首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tepetates are common in the Mexican highlands, and are classified as fragipan, duripan, pedosediments or saprolite. A common feature is the abundance of clay coatings. Three pedons with red tepetate and grey tepetate were selected at different altitudes and slopes in a small watershed in Texcoco, Mexico. Physical, chemical, mineralogical and micromorphological analyses were carried out in soil, tepetate and separated clay coatings. Clay illuviation and neoformation indexes were calculated using micromorphometric techniques. Red tepetate is composed of basic volcanic glass dust (andesitic vitric tuff), and has a high clay neoformation and illuviation index. In contrast, grey tepetate is composed of acid volcanic glass (acid vitric tuff) and only clay neoformation takes place, leading to the formation of a clayey soil. Although all the tepetates were subject to pedogenesis, the intensity and variation of the processes increases on the lower slope and different diagnostic horizons are formed, due to tepetate erosion. The laterally running waters containing suspensions of particles and soluble silica were deposited or precipitated in sediments or tepetates on the lower slopes, giving rise to compound coatings. These processes must be older than 20,000 years. Tepetates from Texcoco present several variants which were recognised since pre-Hispanic times.  相似文献   

2.
To measure and manage plant growth in arid and semi-arid sandlands, improved understanding of the spatial patterns of desert soil resources and the role of arbuscular mycorrhizal (AM) fungi is needed. Spatial patterns of AM fungi, glomalin and soil enzyme activities were investigated in five plots located in the Mu Us sandland, northwestern China. Soils to 50 cm depth in the rhizosphere of Astragalus adsurgens Pall. were sampled. The study demonstrated that A. adsurgens Pall. could form strong symbiotic relationships with AM fungi. Arbuscular mycorrhizal fungal status and distributions were significantly different among the five studied plots. Correlation coefficient analysis demonstrated that spore density was significantly and positively correlated with soil organic carbon (SOC), soil acid phosphatase and to two Bradford-reactive soil protein (BRSP) fractions (P < 0.01). Colonization of arbuscules and vesicles were positively correlated with protease activity. The BRSP fractions were also significantly and positively correlated to edaphic factors (e.g. SOC, available nitrogen, and Olsen phosphorus) and soil enzymes (e.g. soil urease and acid phosphatase). The means of total BRSP and easily extractable BRSP were 0.95 mg g−1 and 0.5 mg g−1 in all data, respectively. The levels of BRSP in the desert soil were little lower than those in native and arable soils, but the ratios of BRSP to SOC were much higher than farmland soils. The results of this study support the conclusion that glomalin could be an appropriate index related to the level of soil fertility, especially in desert soil. Moreover, AM fungal colonizations and glomalin might be useful to monitor desertification and soil degradation.  相似文献   

3.
We investigated extraction from soil of glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi, and we examined its measurement. The most commonly used protocols for extracting glomalin require autoclaving of soil in citrate solution, followed by centrifugation to separate the supernatant, and then measurement by either Bradford protein assay or enzyme-linked immunosorbent assay (ELISA). We found that lengthening the time of autoclaving increased easily extractable glomalin extraction. Delay of centrifugation after autoclaving, however, diminished Bradford-reactive substances in the supernatant, suggesting that extracted substances might be reversibly immobilized on soil particles. Surprisingly, increasing the volume of extraction solution did not accelerate extraction of “total glomalin”, but instead, substantially increased the amount extracted. Multiple autoclave cycles nevertheless denature glomalin, which may not be as heat-resistant as thought. Repeated 1-h autoclaving of supernatant diminished both its Bradford-reactive substances (7.3% h?1) and immunoreactive protein (22% during the first hour and 9.5% h?1 of the remainder thereafter), although a large initial volume of extractant could reduce the loss of immunoreactive protein. Proteins and polyphenols that survive the extraction process are measured non-specifically by the Bradford assay. When we added other glycoproteins to dry soils, we recovered a maximum 34% bovine serum albumin and 22% bovine mucin, primarily in the first two, 1-h extraction cycles. These added proteins may adhere to soil organic matter and thereby be protected from denaturation. In addressing the endpoint of glomalin extraction, we found that the Michaelis–Menten equation closely fits cumulative glomalin per extraction cycle such that its asymptote provides an objective estimate of total extractable glomalin for a given set of extraction conditions. Additionally, the equation provides a curvature parameter that reflects the soil-specific efficiency of an extraction protocol. Although the soils that we investigated with 7.6% or more soil organic matter had the most asymptotic total glomalin, they were extracted the least efficiently.  相似文献   

