首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The field experiment on effect of primary treated biomethanated spentwash (PBSW) on physiochemical and biological properties of soil and yield of sunflower (Helianthus annuus L.) on sodic soil was conducted at the Postgraduate Farm, Mahatma Phule Agricultural University, Ahmednagar, India, during 2008–9. The experiment was laid out in a randomized block design (RBD) with nine treatments [control, varying doses of PBSW (30, 60, 90, 120, 150, and 180 m3 ha?1), farmyard manure (FYM) + recommended dose of fertilizer (RDF), and FYM + gypsum at 50% gypsum requirement (GR) + RDF] with three replications. The FYM dose was 5 Mg ha?1. The experimental soil was sodic calcareous, being of the Sawargaon series of isohyperthermic family of Vertic haplustepts with high exchangeable sodium percentage (ESP), low available nitrogen (N) and phosphorus (P), and high available potassium (K). The results revealed that the physical properties [bulk density, mean weight diameter (MWD) of water-stable aggregates, and hydraulic conductivity] of soil were improved in both layers of sodic soil (0–30 and 30–60 cm) as a result of the addition of increased doses of PBSW. The significant reduction in pH, calcium carbonate (CaCO3), ESP and increase in organic carbon, cation exchange capacity (CEC) and electrical conductivity (EC) were observed in both soil layers as a result of the addition of PBSW at 180 m3 ha?1. The changes in chemical properties were also seen in the treatment of FYM + GR + RDF, but it was at par with lower doses of PBSW (30 to 90 m3 ha?1). The microbial populations [bacteria, fungi, actinomycetes, azotobacter, and phosphate-solubilizing bacteria] increased with an increase in the levels of application of PBSW. However, it was maximum in FYM + GR + RDF treatment, and it showed an overall increase up to the flowering stage and thereafter reduced at harvest. The soil basal respiration as mg carbon dioxide (CO2) increased with the increase in levels of PBSW application but it was the greatest in the FYM + gypsum + RDF treatment. Among the PBSW treatments, the greatest activities of soil enzymes (urease, dehydrogenase, and acid phosphatase) under the treatment of 180 m3 ha?1 PBSW were observed at the flowering stage. The available N, P, and K after harvest of sunflower crop were significantly greater in the PBSW treatment applied at 180 m3 ha?1; however, N, P, and K uptake and yield of sunflower were significantly greater in FYM + RDF + gypsum treatment followed by FYM + RDF and 180 m3 ha?1 of PBSW.  相似文献   

2.
The research aimed to study the effect of presown application of primary biomethanated spentwash (PBSW) on soil properties, nutrient availability, uptake and yield of soybean–wheat sequence on Inceptisol. The field experiment with randomised block design was initiated during 2007–8 and present observation was recorded during 2009–10 and 2010–11.The five treatments were, recommended dose (RD) of NPK (T1), 100% RD of N through PBSW without (T2) and with P chemical fertilizer (T3), 50 and 25% RD of N through PBSW + remaining N and P through chemical fertilizers (T4,T5), respectively. The results revealed that the soil physical properties and microbial populations were improved in T2 and T3. The lowest soil pH and pHs were observed in T2. The soil electrical conductivity, organic carbon, exchangeable sodium percentage and sodium adsorption ratio of soil extracts and available K were increased with the increase in PBSW as compared to RD-NPK. The soil available N and P were decreased as PBSW increased at all the soil depths. The greatest yields and total N,P,K uptake of soybean and wheat were observed in T5.  相似文献   

