首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonium salts used as fertilizers may cause soil acidification by two different processes: nitrification in soil and net release of protons from roots. Their influence on soil pH may vary depending on the distance from root surface. The aim of this study was to distinguish between these two processes. For this purpose rape seedlings were grown 10 d in a system which separated roots from soil by a fine-meshed screen. As a function of distance from the plane root layer formed on the screen, pH, titratable and exchangeable acidity and NO3- and NH4-nitrogen were determined. The soil, a luvisol from loess, was supplied with no N or (NH4)2SO4 either with or without a nitrification inhibitor (DCD). The bulk soil pH remained unaffected when no N or 400 mg NH4? N kg?1 soil plus DCD was applied but it decreased from 6.6 to 5.8 without DCD. In contrast, rhizosphere pH decreased in all cases, mainly within a distance of 1 mm from the root plane only, but with gradients extending to between 2 and 4 mm into the soil. The strongest pH decrease, from 6.6 to 4.9, occurred at the root surface of plants treated with both NH4-N and DCD where most of the mineral N remained as ammonium. In this case Al was solubilized in the rhizosphere as indicated by exchangeable acidity. Total soil acidity produced in the NH4 treatment without DCD was mainly derived from nitrification compared to root released protons. However, acidification of the rhizosphere was diminished by nitrification because nitrate ions taken up by the roots counteracted net proton release. It is concluded that nitrification inhibitors may reduce proton input from ammonium fertilizers but enhance acidification at the soil-root interface which may cause Al toxicity to plants.  相似文献   

2.
研究苗期干旱胁迫下施氮对东北春玉米氮素吸收利用和土壤生物化学性质的影响,为区域玉米养分管理与逆境调控提供依据。研究设置水、氮二因素盆栽试验,土壤水分包括3个水平:田间持水量的30%(W0),50%(W1)和70%(W2);施氮量包括2个水平:不施氮(N0)和施氮0.24 g/kg(N1),测定不同水氮条件下玉米苗期的植株干重和氮素吸收、根际和非根际土壤的化学性质、微生物量碳、氮(MBC、MBN)及土壤酶活性。结果表明:干旱胁迫显著降低玉米苗期植株干重和氮素吸收量,其中W0条件降幅最大(分别为51.1%,43.8%)。施氮促进各水分条件下植株生长,且与水分存在显著交互作用,W2条件下施氮后植株干重和氮素吸收量的增幅最高(分别为53.7%,83.2%)。干旱胁迫提高植株的水分利用效率,但降低氮肥利用效率。施氮显著提高W2条件植株的水分利用效率,但干旱条件下则无显著影响。水、氮及其交互作用对土壤性质的影响较为复杂。总体上,苗期干旱胁迫暂时提高了根际和非根际土壤pH,显著增加根际土壤的铵态氮和硝态氮含量。MBC、MBN对干旱胁迫的响应在根际与非根际土壤之间存在相反趋势,根际土壤随干旱程度增加而提高,非根际土壤则随之下降。土壤酶活性方面,干旱胁迫显著影响根际土壤的硝酸还原酶和亚硝酸还原酶活性。施氮增加所有水分条件下根际和非根际土壤的pH和铵态氮、硝态氮含量,其中根际土壤的增幅高于非根际土壤。施氮显著增加各水分条件下根际和非根际土壤的MBC、MBN、脲酶和硝酸还原酶活性,但显著降低根际和非根际土壤亚硝酸还原酶活性。水氮交互作用显著影响根际土壤的亚硝酸还原酶、非根际土壤的脲酶、亚硝酸还原酶和FDA水解酶活性。根际、非根际土壤各生物化学性质之间均存在显著的相关关系,而且根际土壤除土壤亚硝酸还原酶外的各指标均与植株氮素吸收和氮肥利用效率呈正相关。苗期干旱显著抑制玉米植株生长和氮素吸收,并对土壤生物、化学性质造成显著影响。施氮对植株和土壤性质的影响在不同水分条件下存在差异,而且植株表现与土壤生物、化学性质之间存在显著相关关系。  相似文献   