4.
长期稻草还田对土壤球囊霉素和土壤C、N的影响   总被引:7,自引:0,他引:7  
A long-term experiment was conducted to investigate how long-term fertilization and rice straw incorporation into soil affect soil glomalin, C and N. The combined application of chemical fertilizer and straw resulted in a significant increase in both soil easily extractable glomalin (EEG) and total glomalin (TG) concentrations, as compared with application of only chemical fertilizer or no fertilizer application. The EEG and TG concentrations of the NPKS (nitrogen, phosphorus, and potassium fertilizer application + rice straw return) plot were 4.68% and 5.67% higher than those of the CK (unfertilized control) plot, and 9.87% and 6.23% higher than those of the NPK (nitrogen, phosphorus, and potassium fertilizer applied annually) plot, respectively. Application of only chemical fertilizer did not cause a statistically significant change of soil glomalin compared with no fertilizer application. The changes of soil organic C (SOC) and total N (TN) contents demonstrated a similar trend to soil glomalin in these plots. The SOC and TN contents of NPKS plot were 15.01% and 9.18% higher than those of the CK plot, and 8.85% and 14.76% higher than those of the NPK plot, respectively. Rice straw return also enhanced the contents of microbial biomass C (MBC) and microbial biomass N (MBN) in the NPKS plot by 7.76% for MBC and 31.42% for MBN compared with the CK plot, and 12.66% for MBC and 15.07% for MBN compared with the NPK plots, respectively. Application of only chemical fertilizer, however, increased MBN concentration, but decreased MBC concentration in soil.  相似文献   

5.
Managing soil carbon requires accurate estimates of soil organic carbon (SOC) stocks and its dynamics, at scales able to capture the influence of local factors on the carbon pool. This paper develops a spatially explicit methodology to quantify SOC stocks in two contrasting regions of Southern Spain: Sierra Norte de Sevilla (SN) and Cabo de Gata (CG). Also, it examines the relationship between SOC stocks and local environmental factors. Results showed that mean SOC stocks were 4·3 kg m−2 in SN and 3·0 kg m−2 in CG. Differences in SOC in both sites were not significant, suggesting that factors other than climate have a greater influence on SOC stocks. A correlation matrix revealed that SOC has the highest positive correlation with clay content and soil depth. Based on the land use, the largest SOC stocks were found in grassland soils (4·4 kg m−2 in CG and 5·0 kg m−2 in SN) and extensive crops (3·0 kg m−2 in CG and 5·0 kg m−2 in SN), and the smallest under shrubs (2·8 kg m−2 in CG and 3·2 kg m−2 in SN) and forests soils (4·2 kg m−2 in SN). This SOC distribution is explained by the greatest soil depth under agricultural land uses, a common situation across the Mediterranean, where the deepest soils have been cultivated and natural vegetation mostly remains along the marginal sites. Accordingly, strategies to manage SOC stocks in southern Spain will have to acknowledge its high pedodiversity and long history of land use, refusing the adoption of standard global strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we address total glomalin‐related soil protein (T‐GRSP) as a possible indicator of differences in forest soils related to reactive nitrogen and forest composition. We focused especially on the relationship between T‐GRSP (g kg−1), soil organic carbon (SOC), and reactive nitrogen (Nr) availability among different categories of temperate forests and different horizons. Our study included 105 sampling sites divided into 5 categories, which vary in elevation and tree species composition (coniferous, deciduous, mixed). We detected significantly higher T‐GRSP and SOC in the F+H horizon under conifers. We assume that this observation might be attributed to suppression of decomposition of T‐GRSP and SOC by nature of coniferous litter. The lack of significant differences in T‐GRSP/SOC among the categories and the positive correlations between T‐GRSP and SOC in most of the categories confirmed the strong relationship of T‐GRSP with SOC. We found a significantly higher content of T‐GRSP in the F+H horizon for all studied forest categories. However, the contribution of T‐GRSP to SOC is significantly higher in the A horizon, which might be caused by stabilization of glomalin by mineral fraction, including clay minerals or by the belowground origin of glomalin. We found the increase of SOC with increasing Nr in the A horizon for most categories of forest. T‐GRSP follows this trend in the case of deciduous forests (decid), mixed forest (mixed), and mountain forests (mount). On the other hand, we detected a decrease of T‐GRSP with increasing Nr in the F+H horizon of coniferous forests (conif). Moreover the T‐GRSP/SOC decreases with the increase of Nr in the A horizon of conif, mixed and mount, which points to the higher sensitivity of forest with prevalence of coniferous trees. Our observations have confirmed an ecosystem‐specific relationship between T‐GRSP, SOC and Nr. We concluded that T‐GRSP in combination with T‐GRSP/SOC has the potential to reveal qualitative changes in soil organic matter (SOM) connected with increasing Nr.  相似文献   

