil quality.  相似文献   

6.
Composition of humic acids (HA) is a function of plant-derived inputs, degradation processes regulated by microorganisms, organo-mineral interactions and age. Characterization of different origin humic substances is important for evaluation of their contribution to stabile and labile carbon pool in the environment. The relative abundance of chemical components in HA isolated from soils, compost, commercial lignohumates, alginite, acadiane and lignite was studied with aim to quantify content of important biomarkers such as amino acid, lipids and polyphenols. HA were considered as a heterogeneous complex and high concentration of peptides, polyphenols and lipids was determined in acadian-HA to compare with soil-HA. Compost-HA contained much more amino acids to compare with soil-HA samples. Alginite-HA and lignite-HA were similar in biomarkers content to soil-HA. Fourier transform infrared spectroscopy confirmed that chemical composition and functional groups content differs with the origin, humification degree and the age of studied samples. Soil-HA are typically composed of a variety of ?OH, COOH?, C–O, C–H2, (aliphatic and aromatic) groups, quinines, lignin fragments, polysaccharide, monosaccharide and proteins fragments, which are linked together by ?O?, ?NH?, ?H=, >C=O, metal ions and –S? groups. 13C NMR spectroscopy showed that aromatic carbon content was the highest in lignite-HA and soil-HA.  相似文献   

7.
Generation of different biowastes is increasing day by day, and ultimate load on agricultural lands has increased. Concerns over increased phosphorus (P) application with nitrogen (N)–based compost application shifted the trend to P‐based applications. But focus on only one or two nutritional elements will not serve the goals of sustainable agriculture. Full insight into nutrient availability from different composts is necessary. The need to understand the nutrient release and uptake from different composts has increased because of the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, current greenhouse studies were designed to evaluate the bioavailability and leachability of some micronutrients [calcium (Ca), magnesium (Mg), and zinc (Zn)] from different biocomposts under chloride (Cl?) and sulfate (SO4 ?2) saline environment. In the first pot experiment, soil was amended with livestock compost (AC), poultry compost (PC), and composted sludge (SC) at the rate of 200 kg P ha?1 equivalent bases. Pots were irrigated with artificial saline water of sodium chloride (NaCl) or sodium sulfate (Na2SO4; 60 mmolc L?1), and leachates were collected for Ca and Mg analysis. As composts were applied on total P bases, which left varying amounts of nutrients in each treatment, it was observed that nutrient uptake and release differed greatly regardless of the total amount applied with each compost type. Amount of Ca applied with PC (3.9 g pot?1) was greater, but Ca concentration in leachate was greater under AC‐amended treatments. Magnesium concentration also varied greatly under compost types. Among the saline irrigation, Ca and Mg concentration in leachate increased under both saline irrigations compared to nonsaline treatment, and SO4 ?2 had relatively greater ionic strength to replace cations than Cl?. Calcium, Mg, and Zn uptake by maize stem and leaves were greater from SC‐amended pots followed by PC, SC, and control. Irrespective of the salt types, Ca and Mg uptake reduced under both saline irrigations, whereas Zn uptake increased as compared to nonsaline treatment. Among the salt types, it was observed that plant growth and nutrient uptake was more influenced by Cl? than SO4 ?2 saline irrigation. In the second experiment, soil was saturated with NaCl and NaSO4 (75 mmolc L?1) and amended with AC. The trend of nutrient uptake under both salt types was similar to first experiment, and the results of AC amendments have been discussed. It can be inferred from the results that regardless of the total amount applied, nutrient uptake greatly varies under different composts and their availability depends upon the source rather than total amount applied. Analogously, sulfate‐dominated irrigation water can increase the leaching of Ca and Mg from root zone more than chloride.  相似文献   

8.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

9.
The worldwide production of rice husk, a by‐product and agrowaste that causes serious environmental problems, may reach 116 million t y?1. The objectives of this study were (i) to determine the physicochemical changes of rice husk and its structural chemistry during composting using 13carbon nuclear magnetic resonance (13C NMR) and (ii) to determine the effect of the composted rice husk (CRH) on the properties of Oxisol and cocoa (Theobroma cacao L.) growth under glasshouse conditions. Results showed an active composting phase occurred at the first 53 days as revealed by high carbon dioxide (CO2)‐C (40–71 µg g?1 h?1) production, followed by a matured composting phase occurring at 54–116 days as revealed by decreasing in CO2‐C production (10 µg g?1 h?1). The active composting was accompanied by increases in electrical conductivity (EC), pH, ammonium (NH4 +), and nitrate (NO3), whereas during the matured composting phase, the EC and cation exchange capacity increased but pH, NH4 +, and NO3 ?1 decreased. The ash of the produced compost contains mainly calcium (Ca), potassium (K), sulfur (S), magnesium (Mg), and phosphorus (P) as essential nutrients. The CP/MAS 13C NMR spectra before and after various composting times indicated the dominance of sharp and well‐resolved signal peaks at O‐alkyl C and di‐O‐alkyl C regions (67–73%), which are characteristic of cellulose. The percentage of N‐alky/methoxyl was 23–26% whereas phenolic, carboxyl, and alkyl C types were less than 3% each. The application of the CRH to an Oxisol significantly increased soil pH and Ca, Mg, K, sodium (Na), and silicon (Si) ions of in situ soil solution but decreased the amounts of toxic ions [aluminum (Al), manganese (Mn), and iron (Fe)]. The CRH was found to increase cocoa growth up to 37%.  相似文献   