3.
The effects of nitrogen (N) and/or phosphorus (P) fertilizers on the nutritional status in the rhizosphere were studied by monitoring throughout the growth period the concentrations of organic carbon (C), inorganic N, NaHCO3 extractable P, exchangeable K, Ca, and Mg in sorghum (Sorghum bicolor L. Moench) down in an Alfisol field, and of all these elements except for extractable P, and exchangeable Ca in a Vertisol field in semi-arid tropical India. These concentrations were compared between the rhizosphere soil and bulk soil of sorghum grown in both fields.

Organic C content of the rhizosphere soil increased with plant age and was significantly higher than that in the bulk soil throughout the growth of sorghum, but it was not affected by the rates of N or P fertilizer. Inorganic N concentration in the rhizosphere soil was significantly higher than that in the bulk soil until maturity in sorghum. The content of available P in the rhizosphere soil was significantly higher than in the bulk soil after the middle of the growth stage. Its average concentration in the rhizosphere soil across growth stages was significantly higher than in the bulk soil, which contradicts the observation in many reports that there is a depletion of P in the rhizosphere soil. The concentration of three exchangeable cations, K, Ca, and Mg, showed different patterns in the rhizosphere and the bulk soils. The concentration of K was almost constantly higher in the rhizosphere soil than in the bulk soil, Ca concentration was not different between the two soils, and Mg concentration was significantly higher in the bulk soil than in the rhizosphere soil. The reasons for these discrepancies cannot be explained at present. The concentrations of these cations were not affected by the rate of N or P fertilizer except for Mg at a later growth stage. The differences between rhizosphere and bulk soils in Alfisol were similar to those in Yertisol with respect to the concentration of organic C, inorganic N, and exchangeable K and Mg.  相似文献   

4.

Purpose

Soil acidification is universal in soybean-growing fields. The aim of our research was to evaluate the effects of soil additives (N fertilizers and biochar) on crop performance and soil quality with specific emphasis on ameliorating soil acidity.

Materials and methods

Four nitrogen treatments were applied as follows: no nitrogen (N0), urea (N1), potassium nitrate (N2), and ammonium sulfate (N3), each providing 30 kg N ha?1. Half plot area of the N1, N2, and N3 treatments was also treated with biochar (19.5 t ha?1) to form N-biochar treatments (N1C, N2C, N3C). Both bulk and rhizosphere soils were sampled separately for the following analyses: pH, exchangeable base cations (EBC), exchangeable acidity (EA), total inorganic N (IN), total N (TN), and microbial phospholipid fatty acids (PLFAs). Soybean biomass and nutrient contents were also determined. Correlation analysis was applied to analyze the relationships between soil chemical properties and soybean plant parameters.

Results and discussion

With N-biochar additions (N1C, N2C, N3C), soil chemical properties changed as follows: pH increased by 0.6–1.2 units, EBC, IN, and TN increased by 175–419, 38.5–54.7, and 136–452 mg kg?1, respectively, and PLFAs increased by 23.6–40.9 nmol g?1 compared to the N0 in the rhizosphere. Microbial PLFAs had positive correlations with soil pH; EBC; exchangeable K, Ca, Na, and Mg; TN; IN; NH4 +; and NO3 ? (r?=?0.66–0.84, p?<?0.01). There were negative correlations between PLFAs and EA or exchangeable Al (r?=??0.64, ?0.66, p?<?0.01), which indicated that the additives increased microbial biomass by providing a suitable environment with less acid stress and more nutrients. The additives increased soil NH4 + and NO3 ? by promoting soil organic N mineralization and reducing NH4 + and NO3 ? leaching. Moreover, the soybean seed biomass and the nutrient contents in seeds increased with N-biochar additions, especially in the N3C treatment.