3.
The experiment on the effect of primary biomethanated spentwash (PBSW) on soil properties, nutrient uptake and yield of wheat on sodic soil was carried out at a research farm of Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra state, India, during the post-monsoon season. The experimental soil was sodic calcareous having Sawargaon series of isohyperthermic family of Vertic Haplustepts. The experiment was laid out in a randomized block design with nine treatments and three replications. The treatments consisted of varying doses of PBSW (100, 200, 300, 400 and 500 m3 ha?1), absolute control, farmyard manure (FYM) 5 t ha?1 + RDF-AST (recommended dose of fertilizer as per soil test), FYM 5 t ha?1 + 50% GR (gypsum requirement) + RDF-AST and FYM 5 t ha?1 + 100% GR + RDF-AST. The results revealed that the physical properties, namely bulk density and hydraulic conductivity, were improved in sodic soil due to the application of increased doses of PBSW. A significant reduction in pH, calcium carbonate and exchangeable sodium percentage (ESP) and an increase in organic carbon, cation-exchange capacity (CEC) and electrical conductivity (EC) were observed in the soil, due to the addition of PBSW. The available soil nitrogen (N), phosphorus (P), potassium (K) and micronutrient iron, manganese, copper and zinc (Fe, Mn, Cu and Zn) content after the harvest of wheat was the highest in the 500 m3 ha?1 treatment compared with all the other treatments. The exchangeable calcium (Ca2+), magnesium (Mg2+) increased significantly and exchangeable Sodium (Na+) reduced significantly with increased doses of PBSW. The saturation paste extract analysis also showed the same trend. A significant increase in the EC of the saturation paste of extract of the soil was observed in all PBSW treatments and it was the highest (4.75 dS m?1) in PBSW application @ 500 m3 ha?1. The application of PBSW @ 500, 400, 300 and 200 m3 ha?1 resembled the treatments of FYM + gypsum @ 100 GR + RDF-AST, FYM + gypsum @ 50 GR + RDF-AST and FYM + RDF-AST, respectively, regarding the biological properties of sodic soil. The PBSW application @ 500 m3 ha?1 had recorded the highest grain (47.33 q ha?1) and straw (72.72 q ha?1) yield and the maximum total uptake of N, P, K, Fe, Mn, Cu, and Zn by wheat, which was at par with the treatment of FYM (5 t ha?1) + gypsum @ 100% GR + RDF-AST.  相似文献   

4.
The effect of soil ESP on soil moisture retention and volume change of montmorillonitic type clay soil (vertisol) in the 10–58 ESP range showed increase in moisture retention with soil ESP in 10-bar suction range. Soil moisture suction (h) – water content (θ)relationship of the form h = ho(θ/θs)?b, where ‘ho’is air entry suction and ‘b’ is a constant, was obtained at all ESP levels. Soil bulk density at low moisture contents increased considerably with soil ESP due to dispersion and decreased linearly with increase in soil water content because of mineral swelling. The soil water diffusivity and conductivity in the 0.15–0.35 g/g moisture content range followed an exponential increase with soil moisture content recording a sharp decrease at soil ESP 10. The effect of high exchangeable sodium, however, was mitigated, to a large extent, by the increase in electrolyte concentration of permeating water to 5 mmhos/cm or greater. Decrease in water transmission parameters ascribed to exchangeable Na+ in the drier moisture regime was accounted for by dispersion of soil particles at low ESP. Whereas adsorbed Na+ – induced swelling was regarded as the major factor modifying soil water relations at relatively high ESP under wet moisture regime. Soil ESP of 10 may be treated as critical for swelling clay soil from soil and water – management view point.  相似文献   

5.
Burying a straw layer and applying flue gas desulphurization(FGD)gypsum are effective practices to ameliorate soil salinization or alkalization and to increase crop yield;however,little information exists on the effects of such integration in saline-alkali soils.A soil column experiment was conducted to investigate the effects of a straw layer plus FGD gypsum on soil salinity and alkalinity.We placed a straw layer(5 cm thick)at a depth of 30 cm and mixed FGD gypsum into the 0–20 cm soil layer at application rates of 7.5,15.0,22.5,and 30.0 t ha^-1,with no straw layer and FGD gypsum as a control(CK).The soil water content in the 0–30 cm soil layer was significantly higher(>7.8%)in the treated soil profiles after infiltration than in the CK,but decreased after evaporation.The electrical conductivity(EC)of the 10–30 cm soil layer was 230.2%and 104.9%higher in the treated soil profiles than in the CK after infiltration and evaporation,respectively,and increased with increasing rates of FGD gypsum application,with Ca^2+and SO4^2-being the main dissolved salts.Compared to those in the CK,the concentrations of Na^+,Cl^-,and HCO3-decreased in the treated soil profiles at depths above 55 cm,but the other soluble ions increased,after infiltration.A similar trend occurred after evaporation for all soluble ions except for HCO3-.The p H and exchangeable sodium percentage in the treated soil profiles were significantly lower than those in the CK over the entire profile,and decreased with increasing FGD gypsum application rates.Therefore,the incorporation of a straw layer plus FGD gypsum can reduce salinity and alkalinity,but the quantity of FGD gypsum should be controlled in saline-alkali soils.  相似文献   