10.
ABSTRACT

To examine the effects of uniconazole (UCZ) on the distribution and transport of photosynthate in sweetpotatoes, three spraying levels of UCZ, 0 (control), 50 and 100 mg L?1, were exposed to an experimental field cultivated with Jishu26 (‘J26?) and Xushu32 (‘X32?) varieties. Compared to control, the distribution of carbon-13 (13C) was significantly higher in the tuberous roots of both varieties treated with UCZ. In addition, UCZ treatments promoted a desirable top-to-base sucrose gradient and significant greater declines in the top-to-bottom amino acid and potassium ion (K+) gradients along the stem. Higher tuberous root yields were found in the UCZ-treated ‘J26? and ‘X32?. In comparison to 50 mg L?1 UCZ, ‘J26? treated with 100 mg L?1 UCZ exhibited significantly higher distribution ratio of 13C in tuberous root, and reductions in the top-to-bottom amino acid and K+ gradients along the stems at 105 and 150 days after planting. Furthermore, 100 mg L?1 of UCZ application exhibited a significantly higher tuberous root yield. For ‘X32?, the two concentrations of UCZ demonstrated no significant differences in these parameters. A reasonable distribution structure of photosynthates that responsible for high yields is associated with the desirable sucrose, ammonia nitrogen (N) or K+ gradient along the stems caused by UCZ application.  相似文献   

11.
Abstract

Northeast China is the main production area of maize and soybean in China. In the present study, the rates of decomposition and replacement of soil organic carbon (SOC) were estimated using the soil inventory collected since 1991 from long-term maize and soybean cultivation plots in Heilongjiang Province, Northeast China, to evaluate the sustainability of the present cultivation system. The total carbon (C) content in soil was stable without any significant changes in the plots (approximately 28.5 g C kg?1). The δ13C value of soil organic matter under continuous maize cultivation increased linearly with an annual increment of 0.07 from ?23.9 in 1991, which indicated that approximately 13% of the initial SOC was decomposed during the 13-year period of maize cultivation, with a half-life of 65 years. Slow decomposition of SOC was considered to result from the low annual mean temperature (1.5°C) and long freezing period (170–180 days year?1) in the study area. In contrast, the amount of organic C derived from maize increased in the soil with a very slow annual increment of 0.17 g C kg?1, probably because of the removal of all the plant residues from the plots. Based on the soil organic matter dynamics observed in the study plots, intentional recycling/maintenance of plant residues was proposed as a way of increasing soil fertility in maize or soybean cultivation.  相似文献   

12.
Some recalcitrant organic wastes, which contain a large proportion of lignin or cellulose, are not changed much by composting, and thus the effectiveness of the compost as fertilizer is usua.lly low. In this study, incubation of unripe compost with ligno-cellulolytic microorganisms —Trichoderma viride orBacillus spp. — was investigated to increase the degree of humification of the organic matter present, and improve ils quality as a soil amendment. High-performance liquid chromatography (HPLC) analyses together with humification indices and electrofocusing patterns were used to monitor the evolution of the humic substances during the incubation process. Plant growth effects exerted by Azotobacter chroococcum on lettuce plants growing on the previously incubated compost were affected by the length of incubation and by changes in the composition of humic substances. Higher organic matter content and better humification seem to be important factors for predictingA. chroococcum hebaviour in the rhizosphere.  相似文献   

