首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two preselected plant growth promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC)- deaminase (EC 4.1.99.4) were used to investigate their potential to ameliorate the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (four seeds pot-1) and placed in a wire house. The plants were exposed to drought stress at different stages of growth (vegetative, flowering, and pod formation) by skipping the respective irrigation. Results revealed that inoculation of peas with PGPR containing ACC-deaminase significantly decreased the "drought stress imposed effects" on the growth and yield of peas. Exposure of plants to drought stress at vegetative growth stage significantly decreased shoot growth by 41% in the case of uninoculated plants, whereas, by only 18% in the case of inoculated plants compared to nonstressed uninoculated control.
Grain yield was decreased when plants were exposed to drought stress at the flowering and pod formation stage, but inoculation resulted in better grain yield (up to 62% and 40% higher, respectively) than the respective uninoculated nonstressed control. Ripening of pods was also delayed in plants inoculated with PGPR, which may imply decreased endogenous ethylene production in inoculated plants. This premise is further supported by the observation that inoculation with PGPR reduced the intensity of classical "triple" response in etiolated pea seedlings, caused by externally applied ACC. It is very probable that the drought stress induced inhibitory effects of ethylene could be partially or completely eliminated by inoculation with PGPR containing ACC-deaminase.  相似文献   

2.
Abstract

Acid soil limitations to plant growth were assessed In 55 horizons of 14 major Appalachian hill land soils. Aluminum sensitive “Romano” and Al‐tolerant “Dade” snapbeans (Phaseolus vulgaris L.) were grown for 5 weeks in limed and unlimed treatments of the 55 horizons. Shoot and root growth was depressed >20% in unlimed relative to limed treatments in approximately 2/3 of the horizons. Dade snapbeans were generally more tolerant of the acid soil conditions and had higher Ca concentrations in the shoots than Romano snapbeans. However, the sensitive‐tolerant snapbean pair could not consistently be used to identify horizons with soil Al problems. Growth of both snapbeans was generally best in A horizons and worst in E horizons. The E horizons in this study were characterized by low Ca saturation (exchangeable Ca x 100/cation exchange capacity) and high Al saturation (exchangeable Al x 100/cation exchange capacity). Exchangeable Ca, soil Ca saturation and total soil solution Ca were positively correlated (p<0.01) with snapbean root and shoot growth. Soil Al saturation, total soil solution Al and soil solution Al reacting in 15 seconds with 8‐hydroxyquinoline were negatively correlated (p<0.01) with growth. The ratio of Ca/Al in soil solution was more closely related to snapbean growth than the soil solution concentration of any individual element. Soil and soil solution Mn were, in general, not significantly correlated with snapbean growth. Many of the horizons in this study had both Al toxicity and Ca deficiency problems and interaction between Ca and Al affected both snapbean growth and Ca uptake. These findings confirm the importance of considering Ca as well as Al when investigating Al phytotoxicity.  相似文献   

3.
The deposition of magnesium (Mg)‐rich dust from magnesite mining activities has resulted in serious land degradation. However, the main factors limiting plant growth in Mg‐contaminated soils are unclear. Moreover, little information is available on the remediation of Mg‐contaminated soils. In this study, remediation of soils contaminated with Mg‐rich dust was investigated in a pot experiment using maize as the indicator plant. There were five treatments: (i) control; (ii) leaching; (iii) application of CaCl2; (iv) leaching + CaCl2 application; and (v) application of Ca(H2PO4)2 · H2O. Soil properties and growth of maize (Zea mays L.) seedlings were measured. Leaching alone significantly decreased soluble Mg concentration. Leaching + CaCl2 application greatly increased exchangeable Ca concentration and decreased soil pH by 0·3 units. Application of CaCl2 alone increased soluble Mg concentration sharply, which directly inhibited the germination of maize seeds. Application of Ca(H2PO4)2 · H2O significantly increased the concentrations of exchangeable Ca and available phosphorus and decreased soil pH by 1·7 units. The biomass of maize seedlings increased in the order of control = leaching < leaching + CaCl2 < < Ca(H2PO4)2 · H2O. These results suggested that the plant growth in Mg‐contaminated soils was limited primarily by Ca deficiency and secondarily by high soil pH when exchangeable Ca was sufficient. High soil pH suppressed plant growth probably mainly by inhibiting phosphate uptake from the soil. Applying acid Ca salt with low solubility is an attractive option for the remediation of Mg‐contaminated soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   