7.
Humic substances [humic acid (HA), fulvic acid (FA), and insoluble humin], particulate organic matter (POM), and glomalin comprise the majority (ca 75%) of operationally defined extractable soil organic matter (SOM). The purpose of this work was to compare amounts of carbon (C) and nitrogen (N) in HA, FA, POM, and glomalin pools in six undisturbed soils. POM, glomalin, HA, and FA in POM, and glomalin, HA, and FA in POM-free soil were extracted in the following sequence: (1) POM fraction separation from the soil, (2) glomalin extraction from the POM fraction and POM-free soil, and (3) co-extraction of HA and FA from the POM fraction and POM-free soil. Only trace amounts of HA and FA were present in the POM fraction, while POM-associated glomalin (POM-glomalin) and POM alone contributed 2 and 12%, respectively, of the total C in the soil. Mean combined weights for chemically extracted pools from POM and from POM-free soil were 9.92 g glomalin, 1.12 g HA, and 0.88 g FA kg−1 soil. Total protein and C, N, and H concentrations showed that glomalin and HA were, for the most part, separate pools, although protein was detected in HA extracts. Even though percentage carbon was higher in HA than in glomalin, glomalin was a larger (almost nine times) operationally defined pool of soil organic C. Glomalin was also the largest pool of soil N of all the pools isolated, but all pools combined only contained 31% of the total N in the soil.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) produce a protein, glomalin, quantified operationally in soils as glomalin-related soil protein (GRSP). GRSP concentrations in soil can range as high as several mg g−1 soil, and GRSP is highly positively correlated with aggregate water stability. Given that AMF are obligate biotrophs (i.e. depending on host cells for their C supply), it is difficult to explain why apparently large amounts of glomalin would be produced and secreted actively into the soil, since the carbon could not be directly recaptured by the mycelium (and benefits to the AMF via increased soil structure would be diffuse and indirect). This apparent contradiction could be resolved by learning more about the pathway of delivery of glomalin into soil; namely, does this occur via secretion, or is glomalin tightly bound in the fungal walls and only released after hyphae are being degraded by the soil microbial community? In order to address this question, we grew the AMF Glomus intraradices in in vitro cultures and studied the release of glomalin from the mycelium and the accumulation of glomalin in the culture medium. Numerous protein-solubilizing treatments to release glomalin from the fungal mycelium were unsuccessful (including detergents, acid, base, solvents, and chaotropic agents), and the degree of harshness required to release the compound (autoclaving, enzymatic digestion) is consistent with the hypothesis that glomalin is tightly bound in hyphal and spore walls. Further, about 80% of glomalin (by weight) produced by the fungus was contained in hyphae and spores compared to that released into the culture medium, strongly suggesting that glomalin arrives mainly in soil via release from hyphae, and not primarily through secretion. These results point research on functions of glomalin and GRSP in a new direction, focusing on the contributions this protein makes to the living mycelium, rather than its role once it is released into the soil.  相似文献   