13.
ABSTRACT

Reducing nitrogen (N) leaching from croplands is important to protect environmental quality and improve recovery of applied N. To contribute to this broader goal of nutrient management, a simple pot experiment evaluated the potential differences among urea (250 kg N ha?1), urea+compost (125 kg N ha?1 from urea + 125 kg N from 8 Mg ha?1 of compost), compost (250 kg N from 16 Mg ha?1 of compost) and a zero control (Ctrl), in terms of their effects on apparent N recovery (ANR), mineral N (Nmin) leaching and soil retention of applied N. Cabbage (Brassica oleraceae L.) and corn (Zea mays L.) were grown in rotation where compost application was not repeated in the 2nd year. Nmin leaching was monitored by adding 83 mm and 62 mm of water fortnightly to cabbage and corn crops, respectively for a total of 28 times in a two-year period. Combined (urea+compost) and independent (compost) treatment application retained 1.5 to 2 times higher N, and lowered 2.1 to 4.6 times Nmin leaching, relative to independent (urea) application. We conclude that farmers’ practice of fertilization that has an inherent problem of N leaching for high rainfall areas in Taiwan could be improved by proper compost and urea combinations within agronomically recommended rates of N application.  相似文献   

14.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

15.
Abstract

The objective of this study was to compare mid‐infrared (MIR) an near‐infrared (NIR) spectroscopy (MIRS and NIRS, respectively) not only to measure soil carbon content, but also to measure key soil organic C (SOC) fractions and the δ13C in a highly diverse set of soils while also assessing the feasibility of establishing regional diffuse reflectance calibrations for these fractions. Two hundred and thirty‐seven soil samples were collected from 14 sites in 10 western states (CO, IA, MN, MO, MT, ND, NE, NM, OK, TX). Two subsets of these were examined for a variety of C measures by conventional assays and NIRS and MIRS. Biomass C and N, soil inorganic C (SIC), SOC, total C, identifiable plant material (IPM) (20× magnifying glass), the ratio of SOC to the silt+clay content, and total N were available for 185 samples. Mineral‐associated C fraction, δ13C of the mineral associated C, δ13C of SOC, percentage C in the mineral‐associated C fraction, particulate organic matter, and percentage C in the particulate organic matter were available for 114 samples. NIR spectra (64 co‐added scans) from 400 to 2498 nm (10‐nm resolution with data collected every 2 nm) were obtained using a rotating sample cup and an NIRSystems model 6500 scanning monochromator. MIR diffuse reflectance spectra from 4000 to 400 cm?1 (2500 to 25,000 nm) were obtained on non‐KBr diluted samples using a custom‐made sample transport and a Digilab FTS‐60 Fourier transform spectrometer (4‐cm?1 resolution with 64 co‐added scans). Partial least squares regression was used with a one‐out cross validation to develop calibrations for the various analytes using NIR and MIR spectra. Results demonstrated that accurate calibrations for a wide variety of soil C measures, including measures of δ13C, are feasible using MIR spectra. Similar efforts using NIR spectra indicated that although NIR spectrometers may be capable of scanning larger amounts of samples, the results are generally not as good as achieved using MIR spectra.  相似文献   

16.

Purpose

The objective of this study was to determine the changes in the main soil chemical properties including pH, electrical conductivity (EC), available phosphorus (P), soil organic carbon (SOC) and total nitrogen (TN) stocks after long-term (31 years) additions of two types of organic matters—rice straw and rice straw compost, combined with NPK fertilizers in single rice paddy in a cold temperate region of Japan.

Materials and methods

A long-term experiment on combined inorganic fertilizers and organic matters in paddy rice cultivation began in May 1982 in Yamagata, northeastern Japan. After the 31st harvest, soil samples were collected from five treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)] at five soil depths (0–5, 5–10, 10–15, 15–20, and 20–25 cm). Soil chemical properties of pH, EC, available P, SOC, and TN were analyzed.

Results and discussion

The pH decreased significantly only at the higher compost rate of 30 Mg ha?1, while EC increased in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock increased by 67.2, 21.4, and 8.6 %, and soil TN stock by 64.1, 20.2, and 8.5 % in CM3, RS, and CM1, respectively, compared to NPK treatment.

Conclusions

Significant changes in soil properties were observed after 31 years of organic matter applications with reference to PK- and NPK-fertilized rice paddy soils. A significant decrease in pH was observed with the application of a high rate (30 Mg ha?1) of rice straw compost but not with the conventional rate of 10 Mg ha?1. However, EC increased significantly relative to that of the PK- and NPK-fertilized plots in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock expressed as a percentage of total C applied to the soil were higher from 10 Mg ha?1 compost (28.7 %) than that from 6 Mg ha?1 rice straw (17.4 %), indicating a more effective soil organic C accumulation from rice straw compost than that from original rice straw.
  相似文献   