5.
Abstract

Bray 1 phosphorus (B1P) and sequential phosphorus (P) fractions were determined on soils treated with triple superphosphate (TSP), Gafsa (GPR), and Christmas Island phosphate rocks (CIPR), respectively, with and without manure. The fractions extracted in decreasing lability were iron oxide–impregnated paper strip P (Pi‐strip P), inorganic (Pi), and organic (Po) bicarbonate (NaHCO3‐Pi and ‐Po), hydroxide [sodium hydroxide (NaOH)‐Pi and ‐Po], hydrochloric acid (HCl) P, and residual (residue P). The magnitude of B1P was in the order TSP>GPR=CIPR. Average B1P from PRs was two‐fold the amount in TSP, whereas that of the fractions was NaOH‐P>Residue P<sodium bicarbonate (NaHCO3) P<Pi‐strip P <HCl. Bray 1 extracted mainly the most labile fractions (Pi‐strip P and NaHCO3‐Pi), and plant P uptake was correlated mainly to NaOH‐Po and NaHCO3‐Pi. Magnitude of various fractions differed between TSP and PRs. Both B1P and the fractions were equally correlated to P uptake (R2=0.38**). Nevertheless, sequential fractionation appears to be a powerful tool to identify the P status and availability in soil.  相似文献   

6.
Abstract

Laboratory and greenhouse studies were conducted on six soils from natural reserves, seven plantation soils, and two arable soils from the Omo biosphere reserves in southwestern Nigeria to assess the phosphorus (P) fractions and the extent to which the soils could support five consecutive cycles of maize (Zea mays L.) harvest. The organic‐P fractions constitutes about 50% of the total P, and the inorganic‐P fractions in the order of abundance was iron (Fe) P>occluded P>aluminum (Al)‐P>calcium (Ca) P. The residual P constituted about 20% of the total P. There were significant reductions in the inorganic‐P fractions after five consecutive maize harvests; this was however, more pronounced in the available P (Bray 1). About 62% reduction in Bray 1 P was recorded after maize harvests. The reductions in the P forms after five cycles of maize harvest was Bray 1 P>Ca P>residual P>Al P>total P>Fe P>organic P>occluded P>reductant P. The capacity of the soils to support maize growth without fertilization varied widely in each of the maize cycle. Soil from natural reserves produced a significantly higher maize yield compared to most plantation soils. The arable soils investigated were depleted of their fertility after the third crop harvest.  相似文献   

7.
Abstract

The effectiveness of the application of raw (PR‐1), and partially acidulated phosphate rock (PR), at 25% (PR‐25) and at 50% (PR‐50), was investigated to reduce extractability and plant uptake of Pb, Cd, Cu, Ni, and Zn in three calciorthids soils.Furthermore, the effects of soil treatments on metal extractability were evaluated by sequential extraction. Similarly, such effects were assessed on the phytoavailability of metals of maize (Zea mays L.) through a pot experiment. Water‐soluble and exchangeable metal fractions (the bioavailable fractions) were influenced distinctively by PR treatments and soil properties. In addition, decrease of soluble and exchangeable metal fractions was compensated by an increase in metal extracted from other fractions. Most bioavailable soil metals correlated significantly with their associated level in plant tissue. Finally, plant metal uptake decreased with PR treatments, suggesting that PR application was likely to be effective in controlling metal immobilization in these soils.  相似文献   