9.
土地利用方式对球囊霉素土层分布的影响   总被引:6,自引:1,他引:5  
球囊霉素对维持土壤有机碳平衡和土壤团聚体稳定性具有明显作用,但不同土地利用方式下土壤球囊霉素的土层分布模式及其影响因素尚不清楚.本研究选取农田、人工草地、果园和撂荒地4种不同土地利用方式,分别采集0~10 cm、10~20 cm、20~30 cm和30~40 cm 4个土层土样,通过测定土壤球囊霉素.pH、速效磷、有机碳和蛋白酶活性,研究不同土地利用方式下土壤球囊霉素土层分布的模式及影响因素.结果表明,土壤球囊霉素平均含量为1.41~3.18 mg·g-1,占土壤有机碳的6.98%~31.34%,是土壤中的一个重要碳库.土壤球囊霉素在不同土地利用方式和土层剖面之间表现出显著差异(P<0.01),具有明显的垂直分布特征,除撂荒地外,其随土层深度的增加表现出降低趋势.土壤球囊霉素分别与土壤速效磷、蛋白酶呈显著正相关(P<0.01).土壤速效磷在很大程度上决定土壤球囊霉素的含量和分布.土壤球囊霉素含量和土壤蛋白酶活性之间为间接相关关系,该关系有待于进一步研究.建议把球囊霉素作为研究丛枝菌根真菌生长状况和土壤生态系统波动的一个重要指标.  相似文献   

10.
To understand the ecological significance of arbuscular mycorrhizal (AM) associations in semi-arid and arid lands, the temporal and spatial dynamics of AM fungi and glomalin were surveyed in Mu Us sandland, northwest China. Soil samples in the rhizosphere of Artemisia ordosica Krasch. were collected in May, July and October 2007, respectively. Arbuscular, hyphal and total root infection and spore density of AM fungi peaked in summer. The mean contents of total Bradford-reactive soil proteins (T-BRSPs, TG) and easily extractable Bradford-reactive soil proteins (EE-BRSPs, EEG) reached maximal values in spring. Spore density and two BRSPs fractions were the highest in the 0-10 cm soil layer, but the ratios of two BRSPs fractions to soil organic carbon (SOC) were the highest in the 30-50 cm soil layer. Hyphal infection was negatively correlated with soil enzymatic activity (soil urease and acid phosphatase) (P < 0.05). Arbuscular infection was negatively correlated with soil acid phosphatase (P < 0.01). Spore density was positively correlated with edaphic factors (soil available N, Olsen P, and SOC) and soil enzymatic activity (soil acid and alkaline phosphatase) (P < 0.01). Two BRSPs fractions were positively correlated with edaphic factors (soil available N and SOC) and soil enzymatic activity (soil urease, acid and alkaline phosphatase) (P < 0.01). TG was positively correlated with soil Olsen P (P < 0.05). We concluded that the dynamics of AM fungi and glomalin have highly temporal and depth patterns, and influenced by nutrient availability and enzymatic activity in Mu Us sandland, and suggest that glomalin are useful indicators for evaluating soil quality and function of desert ecosystem on the basis of its relationship to AM fungal community, soil nutrient dynamics and carbon cycle.  相似文献   