17.
Compost amendment is considered as a practical tool to increase the soil organic matter (SOM), which contributes to agricultural sustainability. The objective of the present work was to evaluate the impacts of organic soil management over 5 years on orchard prune production (Prunus salicina), microbial activity, soil carbon (C) fraction, and stabilization degrees of soil humification. Plot experiment was designed with two different soil managements: i) for minimizing anthropogenic disturbances, only mulching of orchard residues derived from prune tree plot area was applied to soil surface (S + V); and ii) the amendment of composted manure was annually practiced in addition to the utilization of orchard residues inside the plot area (S + V + C). After 5 years, the soil with the continuous compost application (S + V + C) showed higher productivity of Prunus salicina (21.4%), greater fruit diameter (7.8%), and heavier fruit weight (22.4%) than the soil without compost application (S + V). Nutrient content in foliar analysis showed no difference between the two treatments (S + V and S + V + C). By contrast, the amended soil by compost (S + V + C) increased the SOM and water-soluble C fraction in parallel with the increase of microbial parameters (microbial biomass C, adenosine triphosphate (ATP), basal respiration, and dehydrogenase). Analyzing soil humic acid character by chemical spectra techniques of Fourier-transform infrared (FT-IR) spectra and 13C nuclear magnetic resonance (13C-NMR), gradual reformation of a more stabilized structure was shown in both soils (S + V and S + V + C), due to the selective biodegradation and humification process after the amendments over 5 years. Especially, in the soil treated with compost application (S + V + C), the increase of functional C groups (aromatic and carboxylic groups), which reinforce the recalcitrant character of soil humified fraction, was clearly observed. The continuous application of composted manure for the duration of 5 years improved the orchard soil fertility as well as productivity.

Abbreviations: ATP, adenosine triphosphate; CPMAS, cross-polarization magic angle spinning; EC, electrical conductivity; FT-IR, Fourier-transform infrared; HA, humic acid; HS, humic substance; INTF, iodonitrotetrazolium formazan; K, Potassium; LSD, least significant differences, N, nitrogen; NMR, nuclear magnetic resonance; O, oxygen; OM, organic matter; MBC, microbial biomass C; P, phosphorous; SD, standard deviation; SE, standard error; SOM, soil organic matter; TOC, total organic carbon; WSC, water-soluble C; WS-Ch, water-soluble carbohydrate  相似文献   


18.
Seven experimental pilot-scale subsurface vertical-flow constructed wetlands were designed to assess the effect of plants [Typha latifolia L. (cattail)], intermittent artificial aeration and the use of polyhedron hollow polypropylene balls (PHPB) as part of the wetland substrate on nutrient removal from eutrophic Jinhe River water in Tianjin, China. During the entire running period, observations indicated that plants played a negligible role in chemical oxygen demand (COD) removal but significantly enhanced ammonia–nitrogen (NH4–N), nitrate–nitrogen (NO3–N) total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal. The introduction of intermittent artificial aeration and the presence of PHPB could both improve COD, NH4–N, TN, SRP and TP removal. Furthermore, aerated wetlands containing PHPB performed best; the following improvements were noted: 10.38 g COD/m2 day, 1.34 g NH4–N/m2 day, 1.04 g TN/m2 day, 0.07 g SRP/m2 day and 0.07 g TP/m2 day removal, if compared to non-aerated wetlands without PHPB being presented.  相似文献   

19.
Abstract

The root parasitic plants Orobanche spp. (broomrapes) seriously affect agricultural production. A visualization and quantitative analytical method for the interception of nutrients was established using a positron-emitting tracer imaging system and 13NO? 3. By using this analytical method that involves volume normalization with 18F? images, the nitrogen nutrient interception ratio of the Orobanche spp. was calculated to be 73.6 ± 3.9% in a host–parasite system of red clover (Trifolium pratense L.).  相似文献   

20.
The molecular composition of humic acids (HA) extracted from compost at increasing maturity stages was determined by off-line TMAH-thermochemolysis-GC-MS, in combination with solid-state nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies. While spectroscopy measurements followed the bulk changes, thermochemolysis provided a detailed molecular variation of HA composition. Both thermochemolysis and spectroscopy indicated that polysaccharides, alkyl, cyclic, and aromatic compounds were the predominant components of HA, the stable fraction of compost. NMR dipolar dephasing (DD) experiments confirmed that HA extracts contained lignin in lower amount than its oxidized degradation products. The progressive compost maturity was reflected in HA extracts by a decrease of carbohydrate content and a selective preservation of hydrophobic alkyl molecules, such as medium- and long-chain fatty acids, aliphatic alcohols, linear hydrocarbons, and plant polyester derivatives, like long-chain alkyl dicarboxylic acids, and ω-hydroxyacids. Spectroscopy results showed a concomitant entrapment in HA of biolabile compounds, such as peptidic moieties. The wide range of identified lipid components and plant biomarkers may represent useful tools to trace origin, quality, and transformation of amended compost in soil ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号