首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The experiment was conducted to evaluate the effect of growing media compositions containing cocopeat, FYM and vermiculite in different ratios on potted Chrysanthemum morifolium Ramat cultivar Kikiobiory (standard) for quality flower production. The results revealed that, vegetative growth with maximum plant height, number of leaves, root suckers per plant with delayed flowering were observed in media containing cocopeat?+?FYM (2:1)., whereas, the flower quality parameters like flower diameter and duration of flowering were highest in media containing vermiculite?+?FYM (2:1). However, plants showed the significant vegetative growth with better flowering time and quality in media composition cocopeat?+?vermiculite?+?FYM (1:1:1). Therefore, the findings suggest that for quality flower production of potted Chrysanthemum cv. Kikiobiory, light-weight growing media composition of cocopeat?+?vermiculite?+?FYM (1:1:1) was ideal with better plant morphological development and sustained flowering for display.  相似文献   

2.
Growth and flowering characteristics of chrysanthemum (Dendranthema grandiflora) was evaluated in organic wastes comprising burnt rice husk ash (RHA) and composted sewage sludge (SS) amended with differential proportions of soil:cocopeat (CP) in 0%, 25%, 50%, and 75% each on dry weight volume basis. The media mixtures were supplemented with varying nitrogen (N) levels (0, 2, 4, and 6 g N per pot). Utilizing CP as an amendment with the organic media considerably improved the physical as well as chemical properties of the potting media that was found desirable for the root zone environment in a finite volume of a pot. Chrysanthemum plants produced in increasing proportions of CP were observed to be well anchored and exhibited excellent quality of flowers. Utilizing 50% CP and 25% soil as a growing media amendment in SS (25%) proved to be the best media mixture for ideal growth and performance of potted chrysanthemum. Better aggregate stability provided by the SS and increased potassium (K) content in CP coupled with improved physical root zone environment provide a suitable reason to utilize CP as an amendment in potting media for an ideal display of pot mums.  相似文献   

3.
污泥农用对土壤和作物重金属累积及作物产量的影响   总被引:20,自引:2,他引:20  
以3 a定位试验为基础,比较3种不同处理的污泥肥料(消化污泥、污泥堆肥及污泥复混肥)农田施用下土壤养分、土壤和作物籽粒中Mn、Cu、Zn、Pb、Cd 5种重金属的积累以及作物产量的变化情况,以阐明污泥农用对土壤及作物的影响。研究表明,3种污泥肥料提高了土壤中氮素和有机质的含量;与空白和普通化肥处理相比,3种污泥肥料增加了土壤中Mn和Cu的含量,而对土壤交换态重金属含量没有显著影响;3种污泥处理均增加了小麦籽粒中Zn的含量;相对普通化肥处理,3种污泥肥料处理对小麦和玉米产量均无显著影响。合理施用污泥肥料可以有效地提高作物产量;污泥肥料施用对土壤重金属有一定累积效应,但短期施用对土壤比较安全。  相似文献   

4.
The present study was conducted to assess the suitability of sewage sludge amendment in soil for Beta vulgaris var. saccharifera (sugar beet) and Triticum aestivum (wheat) by evaluating the arsenic and selenium accumulation and physiological responses of plants grown at 10%, 25%, and 50% sewage sludge amendment rate. Sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently with higher accumulation in plant parts. The chlorophyll contents increased after the sewage sludge treatments except for 50%. The sewage sludge amendment led to a significant increase in arsenic and selenium concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency. The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake in the leaves and root concentrations of arsenic and selenium in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots and leaves for most of the heavy metals. Concentrations of arsenic and selenium were more than the permissible limits of national standards in the edible portion of sugar beet and wheat grown on different sewage sludge amendments ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet and wheat may not be a good option due to risk of contamination of arsenic and selenium.  相似文献   