11.
Organic carbon stocks and soil erodibility in Canary Islands Andosols   总被引:3,自引:0,他引:3  
Soil organic carbon (SOC) plays a key role in the structural stability of soils and in their resistance against erosion. However, and as far as andic soils are concerned, these mechanisms and processes, as well as the influence of the different types of SOC on aggregate stability, are not fully understood. The targets of this paper are: (i) to determine the content and forms of SOC in Andosols under evergreen forest vegetation [laurel (Laurus) and heather (Erica) forest] and (ii) to find out the role of soil organic matter (SOM) in the aggregate stability and in the resistance of Andosols to water erosion. Soil samples have been collected in 80 sites in a 40 km2 area under udic soil moisture regime. In them, fulvic and humic acids, Walkley–Black SOC, pyrophosphate-extractable SOC, Fe and Al, potassium sulphate extractable SOC, dissolved SOC, acid oxalate-extractable Fe, Al and Si, USLE K-factor and aggregate stability have been determined. The Andosols over volcanic ash are Aluandic Andosols (non-allophanic Andosols), whereas over basaltic lava flows are Silandic Andosols (allophanic Andosols). The surface (0–30 cm) samples analyzed contain 9.5–30 kg C m− 2 being significantly higher in allophanic Andosols (p < 0.5). Organic carbon adsorbed onto the mineral fraction (extractable pyrophosphate, Cp) accounts for 35–55% of the total SOC. All samples show a high stability to slaking and raindrop impact, being the first one highly correlated (r = 0.6) with pyrophosphate extractable C (Cp), Fe (Fep), and Al (Alp) in allophanic Andosols, unlike non-allophanic ones. The stability to raindrop impact correlates with pyrophosphate extractable C (Cp) and Fe (Fep) in both types of soils (r = 0.3–0.6, p < 0.05). These findings suggest that the high stability to both slaking and water-drop impact is due to the occurrence of allophane–Fe–OC complexes, rather than to the total OC, and the active Fe and Al forms, generated by the weathering of volcanic materials, constitute an essential constituent responsible for C sequestration and resistance to degradation in these soils.  相似文献   

12.
Spatial inaccessibility of soil organic carbon (SOC) for microbial decay within soil aggregates is an important stabilization mechanism. However, little is known about the stability of aggregates in semiarid grasslands and their sensitivity to intensive grazing. In this study, a combined approach using soil chemical and physical analytical methods was applied to investigate the effect of grazing and grazing exclusion on the amount and stability of soil aggregates and the associated physical protection of SOC. Topsoils from continuously grazed (CG) and ungrazed sites where grazing was excluded from 1979 onwards (UG79) were sampled for two steppe types in Inner Mongolia, northern China. All samples were analysed for basic soil properties and separated into free and aggregate‐occluded light fractions (fLF, oLF) and mineral‐associated fractions. Tensile strength of soil aggregates was measured by crushing tests. Undisturbed as well as artificially compacted samples, where aggregates were destroyed mechanically by compression, were incubated and the mineralization of SOC was measured. For undisturbed samples, the cumulative release of CO2‐C was greater for CG compared with UG79 for both steppe types. A considerably greater amount of oLF was found in UG79 than in CG soils, but the stabilities of 10–20‐mm aggregates were less for ungrazed sites. Compacted samples showed only a slightly larger carbon release with CG but a considerably enhanced mineralization with UG79. We assume that the continuous trampling of grazing animals together with a smaller input of organic matter leads to the formation of mechanically compacted stable ‘clods’, which do not provide an effective physical protection for SOC in the grazed plots. In UG79 sites, a greater input of organic matter acting as binding agents in combination with an exclusion of animal trampling enhances the formation of soil aggregates. Thus, grazing exclusion promotes the physical protection of SOC by increasing soil aggregation and is hence a management option to enhance the C sequestration potential of degraded steppe soils.  相似文献   