6.
为了探讨不同生长年限的人工刺槐(Robinnia pseudoacacia)林对土壤中氮素组成与微生物活性的影响及机理,本文采用"时空互代"法进行野外选点调查和采样,对典型黄土丘陵区陕西省安塞纸坊沟小流域不同林龄(10 a、15 a、30 a、38 a)人工刺槐林和撂荒地3个土层(0~10 cm、10~30 cm和30~60 cm)中的全氮、铵态氮、硝态氮、有机氮、微生物生物量碳和磷、基础呼吸及基本理化性质进行了研究。结果表明:人工刺槐林地土壤微生物生物量碳、磷含量和微生物熵都显著高于撂荒地(P<0.05)。随着人工刺槐林生长年限的增加,各层土壤铵态氮、硝态氮和有机氮含量均逐渐增加,其中有机氮的增加最显著;土壤微生物生物量碳、磷含量显著增加;微生物熵显著增大而呼吸熵显著减小;土壤有机碳、速效磷含量总体上显著增加(P<0.05);容重和碳氮比则呈下降趋势。随着土层深度的增加,氮素、有机碳、速效磷和微生物生物量碳、磷含量显著减小(P<0.05);容重和pH显著增加。土壤微生物生物量碳、磷和呼吸熵均与有机氮、全氮、硝态氮显著正相关(P<0.05)。分析发现,刺槐的生长促使土壤中微生物可利用碳增加,提高了碳的利用率,使土壤微生物量碳、磷含量增加;微生物活性的提高反过来促进了土壤氮素含量的提高,土壤中有机氮含量显著增加。与10 a生刺槐林相比,30 a生林地土壤表层的全氮含量明显增加,氮素肥力由7级(0.40 g.kg 1)上升为5级(0.87 g.kg 1)水平。  相似文献   

7.
为了确定红壤施用石灰后钙、镁移动和土壤酸化速率,监测了耕层(10~20cm)和底土(20~60cm)的pH和交换性Ca2+、Mg2+、Al2+的长期变化。结果表明,耕层交换性Ca2+在施用石灰后的一年半时间达到最高值,此后随着时间的推移而急剧减少;而底土的交换性Ca2+随石灰用量的增加和施用石灰后时间的推移而增加。镁在土壤剖面中的移动比钙快;施用石灰后耕层和底土酸度的降低与交换性Ca2+的增加基本同步。在本试验条件下,不论施用石灰与否都存在着复酸化过程,但施用石灰后复酸化作用更强。  相似文献   

8.
 The influence of flooding and cellulose addition on the fixation of NH4 + in different soil layers of two paddy soils from China (an entisol and an ultisol) was investigated. In both soils the content of total reducing substances (TRS) sharply increased during the first days after flooding and was highest in the anoxic layers. This increase, which was more pronounced in the entisol with the higher total C content, was accompanied by an increase in the concentration of non-exchangeable NH4 + in both soils. The increase in mineralization after flooding, resulting in higher concentrations of exchangeable NH4 +, favoured the fixation of NH4 +. Although the application of cellulose resulted in higher TRS contents, the fixation of NH4 + ions decreased, which may have been the result of microbiological N immobilization. Received: 29 April 1998  相似文献   

9.
Woody species within pastures and savannas are often associated with ‘resource islands’ characterized by higher fertility under canopies trees. The aims of this study were to evaluate (1) the effects of Prosopis juliflora on some soil physicochemical properties and (2) the impacts of Prosopis invasion on soil salinity. For soil physicochemical analysis, a total of 104 soil samples from Teru and Yalo Districts were collected. The soil samples were collected from soil depths of 0–15 cm and 15–30 cm in Prosopis invaded and non-invaded open grazing lands. Invasion of Prosopis had significantly affected soil pH, exchangeable Na+, water soluble Ca2+ + Mg2+, water soluble Na+, and exchangeable sodium percentage in Teru and Yalo Districts (p < 0.05). The invasion of Prosopis significantly increased soil pH (1.5%), but decreased exchangeable Na+ (24.2%), exchangeable sodium percentage (21.6%), and water soluble Ca2+ + Mg2+ (39.9%) than non-invaded lands. Clay content of Prosopis invaded lands was higher by 19% than non-invaded lands. However, sand content of soil was higher under non-invaded lands by 5.6% than Prosopis invaded lands. Most results indicated that invasion of Prosopis had positive effects on physicochemical properties and thus conducive for cereal crops and forages.  相似文献   