5.
A long-term field experiment was carried out in the experiment farm of the Sao Paulo State University, Brazil, to evaluate the phytoavailability of Zn, Cd and Pb in a Typic Eutrorthox soil treated with sewage sludge for nine consecutive years, using the sequential extraction and organic matter fractionation methods. During 2005-2006, maize (Zea mays L.) was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. The treatments consisted of four sewage sludge rates (in a dry basis) : 0.0 (control, with mineral fertilization), 45.0, 90.0 and 127.5 t ha-1, annually for nine years. Before maize sowing, the sewage sludge was manually applied to the soil and incorporated at 10 cm depth. Soil samples (0-20 cm layer) for Zn, Cd and Pb analysis were collected 60 days after sowing. The successive applications of sewage sludge to the soil did not affect heavy metal (Cd and Pb) fractions in the soil, with exception of Zn fractions. The Zn, Cd and Pb distributions in the soil were strongly associated with humin and residual fractions, which are characterized by stable chemical bonds. Zinc, Cd and Pb in the soil showed low phytoavailability after nine-year successive applications of sewage sludge to the soil.  相似文献   

6.
The Phytotoxicity Changes of Sewage Sludge-Amended Soils   总被引:1,自引:0,他引:1  
The aim of the present study was the estimation of changes in the phytotoxicity of soils amended with sewage sludge with relation to Lepidium sativum, Sinapis alba and Sorghum saccharatum. The study was realised in the system of a plot experiment for a period of 29?months. Samples for analyses were taken at the beginning of the experiment, and then after 5, 17 and 29?months. Two kinds of sewage sludge, with varying properties, were added to a sandy soil (soil S) or a loamy soil (soil L) at the dose of 90?t/ha. The addition of sewage sludge to the soils at the start of the experiment caused a significant reduction of both seed germination capacity and root length of the test plants, the toxic effect being distinctly related to the test plant species. With the passage of time the negative effect of sewage sludge weakened, the extent of its reduction depending both of the kind of sewage sludge applied and on the type of soil. Phytotoxicity of the soils amended with the sewage sludges was significantly lower at the end of the experiment than at the beginning. The species of the plants grown on the soils also had a significant effect on their phytotoxicity. The greatest reduction of toxicity was observed in the soil on which no plants were grown (sandy soil) and in the soil under a culture of willow (loamy soil). Solid phase of sewage sludge-amended soils was characterised by higher toxicity than their extracts.  相似文献   

7.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

8.
The present study was conducted to assess the suitability of sewage-sludge amendment in soil for Triticum aestivum (wheat) by evaluating the heavy-metal accumulation and physiological responses of plants grown at 10, 25, and 50% sewage sludge amendment rate. Sewage sludge amendment modified the physicochemical properties of soil, thus increasing the availability of heavy metals in soil and consequently greater accumulation in plant parts. The chlorophyll contents generally increased after the sewage sludge treatments. Heavy-metal accumulation in the soil after the treatments did not exceed the limits for land application of sewage sludge recommended by the U.S. Environmental Protection Agency. Recycling sewage sludge as fertilizer will generate economical profits. However, the use of sewage sludge amendment in the soil for growing wheat may not be a good option due to risk of contamination of some heavy metals.  相似文献   

9.
We studied the effects of different composts made of different mixtures of sewage sludge and Acacia plants on the soil biochemical and chemical properties. The proportions of mixed acacia plant and sewage sludge were: AL1/1 (50% acacia/50% sewage sludge), AL1/2 (33.3% acacia/66.6% sewage sludge), and AL1/3 (25% acacia/75% sewage sludge). Composts were added to the soil at a rate of 2%. Soil samples were collected during 150 days and analyzed for soil enzyme activities and chemical properties. An unamended soil was used as the control. Compared to the AL1/1 treatment, soil dehydrogenase, urease, phosphatase and β-glucosidase activities decreased respectively by 14.6%, 15.4%, 12.5%, and 19.3% for AL1/2 treatment and by 20.7%, 25.6%, 23.7%, and 28.4% for AL1/3 treatment. Soil water-soluble carbohydrates and polyphenols were the greatest in AL1/1. The lowest contents of heavy metals in the AL1/1 compost may be responsible for the increase of soil biochemical and chemical properties.  相似文献   