13.
Climate, soil physical–chemical characteristics, land management, and carbon (C) input from crop residues greatly affect soil organic carbon (SOC) sequestration. According to the concept of SOC saturation, the ability of SOC to increase with C input decreases as SOC increases and approaches a SOC saturation level. In a 12‐year experiment, six semi‐arid cropping systems characterized by different rates of C input to soil were compared for ability to sequester SOC, SOC saturation level, and the time necessary to reach the SOC saturation level. SOC stocks, soil aggregate sizes, and C inputs were measured in durum wheat monocropping with (Ws) and without (W) return of aboveground residue to the soil and in the following cropping systems without return of aboveground residue to soil: durum wheat/fallow (Wfall), durum wheat/berseem clover, durum wheat/barley/faba bean, and durum wheat/Hedysarum coronarium. The C sequestration rate and SOC content were lowest in Wfall plots but did not differ among the other cropping systems. The C sequestration rate ranged from 0.47 Mg C ha−1 y−1 in Ws plots to 0.66 Mg C ha−1 y−1 in W plots but was negative (−0.06 Mg C ha−1 y−1) in Wfall plots. Increases in SOC were related to C input up to a SOC saturation value; over this value, further C inputs did not lead to SOC increase. Across all cropping systems, the C saturation value for the experimental soil was 57.7 Mg ha−1, which was reached with a cumulative C input of 15 Mg ha−1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Among factors controlling decomposition and retention of residue C in soil, effect of initial soil organic C (SOC) concentration remains unclear. We evaluated, under controlled conditions, short-term retention of corn residue C and total soil CO2 production in C-rich topsoil and C-poor subsoil samples of heavy clay. Topsoil (0–20 cm deep, 31.3 g SOC kg?1 soil) and subsoil (30–70 cm deep, 4.5 g SOC kg?1 soil) were mixed separately with 13C–15N-labeled corn (Zea mays L.) residue at rates of 0 to 40 g residue C kg?1 soil and incubated for 51 days. We measured soil CO2–C production and the retention of residue C in the whole soil and the fine particle-size fraction (<50 μm). Cumulative C mineralization was always greater in topsoil than subsoil. Whole-soil residue C retention was similar in topsoil and subsoil at rates up to 20 g residue C kg?1. There was more residue C retained in the fine fraction of topsoil than subsoil at low residue input levels (2.5 and 5 g residue C kg?1), but the trend was reversed with high residue inputs (20 and 40 g residue C kg?1). Initial SOC concentration affected residue C retention in the fine fraction but not in the whole soil. At low residue input levels, greater microbial activity in topsoil resulted in greater residue fragmentation and more residue C retained in the fine fraction, compared to the subsoil. At high residue input levels, less residue C accumulated in the fine fraction of topsoil than subsoil likely due to greater C saturation in the topsoil. We conclude that SOC-poor soils receiving high C inputs have greater potential to accumulate C in stable forms than SOC-rich soils.  相似文献   

15.
This column study evaluated the effects of irrigation with two water qualities (WW and FW) to produce bioenergy sorghum on SOC balance, nutrients availability and salt constituents in two soils (TX and NM) amended with gypsum & elemental sulfur (S) and un-amended. Study results indicated that SOC concentration was higher in freshwater irrigated columns (7.41 g kg?1) than wastewater irrigated soils (7.32 g kg?1) across growth year-soil type-amendments-depth. Soils amended with gypsum and sulfur registered significantly higher value of 7.52 and 7.41 g kg?1 compared to 7.30 and 7.23 g kg?1 in non-amended soils under fresh and wastewater irrigation, respectively. Lower SOC in WW irrigated columns could be due to the combined effects of increased salinity and priming effects. Although SOC content initially increased in gypsum and S amended soils to about 10g kg?1, at the end of the study SOC in all treatments decreased to levels significantly below the pre-study. WW irrigation added 2.00, 1.10 and 4.40 times the N, P and K added by fertilizers and was able to meet 65%, 87%, and 210% of bioenergy sorghum uptake of respective nutrients. Sulfates and chlorides of sodium and calcium were dominant salts, which significantly affected SOC and nutrients.