8.
Aluminum (Al) and nutrients are key factors to influence tea (Camellia sinensis L.) productivity and quality, while how they interplay in tea plantations under the pressure of global change and increasing fertilization is little studied. In this study, we selected the tea plantations along an age-chronosequence to study Al fractions using a sequential extraction procedure, and nutrient concentrations in topsoil and subsoil and various plant organs. Our results indicated that Al levels and nutrient concentrations in soils and plants generally increased with planting year (< 0.05), and soil Al bioavailability was positively correlated with Al concentrations in most plant organs. Significant negative relations among pH and most extractable Al fractions in both soil layers suggested that decreased pH would directly alter soil-plant Al cycling due to exogenous nitrogen (N) fertilizer and atmospheric acid deposition. Topsoil total phosphorus (P) was positively correlated with most Al fractions, and root P was positively correlated with root Al concentration, both of which indicate that P and Al were synchronously absorbed by roots in acid tea soils. In addition, topsoil organic carbon was positively correlated with both active and inert Al fractions, indicating that above-ground organic litters would be the main source of elevated Al levels in older tea plantations. Clearly, Al enrichment in tea leaves with increasing planting year needs to be considered under management practices with heavy N and P fertilizers and increasing atmospheric acid deposition in subtropical China.  相似文献   

9.
Abstract

Highly calcareous soils are abundant in Iran. The calcium carbonate equivalent (CCE) of these soils reach up to 650 g kg?1. Although phosphorus (P) fertilizer is being widely used in these soils, little information, if any, is available about P status in such soils. The objectives of this study were to 1) determine inorganic P forms in 18 surface soils of southern Iran, 2) study P readsorption during different stages of fractionation schemes, 3) assess the ability of NaOH to extract aluminum (Al)‐P, and 4) evaluate the relationships between P availability indices and inorganic P forms. Eighteen soil samples with a wide range of physicochemical properties were selected for this study. Inorganic P forms was determined by sequential extraction with NaHCO3, NH4OAc, NH4F, NaOH, citrate dithionite (CD), and H2SO4, which are referred to as Ca2‐P, Ca8‐P, Al‐P, Fe‐P, occluded P (O‐P), and Ca10‐P. Phosphorus readsorption in different stages was determined by 1 M MgCl2. Furthermore, a fractionation scheme without an NH4F step was used to evaluate the ability of NaOH to extract Al‐P. NaHCO3 (Olsen‐P) and MgCl2‐extractable P (Exch‐P) were regarded as P-availability indices. The abundance of different P forms was in the order Ca2‐P<Fe‐P<Al‐P<O‐P<Ca8‐P<Ca10‐P. Ca2‐P was highly correlated with Olsen‐P and Exch‐P. Ca2‐P, Olsen‐P, and Exch‐P showed a relationship with CCE, citrate–bicarbonate–dithionite extractable Fe (Fed), and Al (Ald). Phosphorus readsorption appeared to be important only in the Ca8‐P step, and the content of readsorbed P was related to Ca8‐P, CCE, and clay content of the soils. In the present study, Al‐P and Fe‐P accounted for 10 and 5% of the sum of the inorganic P fractions, respectively, and Fe‐P showed a strong relationship with Feo, whereas Al‐P showed a significant relationship with oxalate‐extractable Al (Alo) and Ald. It was found that one extraction with NaOH is not a good indicator for Fe‐ and Al‐P, and the ability of NaOH to extract Al‐P was reduced with increase in Al‐P content.  相似文献   