10.
Current UK legislation permits the application of sewage sludge to agricultural land provided concentrations of heavy metals in soil do not increase above maximum permissible limits. However, even within the defined limits, we do not know how an increase in soil heavy metal concentrations is likely to affect biological diversity and activity. Here we report on the effects of sewage sludge addition, including sludge rich in the metals cadmium, copper and zinc, on soil fungal community composition using both an rDNA and rRNA DGGE approach. Sewage sludge addition altered fungal ITS-DGGE banding patterns, however, there were no additional effects of an increase in soil heavy metal concentrations. Similar results were obtained for the full range of copper rich sludge treatments even when copper concentrations were well above the maximum permissible limits. Our data therefore demonstrate that although an increase in soil organic matter content alters soil fungal community diversity and composition, increasing soil concentrations of cadmium, copper and zinc up to current legislative limits had little additional effect regardless of whether rRNA or rDNA was analysed. This suggests that current UK limits for these three heavy metals are within a concentration range that the dominant soil fungi at this field site can tolerate.  相似文献   

11.
The input of organic micro- and nanopollutants to the environment has grown in recent years. This vast class of substances is referred to as emerging micropollutants, and includes organic chemicals of industrial, agricultural, and municipal provenance. There are three main sources of emerging pollutants coming to the environment, i.e., (1) upon soil fertilization with sewage and sewage sludge; (2) soil irrigation with reclaimed wastewater and (3) due to filtration from municipal landfills of solid wastes. These pollutants contaminate soil, affect its inhabitants; they are also consumed by plants and penetrate to the groundwater. The pharmaceuticals most strongly affect the biota (microorganisms, earthworms, etc.). The response of microorganisms in the contaminated soil is controlled not only by the composition and the number of emerging pollutants but also by the geochemical environment.  相似文献   

12.
The objective of this research was to determine the availability to plants of elements in sewage sludge irradiated with high-energy electrons for disinfection. Irradiated raw sludge (irradiated with an electron dose of 400 krad) and non-irradiated raw sludge were obtained from the Deer Island Wastewater Treatment Plant of Boston, Massachusetts. The sludges were used to grow 12 plant species under controlled-environmental conditions. The species were: bush bean (Phaseolus vulgaris L.), sweet corn (Zea mays L.), dill (Anethum graveolens L.), lettuce (Lactuca sativa L.), mustard (Brassica juncea Coss.), parsley (Petroselinum crispum Nym.), pumpkin (Cucurbita pepo L.), radish (Raphanus sativus L.), spinach (Spinacia oleracea L.), Swiss chard (Beta vulgaris cicla L.), tomato (Lycopersicon esculentum Mill.), wheat (Triticum aestivum L. em. Thell.). Plants were also grown with inorganic fertilizer added at recommended rates or with tap water. At the end of the experiment (44 days after planting), dry weight and elemental composition of the plants and soil (fine sandy loam, Typic Ustifluvent) were determined. There was no measurable difference in nutrient composition of soil treated with irradiated and non-irradiated raw sludge. In general, plants treated with irradiated raw sludge grew as well as plants treated with non-irradiated raw sludge. Most plants treated with sludge grew as well as plants treated with inorganic fertilizer. Elemental composition of plants treated with irradiated sludge was similar to that of plants treated with non-irradiated sludge. Sludge-treated dill, parsley, spinach, and Swiss chard had high concentrations of one or more of the following heavy elements: Zn, Cu, Ni, Cr. The results showed that plants grown with sludge irradiated with high-energy electrons were similar to plants grown with non-irradiated sludge.  相似文献   

13.
The agroenvironmental impact of co-utilization of red gypsum and sewage sludge was investigated. Both laboratory and greenhouse studies were conducted. The treatments were soil + sewage sludge (5% w/w) + red gypsum (0, 2.5, 5, 10, 20, and 40%, w/w). Corn was grown in the greenhouse, and the highest rate of red gypsum application was excluded. The residual calcite in red gypsum was able to increase the pH of the red gypsum–sewage sludge acidic soil system. Hence, gypsum reduced the zinc (Zn) concentrations in the soil solution released by sewage sludge. Phosphorus (P) and potassium (K) were insufficient for corn growth. At the rate of 2.5% red gypsum and 5% sewage sludge application, no dry-matter reduction was observed compared to the control. The uptake of Zn, copper (Cu), and iron (Fe) by the corn plants decreased. Therefore, co-utilization of red gypsum and sewage sludge is a better option than using these by-products separately.  相似文献   