Abbreviations: FW: freshwater; WW: treated wastewater; G + S: gypsum and elemental sulfur; NA: no amendment, TX: Texas soil and NM: New Mexico soil  相似文献   


16.
Soil erosion has serious off-site impacts caused by increased mobilization of sediment and delivery to water bodies causing siltation and pollution. To evaluate factors influencing soil erodibility at a proposed dam site, 21 soil samples collected were characterized. The soils were analyzed for soil organic carbon (SOC), exchangeable bases, exchangeable acidity, pH, electrical conductivities, mean weight diameter and soil particles’ size distribution. Cation exchange capacity, exchangeable sodium percentage, sodium adsorption ratio, dispersion ratio (DR), clay flocculation index (CFI), clay dispersion ratio (CDR) and Ca:Mg ratio were then calculated. Soil erodibility (K-factor) estimates were determined using SOC content and surface soil properties. Soil loss rates by splashing were determined under rainfall simulations at 360?mmh?1 rainfall intensity. Soil loss was correlated to the measured chemical and physical soil properties. There were variations in soil form properties and erodibility indices showing influence on soil loss. The average soil erodibility and SOC values were 0.0734?t?MJ?1?mm?1 and 0.81%, respectively. SOC decreased with depth and soil loss increased with a decrease in SOC content. SOC significantly influenced soil loss, CDR, CFI and DR (P??1. Addition of organic matter stabilize the soils against erosion.  相似文献   

17.
Although current assessments of agricultural management practices on soil organic C (SOC) dynamics are usually conducted without any explicit consideration of limits to soil C storage, it has been hypothesized that the SOC pool has an upper, or saturation limit with respect to C input levels at steady state. Agricultural management practices that increase C input levels over time produce a new equilibrium soil C content. However, multiple C input level treatments that produce no increase in SOC stocks at equilibrium show that soils have become saturated with respect to C inputs. SOC storage of added C input is a function of how far a soil is from saturation level (saturation deficit) as well as C input level. We tested experimentally if C saturation deficit and varying C input levels influenced soil C stabilization of added 13C in soils varying in SOC content and physiochemical characteristics. We incubated for 2.5 years soil samples from seven agricultural sites that were closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation limit. At the initiation of the incubations, samples received low or high C input levels of 13C-labeled wheat straw. We also tested the effect of Ca addition and residue quality on a subset of these soils. We hypothesized that the proportion of C stabilized would be greater in samples with larger C saturation deficits (i.e., the C- versus A-horizon samples) and that the relative stabilization efficiency (i.e., ΔSOC/ΔC input) would decrease as C input level increased. We found that C saturation deficit influenced the stabilization of added residue at six out of the seven sites and C addition level affected the stabilization of added residue in four sites, corroborating both hypotheses. Increasing Ca availability or decreasing residue quality had no effect on the stabilization of added residue. The amount of new C stabilized was significantly related to C saturation deficit, supporting the hypothesis that C saturation influenced C stabilization at all our sites. Our results suggest that soils with low C contents and degraded lands may have the greatest potential and efficiency to store added C because they are further from their saturation level.  相似文献   

18.
Mass distributions of different soil organic carbon (SOC) fractions are influenced by land use and management. Concentrations of C and N in light- and heavy fractions of bulk soils and aggregates in 0–20 cm were determined to evaluate the role of aggregation in SOC sequestration under conventional tillage (CT), no-till (NT), and forest treatments. Light- and heavy fractions of SOC were separated using 1.85 g mL−1 sodium polytungstate solution. Soils under forest and NT preserved, respectively, 167% and 94% more light fraction than those under CT. The mass of light fraction decreased with an increase in soil depth, but significantly increased with an increase in aggregate size. C concentrations of light fraction in all aggregate classes were significantly higher under NT and forest than under CT. C concentrations in heavy fraction averaged 20, 10, and 8 g kg−1 under forest, NT, and CT, respectively. Of the total SOC pool, heavy fraction C accounted for 76% in CT soils and 63% in forest and NT soils. These data suggest that there is a greater protection of SOC by aggregates in the light fraction of minimally disturbed soils than that of disturbed soil, and the SOC loss following conversion from forest to agriculture is attributed to reduction in C concentrations in both heavy and light fractions. In contrast, the SOC gain upon conversion from CT to NT is primarily attributed to an increase in C concentration in the light fraction.  相似文献   