10.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

11.
Isotopically exchangeable P (IEP) is usually considered to be completely plant‐available and the major source of P for plant uptake. The aim of the present study is to test whether plants can, besides IEP, also use non‐IEP and if part of the IEP has an equilibrium concentration in soil solution which is below the minimum concentration, CLmin, and can therefore not be taken up by plants. A pot experiment was carried out with maize for two years on two soils, an acid sandy and a neutral loamy soil, either without P fertilizer or fertilized with ten P sources of different solubility. Throughout both years of the study, pots were kept moist either without plants or planted twice with maize (Zea mays L., cv. Athletico). At the end of the experiment, plant P uptake, P concentration in the soil solution (CL), and P accessible to isotopic exchange within 5 d (E5d) were measured. Plant growth decreased the E5d which was about equal to P uptake by maize for most treatments in the acid soil. But for some treatments, i.e., five in the acid and eight in the neutral soil, P uptake was up to 50% larger than the decrease of E5d, indicating that plants had, besides IEP, also used P from non‐IEP sources. At adequate P supply, both soils had an E5d of about 100 mg P (kg soil)–1, but about 30 to 40 mg kg–1 of this IEP had an equilibrium P concentration in the soil solution below CLmin of 0.1 μmol L–1 at which P would actually not be plant‐available. This study shows that plants take up P mainly from IEP, but not the whole IEP is plant‐available. Furthermore, plants may also use P from non‐IEP sources.  相似文献   

12.
Use of aluminum (Al)–rich water treatment residuals (Al‐WTR) has been suggested as a practice to immobilize excessive phosphorus (P) in Florida soils that could represent an environmental hazard. Fertilizer P requirements can differ in WTR‐amended and unamended soil, so careful selection of soil‐testing methodology is necessary. Acidic extractants can dissolve WTR sorbed P and overestimate plant‐available P. We evaluated the suitability of the Mehlich 1 P (M‐1P) and other agronomic soil‐test procedures in an Al‐WTR‐treated Florida soil. Bahiagrass (paspalum notatum Fluggae), ryegrass (Lolium perenne L.), and a second bahiagrass crop were grown in succession in a Florida topsoil amended with four sources of P at 44 kg P ha?1 (P‐based rates) and 179 kg PAN ha?1 [nitrogen (N)–based rates] and three WTR rates (0, 10, and 25 g kg?1 oven‐dry basis). Both water‐extractable P (WEP) and iron (Fe) strip P (ISP), but not M‐1P, values of soil sampled at planting of each grass were greater in the absence than in the presence of WTR. Total plant P uptake correlated with WEP (r2 = 0.82***) and ISP (r2 = 0.75***), but not M‐1P (r2 = 0.34***). Correlations of the dry‐matter yield, P concentration, and P uptake of the first bahiagrass were also better with WEP and ISP than with M‐1P values. However, regression of plant responses with M‐1P improved after the first crop of bahiagrass. Both WEP and ISP values were better predictors of available soil P than M‐1P in a field study with same four P sources surface applied to established bahiagrass at the same two P rates, with and without WTR. Both WEP and ISP are recommended as predictors of P adequacy in soils treated with WTR, especially for soils recently (< 5 months) treated with Al‐WTR.  相似文献   

13.
Phosphorus (P) deficiency is one of the most important yield‐limiting factors in acid soils in various parts of the world. The objective of this study was to evaluate the growth and P‐use efficiency of 20 upland rice (Oryza sativa L.) genotypes at low (0 mg P kg‐1), medium (75 mg P kg‐1), and high (150 mg P kg‐1) levels of applied P on an Oxisol. Plant height, tillers, shoot and root dry weight, shoot‐root ratio, P concentration in root and shoot, P uptake in root and shoot, and P‐use efficiency were significantly (P<0.01) affected by level of soil P as well as genotype. Shoot weight and P uptake in shoot were found to be the plant parameters most sensitive to P deficiency, suggesting that these two parameters may be most suitable for screening rice genotypes for P‐use efficiency under greenhouse conditions.  相似文献   