Conclusions

N-biochar additions were effective in ameliorating soil acidity, which improved the microenvironment for more microbial survival. N-biochars influenced N transformations at the plant–soil interface by increasing organic N mineralization, reducing N leaching, and promoting N uptake by soybeans. The soil additive ammonium and biochar (N3C) were best in promoting soybean growth.
  相似文献   

5.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

6.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

7.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (< 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars.  相似文献   

8.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

9.
Photosynthetically derived rhizodeposits are an important source of carbon (C) for microbes in root vicinity and can influence the microbial community dynamics. Pulse labeling of carbon dioxide (13CO2) coupled with stable isotope probing techniques have potential to track recently fixed photosynthate into rhizosphere microbial taxa. Therefore, the present investigation assessed the microbial community change associated with the rhizosphere and bulk soil in Jatropha curcas L. (a biofuel crop) by combining phospholipid fatty acid (13C-PLFA) profiling using a stable isotope 13CO2 labeling approach. The labeling (13C) took place after 45 days of germination, PLFAs were extracted from both soils (rhizosphere and bulk) after 1 and 20 days pulse labeling and analyzed by gas chromatography-isotope ratio mass spectrometry. There was no significant temporal effect on the PLFA profiles in the bulk soil, but significantly increased abundance of Gram positive (i15:0) and Gram negative (16:1ω7c and 16:1ω5c) biomarkers was observed in the rhizosphere soil from day 1 to day 20 after labeling. The Gram negative (16:1ω7c) decreased and fungal (18:2ω6,9c) increased significantly in rhizospheric soil compared to bulk soil after day 1 of labeling. Whereas, after 20 days of labeling, the Gram negative biomarker (16:1ω7c and 18:1ω7c) decreased and Gram positive (a15:0) increased significantly in rhizospheric soil compared to bulk soil. One day following labeling, i15:0, a15:0, i16:0, 16:1ω5c, 16:0, i17:0, a17:0, 18:2ω6,9c, 18:1ω9c, and 18:0 PLFAs were significantly more enriched in δ13C in the rhizosphere than in the bulk soil. Twenty days after labeling, 16:1ω5c (Gram negative) and 18:2ω6,9c (fungal) were significantly more enriched in δ13C in the rhizosphere than in the bulk soil. These results shows the effectives of PLFA coupled using the pulse chase labeling technique to examine the microbial community changes in response to recently fixed photosynthetic C flow in rhizodeposits.  相似文献   

10.
Abstract

The mineralization of nutrients from deoiled neem seed (neem seed cake), the residue left after oil extraction, was examined in a typical savanna soil with a view to determining its potential for fertility improvement. The neem seed cake (NSC) application rates were 0, 2.5, and 5.0 g kg?1 soil (0, 5, and 10 tons ha?1). The concentrations of ammonium‐nitrogen (NH4‐N) and nitrate (NO3)‐N mineralized from the neem‐amended soil were two to three times greater than the control. Similarly, exchangeable potassium (K), magnesium (Mg), and cation exchange capacity were significantly greater than the control. The neem‐amended soil maintained organic carbon (OC) at the pre‐incubation level, whereas OC in the control soil declined to significantly less than the pre‐incubation concentration. The electrolytic conductivity of the soil saturation extract with neem application was 8–10 times greater than the control soil. However, the NSC increased exchange acidity markedly and decreased the soil pH significantly. Thus, the benefits of NSC in increasing the concentrations of N, K, and Mg and maintaining OC of the soil must be weighed against the consequences of soil acidity, though it is unlikely that NSC can acidify the soil to the same extent under field conditions as it did in this closed‐system incubation study.  相似文献   