19.
南方红壤区林下侵蚀劣地近地表植被覆盖度低,导致林下水土流失严重。接种AM真菌能够促进植被生长,改善土壤肥力,进而可以减少土壤侵蚀。以马尾松退化林地为对象,设置引种灌木(S)和引种灌木并接菌(S+AMF)2个处理,研究AM真菌接种对林下侵蚀劣地土壤碳氮及球囊霉素的影响。结果表明:接菌近1年后,菌根侵染率(MCR)在S+AMF处理的坡上部和全坡位上显著S处理(P0.05);SOC、TN、SMBC、EE-GRSP和T-GRSP含量在S+AMF处理的坡下部均显著坡中部(P0.05),而在S处理下各坡位差异均不显著(P0.05);AN、SMBN和pH在各处理不同坡位差异均不显著(P0.05);与未接菌S处理相比,接菌(S+AMF)处理对MCR、SOC、TN、SMBC、SMBN、EE-GRSP、T-GRSP、AN和pH的平均贡献率分别为43.83%±15.10%,5.33%±1.57%,14.69%±7.92%,27.88%±4.89%,39.25%±4.82%,6.90%±2.56%,12.47%±7.95%,-13.18%±6.63%和-0.71%±2.74%。简单相关和逐步回归分析表明,MCR、SOC、TN、SMBC、SMBN和球囊霉素之间呈显著正相关(P0.05),TN、SMBC和MCR解释了SOC 80.5%的变异,SOC、SMBC、SMBN和MCR共同解释了TN 90.4%的变异,而TN、SMBN、pH和MCR解释了AN 48.9%的变异,说明接菌提高了紫穗槐根系的菌根侵染率,从而间接促进了林下土壤碳氮及球囊霉素的增加,为有效改善林下侵蚀劣地土壤质量和促进植被恢复有重要的意义。  相似文献   

20.
Forests represent an important resource for mitigating the greenhouse effect, but which is the contributions of the different forest types in sequestering and keeping soil C for a longer time is still uncertain, particularly in the Mediterranean area. The aim of this work is to quantify the soil organic C (SOC) stock in the 0–30 and 0–100?cm depths of mineral soil, according to the main forest types—conifers, broadleaf and evergreen broadleaf—and the different climatic zones of Spain, using a database comprising records of 1,974 pedons. Conifers and broadleaf forests show a trend in SOC stock distribution, with the stocks decreasing with increasing Mediterranean conditions. On average, in the 0–30?cm depth, the soils under broadleaf store the highest amount of SOC (5.9?±?0.1?kg?m?2), followed by conifers (5.6?±?0.1?kg?m?2) and evergreen broadleaf soils with an amount always lower (3.4?±?0.2?kg?m?2). Climate and forest cover are the principal factors in determining the amount of SOC stored in Spanish forests. The significantly higher amount of SOC found in conifers and broadleaf forests than the evergreen broadleaf forests leads us to hypothesize a decrease in the SOC if climate change will increase drought periods with a consequent expansion of this latter forest type. Correlations between the SOC stocks under the different forest types, climate and soil features support the major role of climate and vegetation in controlling SOC sequestration in the Mediterranean area, while the effect of texture is less pronounced. Assigning a precise SOC stock to the different forest types, according to each climatic zone, would notably help to obtain an accurate SOC estimate at national level and for future assessments of the status of this large C reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号