14.
Phosphorus (P) deficiency is a principal yield‐limiting factor for annual crop production in acid soils of temperate as well as tropical regions. The objective of this study was to screen nine corn (Zea mays L.) genotypes at low (0 mg P kg‐1), medium (75 mg P kg‐1), and high (150 mg P kg‐1) levels of P applied in an Oxisol. Plant height, root length, shoot dry weight, root dry weight, shoot‐root ratio, P concentration in shoot and root, P uptake in root and shoot, and P‐use efficiency parameters were significantly (P<0.01) influenced by P treatments. Significant genotype differences were found in plant height, shoot and root dry weight, P uptake in root and shoot, and P‐use efficiency. Based on dry matter production and P‐use efficiency, genotypes were classified as efficient and responsive, efficient and nonresponsive, nonefficient and responsive, and nonefficient and nonresponsive.  相似文献   

15.
The result of intensive agriculture in cities is the decline in crop yields and depletion of the resource base. The aims of this study were to assess effects of nitrogen (N) or phosphorus (P) fertilization on bioavailable aluminum (Al) and their contribution on Al and nutrient uptake in Hibiscus sabdariffa. A pot experiment was led to supply a tropical soil with N and P fertilizers. P amendment decreased Al in soil solution, not N amendment. Fertilizers had effects on Al and nutrient uptake in roots and leaves of Hibiscus sabdariffa. The results also showed that the uptake of Al and nutrients depends on Al in soil solution or N supply or P supply. Only P uptake in roots and leaves was explained by combined effects of a nutrient supply × exchangeable Al. Furthermore, P supply does not limit the translocation of Al in shoots of plants in acid soils.  相似文献   

16.
Aluminum (Al) toxicity is a major limiting factor for crop production in many acid soils in Brazil. Two greenhouse experiments were conducted to evaluate response of rice (Oryza saliva L.) and common bean (Phaseolus vulgaris L.) to Al levels on a Low Humic Gley acid soil. The Al levels created by liming were: 0,0.03, 0.10, 0.23, 1.03, and 3.83 cmolc kg‐1 of soil. Rice dry matter and grain yield were significantly improved (P<0.05) with increasing Al levels in the soil solution. However, common bean dry matter as well as grain yield were significantly (P<0.01) decreased with increasing Al levels. At 3.83 cmolc Al kg‐1 of soil, bean did not produce any dry matter or grain yield. On an average, Al decreased nutrient concentrations in the tops of rice plant except zinc (Zn) and manganese (Mn), but in bean crop almost all the nutrients concentrations were increased with increasing Al levels. Rice showed tolerance to Al toxicity, whereas, common bean was susceptible to toxicity of this element. For successful intensive crops production lime application will be necessary in Varzea soils especially for legume production.  相似文献   

17.
Purpose

The purpose of this study is to determine the critical soil pH, exchangeable aluminum (Al), and Al saturation of the soils derived from different parent materials for maize.

Materials and methods

An Alfisol derived from loess deposit and three Ultisols derived from Quaternary red earth, granite, and Tertiary red sandstone were used for pot experiment in greenhouse. Ca(OH)2 and Al2(SO4)3 were used to adjust soil pH to target values. The critical soil pH was obtained by two intersected linear lines of maize height, chlorophyll content, and yield of shoot and root dry matter changing with soil pH.

Results and discussion

In low soil pH, Al toxicity significantly decreased plant height, chlorophyll content, and shoot and root dry matter yields of maize crops. The critical values of soil pH, exchangeable Al, and Al saturation varied with soil types. Critical soil pH was 4.46, 4.73, 4.77, and 5.07 for the Alfisol derived from loess deposit and the Ultisol derived from Quaternary red earth, granite, and Tertiary red sandstone, respectively. Critical soil exchangeable Al was 2.74, 1.99, 1.93, and 1.04 cmolckg?1 for the corresponding soils, respectively. Critical Al saturation was 5.63, 12.51, 14.84, and 15.16% for the corresponding soils.