11.
Most tropical soils have high acidity and low natural fertility. The appropriate application of lime and cattle manure corrects acidity, improves physical and biological properties, increases soil fertility, and reduces the use of chemical and/or synthetic fertilizers by crops, such as soybean, the main agricultural export product of Brazil. This study aimed to assess the effects of the combination of the application of dolomite limestone (0, 5, and 10 Mg ha?1) and cattle manure (0, 40, and 80 Mg ha?1) on grain yield and the chemical properties of an Oxisol (Red Latosol) cultivated with soybean for two consecutive years. The maximum grain yield was obtained with the application of 10 Mg ha?1 of lime and 80 Mg ha?1 of cattle manure. Liming significantly increased pH index, the concentrations of calcium (Ca2+) and exchangeable magnesium (Mg2+), and cation exchange capacity (CEC) of soil and reduced potential acidity (H+ + Al3+), while the application of cattle manure increased pH level; the concentrations of potassium (K+), Ca2+, and exchangeable Mg2+; and CEC of the soil. During the 2 years of assessment, the greatest grain yields were obtained with saturation of K+, Ca2+, and Mg2+ in CEC at the 4.4, 40.4, and 17.5 levels, respectively. The results indicated that the ratios of soil exchangeable Ca/Mg, Ca/K, K/Mg, and K/(Ca+Mg) can be modified to increase the yield of soybean grains.  相似文献   

12.

Purpose

We evaluated the ameliorative effects of crop straw biochars either alone or in combination with nitrate fertilizer on soil acidity and maize growth.

Materials and methods

Low energy-consuming biochars were prepared from canola and peanut straws at 400 °C for 2 h. Incubation experiment was conducted to determine application rate of biochars. Afterward, maize crop was grown in pots for 85 days to investigate the effects of 1 % biochars combined with nitrate fertilizer on soil pH, exchangeable acidity, and maize growth in an Ultisol collected from Guangdong Province, China.

Results and discussion

Application of 0.5, 1.0, and 1.5 % either canola straw biochar (CSB) or peanut straw biochar (PSB) increased soil pH by 0.15, 0.27, 0.34, and 0.30, 0.58, 0.83 U, respectively, after 65-day incubation. Soil pH was increased by 0.49, 0.72, 0.78, and 0.88 U when 1 % CSB or PSB was applied in combination with 100 and 200 mg N/kg of nitrate, respectively, after maize harvest in greenhouse pot experiment. These low-cost biochars when applied alone or in combination with nitrate not only reduced soil exchangeable acidity, but also increased Ca2+, Mg2+, K+, Na+, and base saturation degree of the soil. A total of 49.91 and 80.58 % decreases in exchangeable acidity were observed when 1 % CSB and PSB were incubated with the soil for 65 days, compared to pot experiment where 71.35, 78.64, 80.2, and 81.77 % reductions of exchangeable acidity were observed when 1 % CSB and PSB were applied in combination with 100 and 200 mg N/kg of nitrate, respectively. The higher contents of base cations (Ca2+, Mg2+, K+, Na+) in biochars also influenced the plant growth. The higher biomass in CSB-treated pots was attributed to the higher K content compared to PSB. The higher percent reduction in exchangeable Al3+ by applying 1 % CSB combined with 200 mg N/kg of nitrate consistently produced maximum biomass (129.65 g/pot) compared to 100 mg N/kg of nitrate and 1 % PSB combined with 100 and 200 mg N/kg of nitrate. The exchangeable Al3+ mainly responsible for exchangeable acidity was decreased with the application of biochars and nitrate fertilizer. A highly significant negative relationship was observed between soil exchangeable Al3+ and plant biomass (r 2?=?0.88, P?<?0.05).

Conclusions

The biochars in combination with nitrate fertilizer are cost-effective options to effectively reduce soil acidity and improve crop growth on sustainable basis.
  相似文献   