14.
The influence of a single addition of sewage sludges to soils on the composition of fungal communities, soil pH (physical factor) and presence of Eschericha coli (sanitary factor) during 1 year was studied. Only the pH of soil treated with limed sewage sludge increased significantly from 7.01 to 7.58 after 3 months. E. coli was still present in soil 1 year after application of sewage sludge. Fungal numbers increased in the sewage-sludge-treated soil up to 6 months after application (maximum value was 7.5 times that of the control) and then decreased to reach values comparable to those of the control. Treated soils showed different fungal communities to the control with presence of keratinolytic fungi (Sporothrix schenckii, Microsporum sp.), yeasts (Geotrichum candidum, Candida sp., Rhodotorula sp. Cryptococcus sp.), and other potential pathogenic fungi (Aspergillus niger, Fusarium solani). The results indicate that fungi belonging to the genus Candida could be used as specific indicator organisms of the sanitary condition of soils treated with sewage sludge.  相似文献   

15.
Soil application of sewage sludge as an amendment in crop plants has became a popular method of municipal sewage-sludge disposal in many countries. However, the presence of heavy metals in untreated sewage sludge has raised concerns of adverse effects on crop growth, quality of product, and environmental health. Gamma irradiation is one of the treatments for hygienization of sewage sludge before use as fertilizer. To evaluate the potential of gamma-irradiated sewage sludge as fertilizer in vegetable crops, the field investigation was conducted in a root crop, radish (Raphanus sativus L.), during the 2005–06 and 2006–07 growing seasons in a sandy loam soil. Treatments consisted of three source of fertilizers [farmyard manure (FYM), gamma-irradiated sewage sludge (GISS), and nonirradiated sewage sludge (NISS)]; each were compared at six application levels (1, 3, 6, 7, 9, and 11 t ha?1). The physicochemical properties of all the three fertilizers used in this study were compared. Growth parameters and yields of radish were not significantly influenced by source of fertilizers or their application levels, except plant stand, which was influenced by type of fertilizers used. There was no significant difference observed between source of fertilizer treatments with respect to any of the measured soil properties, including major nutrients [nitrogen (N), phosphorus (P), and potassium (K)], metallic micronutrients [copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)], and heavy metals [nickel (Ni), lead (Pb), cadmium (Cd), and cobalt (Co)]. Soil P and Zn were influenced by the various level of fertilizers. However, the interaction effect of source and level of fertilizer was absent for all the measured parameters. The maximum pollutant limits in sewage sludge and soil for agricultural use in different countries were compared. The concentration of metallic micronutrients and heavy metals in soil were less than the prescribed limit of the United States Environmental Protection Agency (USEPA), and no significant accumulation was noted after 2 years of application of GISS and NISS even at higher application rates.  相似文献   

16.
Sandy loamy agrosoddy-podzolic soils and plants growing on them were studied. The soils had been treated with sewage sludge from the Lyubertsy aeration station applied as organic fertilizer for 5–10 years before 1990. Initially, these soils were used for cultivating vegetables and fodder crops. The content and mobility of heavy metal compounds increased in the plow horizons of studied soils under the influence of sewage sludge. The concentrations of Cd and Zn exceeded the tentative permissible concentrations (TPC) for these elements by 8–16 and 2–4 times, respectively. The contaminated layer was found at the depths within 30–50 cm, which attests to a low migration rate of heavy metals added to the studied soils with sewage sludge (SS) 25 years ago. The concentration of Cd exceeded the maximum permissible concentration (MPC) of this element in all vegetable and fodder crops cultivated on the studied soils. The content of heavy metals in plants differed by three–five times in dependence on the capacity of particular plants to accumulate them. The period of soil self-purification from heavy metals was found to depend on the soil contamination level and element mobility, as well as on the element removal with harvested crops and with soil water flows. The maximal time of achieving the normal level of Cd concentration was estimated as 288 years for maximally contaminated soils; the corresponding values for Cu and Zn were estimated as 74 and 64 years, respectively.  相似文献   