10.
为探究三峡库区2种土地利用方式下土壤交换性盐基离子及土壤碳氮含量对氮添加的响应,以湖北省秭归县的林地和果园土壤为研究对象,进行室内土柱淋溶模拟试验,研究4种不同氮添加量(0,50,120,200 kg/(hm2·a))下,土壤中交换性Ca2+、Mg2+、Na+、K+以及NO3--N、DOC的变化。结果表明:随着氮添加量的增加,林地土壤中的交换性盐基离子淋失量显著增加(p<0.05),而果园土壤中的交换性盐基离子淋失量无显著变化,且林地土壤中交换性盐基离子淋失总量与各盐基离子淋失量均高于果园土壤;经N1、N2、N3处理后,与对照组(N0)相比,林地土壤中的交换性盐基离子淋失总量分别增加1.78%,4.45%,8.49%,且NO3--N淋失量分别增加89.21%,77.73%,157.25%,说明氮添加通过加剧土壤中NO3--N的淋失带走土壤中交...  相似文献   

11.
The Burdur Lake is located in the southwest of Turkey, and its area has decreased by 40% from 211 km2 in 1975 to 126 km2 in 2019. In this study, we investigated how the soil has changed in the lacustrine material. Three soil profiles were sampled from the former lakebed (chronosequence profiles: P1, 2007; P2, 1994; and P3, 1975), and three soil profiles under different land use types (biosequence profiles: P4, native forest vegetation; P5, agriculture; and P6, lakebed) were sampled. The chronosequence and biosequence soil profiles represented various distances from the Burdur Lake and showed different stages of lacustrine evolution. Soil electrical conductivity (EC; 18.1 to 0.4 dS m-1), exchangeable Na+ (34.7 to 1.4 cmol kg-1) and K+ (0.61 to 0.56 cmol kg-1), and water-soluble Cl- (70.3 to 2.1 cmol L-1) and SO42- (275.9 to 25.0 cmol L-1) decreased with increasing distance from the Burdur Lake, whereas the A horizon thickness (10 to 48 cm), structure formation (0 to 48 cm), gleization-oxidation depth (0 to 79 cm), and montmorillonite and organic matter (OM; 25.9 to 46.0 g kg-1) contents increased in the chronosequence soil profiles. The formation of P3 in the chronosequence and P5 in the biosequence soil profiles increased due to longer exposure to pedogenic processes (time, land use, vegetation, etc.). Changes in EC, exchangeable cation (Na+ and K+) and water-soluble anion (Cl- and SO42-) concentrations of the salt-enriched horizon, OM, gleization-oxidation depth, A horizon thickness, and structure formation of the chronosequence and biosequence soil profiles (especially the topsoil horizon) were highly related to the distance from the Burdur Lake, time, and land use.  相似文献   

12.
Understanding of tillage effects on soil chemical properties and cations in soil solution dynamics is essential for making appropriate land-management decisions. Measurements were made after more than 25 years of different tillage treatments: conventional tillage (CT) and conservation tillage, which includes no-till (NT) and minimum tillage (MT). pH and bulk density did not show important changes but exchangeable cations and cations in soil solution were affected by depth and different tillage. The highest concentration of exchangeable Ca2+ and Mg2+ was found in NT, decreased in MT and the lowest concentration was found in CT (mean values were 26.0, 24.4 and 23.3 cmolc kg?1 for exchangeable Ca2+ and 4.2, 3.7 and 3.3 cmolc kg?1 for exchangeable Mg2+ in NT, MT and CT, respectively). In addition, the highest concentration of exchangeable Na+ was found in NT, decreased in CT and the lowest concentration was found in MT. However, the highest concentration of exchangeable K+ was found in MT. A significant depth effect was observed for cations in soil solution: Na+ increased with depth whereas K+ and Ca2+ decreased with depth. This study aims to demonstrate the effect of tillage on the distribution and concentration of certain chemical soil properties.  相似文献   