13.
ABSTRACT

Soil degradation due to salinization and sodication is the paramount threat in Indo-Gangetic plains. The studies on reclamation and management of such soils can provide a pragmatic solution for improving fertility and productivity of these soils. Lack of organic matter and poor availability of nutrients are the major factors for low productivity of sodic soils. Rice-wheat is a major cropping system in Indo-Gangetic alluvial plain region even in reclaimed sodic soils and farmers used inorganic fertilizers only to get higher yields. In this study, we used different organic sources of amendments in conjunction with different nitrogen (N) doses supplied through inorganic fertilizers to investigate the combined effect of organic and inorganic amendments on soil fertility and the productivity of rice- wheat system in sodic soils. Salt tolerant varieties of rice and wheat were grown in sodic soil (pH: 9.30, EC: 1.12 dSm?1 and exchangeable sodium percentage, ESP: 52) during 2014–15 to 2016–17 in a field experiment with 13 treatment combinations of organic and inorganic amendments (T1- (control) 100% of recommended dose of N (RDN), T2-municipal solid waste compost (MSWC) @10 t ha?1 + 50%RDN, T3- MSWC @10 t ha?1 + 75% RDN,T4- MSWC @10 t ha?1 + 100%RDN, T5-Vermicompost (VC) @10 t ha?1 + 50% RDN, T6- VC @10 t ha?1 + 75% RDN, T7-VC@10 t ha?1 + 100% RDN, T8- Farm yard manure (FYM) @ 10 t ha?1 + 50% RDN,T9- FYM@10 t ha?1 + 75%RDN, T10- FYM@10 t ha?1 + 100% RDN, T11-Pressmud (PM) @10 t ha?1 + 50% RDN, T12-PM@10 t ha?1 + 75%RDN, and T13- PM @ 10 t ha?1 + 100% RDN). Use of organic amendments supplemented with reduced dose of N through inorganic fertilizer has significantly improved soil bio-physical and chemical properties. Application of VC@10 t ha?1 + 100% RDN (T7) decreased soil bulk density, pH, EC, ESP and Na content to 2.0, 4.2, 26.5, 42.8, and 56.6% respectively and increased soil organic carbon by 34.6% over control (T1). Soil fertility in terms of available N, P, K, Ca, and Mg increased by 20.5, 33.0, 36.4, and 44%, respectively, over control (T1). Soil microbial biomass carbon, nitrogen, and phosphorus also improved significantly due to combined use of organic amendments and inorganic fertilizers over the only use of inorganic fertilizers. Decreasing in soil sodicity and increasing soil fertility showed significant increase (P < 0.05) in crop growth, growth indices, and grain yields of rice and wheat. The study revealed that combined use of VC or MSW compost @10 t ha?1 in conjunction with 75% RDN through inorganic fertilizers in sodic soils proved sustainable technology for restoration of degraded sodic soils and improving crop productivity.  相似文献   

14.
Our study is one of the first attempts to document the copper (Cu) speciation in the rhizosphere of forest soils and to determine the importance and the influence of the microbial community on Cu speciation. In order to do this, bulk and rhizosphere samples were collected from field sites located close to industrial facilities. The rhizosphere materials were sampled under trembling aspen (Populus tremuloides Michx.) and separated from the bulk soils in the field. A characterization of the microbial populations was made by measuring microbial biomass C and N, urease and dehydrogenase activities. In soil water extracts, chemical properties were also measured, as well as total water-soluble Cu concentration (CuWS) and free-ion Cu activity (Cu2+). The residual Cu speciation was obtained by modelling, using MINEQL+ 4.5. In all cases, the Cu speciation was dominated by organic forms of Cu, the proportion of which increases with increasing pH. The reverse pH effect was observed for Cu2+. Moreover, almost systematically higher concentrations for all Cu variables were reported in the rhizosphere as compared to the bulk soils. The results also showed that microbial variables explained 22% of the distribution of CuWS and Cu2+ in bulk samples, a proportion that reached 61.5% in rhizospheric samples. In the rhizosphere, relationships between pH, microbial biomass N and Cu2+ indicated that microorganisms influenced Cu by modifying the pH of the solution through nitrogen assimilation. Furthermore, links found between urease activity, biomass variables, solid- and liquid-phase organic carbon and CuWS suggested that microbial mineralization could partly supply Cu to the solution fraction of the rhizosphere through root decay. This study reveals that microorganisms have a strong influence on Cu speciation in the rhizosphere of forest soils and suggests that a realistic understanding and representation of Cu dynamic in the rhizosphere must take microbial activity into account. Further investigations are needed to identify and establish precisely how microbial processes impact on Cu speciation.  相似文献   