Conclusions

Greater soil cation exchange capacity and exchangeable base cations led to lower critical soil pH and higher critical soil exchangeable Al and Al saturation for maize.

  相似文献   

18.
Rape (Brassica napus L.) seedling pot experiments were performed with a red soil treated with goethite which had boron (B) either adsorbed (ad-B-goethite) or occluded (oc-B-goethite). Soil acidity, different forms of manganese in the soils and different elements content of the rape seedlings were determined. It was found that the addition of boron-containing goethite to the soils resulted in increased rape growth, elevated soil pH and decreased exchangeable acidity. Compared with the control, boron-containing goethite elevated the content of exchangeable manganese (Mn) (EXC-Mn), organic matter bound Mn (OM-Mn), reducible oxide Mn (RO-Mn) and residual Mn (RES-Mn) which were difficult to use for plant. Low labile organic matter was significantly correlated with easily reducible oxide Mn (ERO-Mn) (P < 0.01) and RO-Mn (P < 0.05). Middle organic matter and soil pH was significantly (P < 0.05) correlated with RES-Mn. Stepwise regression was used to select the combination of variables that best estimates shoot and root dry weight of rape seedling. Among them, soil pH, EXC-Mn, OM-Mn, RO-Mn and RES-Mn significantly influenced the dry weight of rape seedlings. The addition of boron-containing goethite improved the uptake of iron (Fe), calcium (Ca), magnesium (Mg), and copper (Cu) element and decreased the uptake of Mn and zinc (Zn) element in rape seedling. The results suggested that boron-containing goethite could provide a better soil acidity environment for plant growth; it was also an important agent increasing a part of manganese difficult to use for plant and reducing the activity of soil manganese, which was beneficial to altering rape seedling growth.  相似文献   

19.
ABSTRACT

A pot experiment investigated the response of two maize inbred lines with contrasting root morphology and phosphorus (P) efficiency to inoculation with Glomus mosseae or Glomus etunicatum compared with non-mycorrhizal controls. Soil phosphorus was supplied at rates of 10, 50, and 100 mg P kg ?1 soil. Root length, specific root length, and specific phosphorus uptake of maize line 178 (P-efficient) were significantly higher than of line Hc (P-inefficient). Percentage of root length colonized showed the opposite trend regardless of soil P supply level. The two maize lines did not differ significantly in growth response to mycorrhizal colonization. Root colonization rate decreased with increasing soil phosphorus supply. The beneficial effect of the two AM fungi on plant growth and P uptake was greatest at low soil P level and the responses were negative at high P supply. Mycorrhizal responsiveness also decreased with increasing P supply and differed between the two mycorrhizal fungal isolates.  相似文献   

20.
Abstract

An improved management of phosphorus (P) is crucial for increasing crop production and improving environmental quality of acid infertile soils. Laboratory analyses and greenhouse experiments were conducted to evaluate effects of phosphate rock (PR), coal combustion by‐product (BP), limestone, and cellulose application on the relationship between soil test P and crop growth in acidic soil. Application of PR, BP, limestone, and cellulose increased soil pH, exchangeable calcium (Ca) and magnesium (Mg), and extractable P, and decreased free aluminum (Al) ion in the acid soil. Addition of BP or limestone increased P availability efficiency [PAE, mg dry matter yield (DMY) of plant per mg soil extractable P by Olsen‐P procedure] and P utilization efficiency (PUE, mg DMY of plant per mg P in the plant). There was significant positive correlation between the PAE and BP rates applied alone (r2=O.979, p<0.01) or with either PR (r2=0.972, p<0.01) or PR plus cellulose (r2=0.985, p<0.01). The PUE of ryegrass was significantly correlated with BP rates alone (r2=O.957, p<0.01) or with either PR (r2=0.906, p<0.01) or PR plus limestone (r2=O.699). The increase in PAE and PUE of ryegrass caused by BP and limestone reflected more plant root growth from increased availability of Ca and Mg and higher soil pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号