17.
滩涂盐土农业利用的主要障碍是盐分含量过高和缺乏有机质。施用生活污泥可快速提高滩涂土壤有机质含量,加快土壤熟化,但由于担心污泥含有一定量的重金属,其施用受到一定的限制。采用盆栽苏丹草的试验方法,研究滩涂盐土施用不同量的生活污泥后对土壤性质、植物生长和对重金属累积的影响。结果表明,生活污泥施用于滩涂盐土后降低了土壤pH值,提高了EC值和总盐含量;苏丹草的出苗率、株高和鲜重增加;施用污泥提高了苏丹草植株中全氮、全磷及叶绿素的含量,且随施用量的增加而增大,但对植株中全钾的含量无显著影响;苏丹草中Zn、Cd含量随着污泥施用量增加呈增长的趋势,但Pb、Ni、Cu含量变化不大。在试验条件下,所施用污泥中重金属向苏丹草体内转移的比例介于0.13%-13.44%之间。就该种土壤而言,要更为注意含Pb量较高的污泥施用,而Cu则是最为安全的。总体考虑,一次性施用干污泥应控制在8t·667m^-2以下。  相似文献   

18.
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha−1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied.  相似文献   

19.
Tomato plants (Lycopersicum esculentum Mill, ‘Red Cherry Small’), grown in 15 cm diameter plastic pots with a standard greenhouse medium (1:1:1, by volume, soil:peat:sand) were irrigated for 15 weeks with liquid sewage sludge containing a liquid cationic conditioner (Petroset SB, Phillips Petroleum Company, Bartlesville, Oklahoma) to determine the effect of the conditioner on Cd and Zn availability. Half of the plants received 50 ml week?1 liquid digested sludge with no conditioner and half of the plants received 50 ml week?1 sludge containing 0.25 ml conditioner (200:1, by volume, sludge:conditioner). Plant height was measured weekly. Plants were harvested 3, 6, 9, 12, and 15 weeks after sludge treatments began and separated into roots, shoots, and fruits for dry weight determination and Cd and Zn analyses. Soil and sludge crusts were sampled at the same times and analyzed for extractable concentrations of Cd and Zn. Dry weights of plants grown with conditioned sludge were similar to those grown with nonconditioned sludge. Plants with conditioner flowered and fruited one and two weeks earlier, respectively, than plants without conditioned. Six weeks after treatments began, when the plants had grown to their greatest height, Cd concentrations in sludge crusts, soil, and roots receiving conditioner were 2.0, 1.5, and 2.1 times greater, respectively, than crusts, soil and roots not receiving conditioner. After the six weeks sampling time, Cd concentrations in crusts, soil, and roots receiving conditioned sludge were similar to those in crusts, soil, and roots receiving nonconditioned sludge. At the third-week sampling time, shoots of plants grown with conditioner had 2.6 times more Cd than shoots of plants grown without conditioner. Cadmium concentrations in shoots from both treatments were similar at later sampling dates. Cadmium content of fruits was the same for both treatments all sampling times. Zinc content of roots, shoots, fruits soil, and sludge crusts was no affected by the conditioner. Results showed that a cationic conditioner, added to sludge, increased the availability of Cd, but not of zn, for tomato plants until maximum height was reached.  相似文献   

20.
Abstract

Application of organic fertilizers may replenish soil organic matter, improve soil fertility and increase plant yield and its quality. This research deals with the effects of soil amendment with sewage sludge compost (SSC) on the chemical composition of plants (white mustard, triticale and white lupine) cultivated on two contrasting soils (light vs. medium). A 3-year pot experiment was conducted and SSC at the rate of 6?Mg ha?1 was applied to the soils.The study clearly demonstrated that SSC as an organic fertilizer had a minor influence on the modification of the chemical composition of shoots and grain cultivated in crop rotation plants and it was more evident in medium soil. The statistically confirmed effect was mainfested in higher c ontents of N and P in grain of plants in the 2nd and 3rd year of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号