15.
Reductive dissolution of soil manganese (Mn) oxides increases potential toxicity of Mn2+ to plants. In order to examine the effect of nitrogen forms on reduction of Mn oxides in rhizosphere soil, a rhizobox experiment was employed to investigate the reduction of Mn oxides due to the growth of soybean and maize in an Oxisol with various contents of NO3-N and NH4+-N and a total N of 200 mg kg?1. The results showed that exchangeable Mn2+ in rhizosphere soil was 9.6–32.7 mg kg?1 higher than that in bulk soil after cultivation of soybean and maize for 80 days, which suggested that plant root exudates increased reduction of soil Mn oxides. Application of ammonium-N promoted reduction of Mn oxides in rhizosphere soil compared to application of nitrate and nitrate together with ammonium. Soybean cultivation led to a higher reduction in soil Mn oxides than maize cultivation. Application of single ammonium enhanced Mn uptake by the plants and led to more Mn accumulating in plant leaves, especially for soybean. Therefore, application of ammonium-based fertilizer can promote reduction of soil Mn oxides, while application of nitrate-based fertilizer can inhibit reduction of soil Mn oxides and thus reduce Mn2+ toxicity to plants.  相似文献   

16.
Fifteen citrus varieties (four varieties of limes/lemons, three varieties of mandarins, and eight varieties of sweet oranges) were tested in a row-to-row multireplicate field experiment on Typic Rhodustalf. Pre-bearing growth behavior of different citrus varieties showed a significant difference (P ≤ 0.05) with respect to canopy volume (1.221 m3 with Bearss lemon and 0.220 m3 with Cara Cara Navel) governed by changes in different rhizospheric properties (soil-available nutrients, soil microbial population, and soil microbial biomass nutrients). Response in canopy volume was more governed by soil microbial biomass nutrients [carbon (Cmic), nitrogen (Nmic), and phosphorus (Pmic)] followed soil microbial population and soil available nutrients in decreasing order. Indices developed through diagnosis and recommendation integrated system further helped in partitioning interrhizosphere nutrient deficiencies. These studies suggested that (i) biological properties of rhizosphere soils of limes and lemons were of much superior quality and (ii) rhizospheric biological properties are transformed according to plant species and variety.  相似文献   

17.
Farmers are looking for better management practices to utilize animal manure as an alternative to chemical fertilizers. A 2-year field experiment was conducted to study the effects of nitrogen (N) fertilizer source and application methods to Nicholson silt loam soil in central Kentucky, USA for no-till corn (Zea mays) production. The region has a temperate climate with a mean temperature of 14.5°C and rainfall of 1300 mm year?1. Treatments included a control, 179 kg N ha?1 urea ammonium nitrate (UAN) applied as preplant and sidedress, and swine effluent that was applied by three methods: broadcast, injection, and Aerway. Injection method produced the greatest corn grain yield (11.88 Mg ha?1) and biomass yield (18.9 Mg ha?1) in 2007. Results demonstrated that the effluent application methods and the timing of UAN application may not be agronomically important for corn production in this region. Hence, more studies are needed on different soils in this region.  相似文献   

18.
The rhizosphere is the most active soil area for material transformation and energy flow of soil, root, and microorganism, which plays an important role in soil biochemical cycling. Although the rhizospheric nitrogen (N) and phosphorous (P) were easily disturbed in the agroecosystem, the effects of rhizosphere on the dynamics of soil N and P cycling have not yet been systematically quantified globally. We summarized the magnitude, direction, and driving forces of rhizosphere effects on agroecosystem's N and P dynamics by 1063 observations and 15 variables from 122 literature. Rhizosphere effects increased available N (AN, 9%), available P (AP, 11%), and total P (TP, 5%), and decreased nitrate N (NO3–N, 18%) and ammonia N (NH4–N, 16%). The effect of rhizosphere on total N (TN) was not significant. These effects improved AN in tropical (12%) and subtropical (14%) regions. The effect of rhizosphere on TP was greater under subtropical conditions than in other climates. The most substantial effects of the rhizosphere on TP and AP were observed under humid conditions. Rhizosphere effects increased AN and AP in vegetables more than in other crop systems. Application of N > 300 kg ha−1 had the most significant and positive rhizosphere effects on TN and AN. P application of 100–150 kg ha−1 had the greatest rhizosphere effects on TP and AP. These effects also improved the microbial (biomass N and P) and enzymatic aspects (urease, acid phosphatase, and alkaline phosphatase) of soil P and N cycling. Structural equation modeling suggested that aridity indices, fertilizer application rate, soil pH, microbial biomass, and soil enzymes strongly influence the magnitude and direction of the rhizosphere's effect on the P and N cycles. Overall, these findings are critical for improving soil nutrient utilization efficiency and modeling nutrient cycling in the rhizosphere for agricultural systems.  相似文献   

19.
We lack an understanding of nitrogen (N) cycles in tropical forests of Africa, although the environmental conditions in this region, such as soil type, vegetation, and climate, are distinct when compared with other tropical forests. Herein, we simultaneously quantified N fluxes through precipitation, throughfall, and 0-, 15-, and 30-cm soil solutions, as well as litterfall, in two forests with different soil acidity (Ultisols at the MV village (exchangeable Al3+ in 0–30 cm, 126 kmolc ha–1) and Oxisols at the AD village (exchangeable Al3+ in 0–30 cm, 59.8 kmolc ha–1)) over 2 years in Cameroon. The N fluxes to the O horizon via litterfall plus throughfall were similar for both sites (MV and AD, 243 and 273 kg N ha–1 yr–1, respectively). Those values were remarkably large relative to other tropical forests, reflecting the dominance of legumes in this region. The total dissolved N flux from the O horizon at the MV was 28 kg N ha–1 yr–1, while it was 127 kg N ha–1 yr–1 mainly as NO3-N (~80%) at the AD. The distinctly different pattern of N cycles could be caused by stronger soil acidity at the MV, which was considered to promote a superficial root mat formation in the O horizon despite the marked dry season (fine root biomass in the O horizon and its proportion to the 1-m-soil profile: 1.5 Mg ha–1 and 31% at the MV; 0.3 Mg ha–1 and 9% at the AD). Combined with the published data for N fluxes in tropical forests, we have shown that Oxisols, in combination with N-fixing species, have large N fluxes from the O horizon; meanwhile, Ultisols do not have large fluxes because of plant uptake through the root mat in the O horizon. Consequently, our results suggest that soil type can be a major factor influencing the pattern of N fluxes from the O horizon via the effects of soil acidity, thereby determining the contrasting plant–soil N cycles in the tropical forests of Africa.  相似文献   

20.
Nitrogen (N) is one of the most yield limiting nutrients in lowland rice production. Improving N use efficiency is essential to reduce cost of crop production and environmental pollution. A greenhouse experiment was conducted with the objective to compare conventional and polymer coated urea for lowland rice production. Grain yield, straw yield, panicle density, maximum root length, and root dry weight were significantly increased in a quadratic fashion with the increase of N rate from 0 to 400 mg kg?1 soil. Nitrogen source X N rate interactions for most of these traits were not significant, indicating that lowland rice responded similarly to change in N rates of two N sources. Based on regression equations, maximum grain yield was obtained with the application of 258 mg N kg?1 soil and maximum straw yield was obtained with the addition of 309 mg N kg?1 soil. Nitrogen use efficiency (grain yield per unit of N applied) was maximum for polymer coated urea compared to conventional urea. Root length and root dry weight improved at an adequate N rate, indicating importance of N fertilization in the absorption of water and nutrients and consequently yield. Polymer coated urea had higher soil exchangeable calcium (Ca) and magnesium (Mg), Ca saturation, Mg saturation, base saturation, and effective cation exchange capacity compared to conventional urea. There was a highly significant decrease in soil exchangeable potassium (K) with increasing N rates at harvest of rice plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号