13.
单宁酸对不同pH茶园土壤中活性铝形态分布的影响   总被引:4,自引:0,他引:4  
采集云南省普洱市和江西省南昌县两地典型的茶园土壤,通过添加HCl和Ca(OH)2调节土壤pH,研究不同pH(3.0、3.5、4.0、4.5)茶园土壤添加0.4 mmol·kg 1、2.0 mmol·kg 1、4.0 mmol·kg 1、8.0 mmol·kg 1、12.0 mmol·kg 1单宁酸后,活性铝形态交换态铝(Al3+)、单聚体羟基铝[Al(OH)2+、Al(OH)+2]、酸溶无机铝[Al(OH)03]和腐殖酸铝[Al-HA]的分布特征。结果表明:单宁酸添加量为0~0.4 mmol·kg 1和0~2.0 mmol·kg 1时,江西南昌和云南普洱茶园土壤中交换态铝随土壤pH的增加呈明显下降趋势,而羟基态铝、酸溶无机铝和腐殖酸铝呈逐渐上升趋势;当单宁酸浓度增至2.0 mmol·kg 1以上时,随土壤pH的增加,单宁酸对活性铝释放的抑制作用增强,各形态活性铝含量都较低,且不同pH处理土壤间的差异不显著。0~20 cm土层土壤与20~40 cm土层土壤变化规律大致相似,总体上看,下层土壤活性铝总量高于上层。云南普洱茶园土壤活性铝总量明显高于江西南昌的茶园土壤。相关分析表明,0~20 cm土层土壤中,pH与羟基态铝、腐殖酸铝、土壤酸碱缓冲容量(pHBC)呈正相关(r=0.796,P0.01;r=0.960,P0.01;r=0.852,P0.01);pHBC与交换态铝、羟基态铝呈负相关(r=0.904,P0.01;r=0.645,P0.05),而与腐殖酸铝呈正相关(r=0.795,P0.01)。同时,单宁酸加入浓度为0~0.4 mmol·kg 1时,土壤pH明显上升,之后随着单宁酸加入浓度的增加土壤pH持续下降,土壤pH(YpH)与单宁浓度(CDN)在此阶段基本符合方程:YpH=0.04CDN+3.82(R2=0.95,P0.01)的线性变化趋势,在单宁酸浓度达到8.0~12.0 mmol·kg 1时,土壤pH基本不再变化。  相似文献   

14.
The effects of total electrolyte concentrations of the equilibrium solutions (t.e.c.) on Ca2+-Na+ exchange equilibria in two soil samples (high and low in organic matter, clay content and CEC) were studied. Homoionic (Na+-saturated) soil samples were equilibrated with solutions having a large range in sodium adsorption ratio (SAR) at 25, 50, 75 and 100 meq. 1-1 t.e.c. The exchange equilibria data were analysed, using a thermodynamic approach and the selectivity coefficients of Gapon (1933), Vanselow (1932) and Krishnamoorthy et al. (1948) (KG, KV and KKDO). At a given proportion of Ca2+: Na+ in the equilibrium solution, the development of the exchangeable sodium percentage (ESP) in both soil samples increased with the increase in t.e.c. At a given SAR, the effect of t.e.c. on the development of ESP was less on a soil sample with high organic matter (O.M.), clay content and cation exchange capacity (CEC) than on a soil sample with low O.M., clay content and CEC. The values of exchange selectivity coefficients decreased with the increase in t.e.c, and did not remain constant throughout the exchange isotherm for any of the t.e.c. tried.  相似文献   

15.
Changes in soil solution composition and concentrations of exchangeable cations and mineral N in undisturbed cores of pasture soil were investigated in two experiments following applications of sheep urine to the cores. The major cations applied in the urine were K+ and Na+, and the major anions were HCO3? and Cl?. Addition of urine increased concentrations of exchangeable K+, Na+ and NH4+ and measured ionic strength of the soil solution throughout the surface 15 cm of soil, demonstrating that the urine moved through the core by macropore flow immediately following addition. Immediately following urine application the ionic strength in soil solution in the surface 2.5 cm of soil increased from 4–6 MM to 24–41 mM. Hydrolysis of urine-urea was extremely rapid, and in less than 1 d high concentrations of NH4+-N (i.e. 270–370 mg N kg?1) had accumulated in the surface 0–2.5 cm of the urine patch, and soil pH had risen by over one unit. Nitrification then proceeded and, after approximately 15 d, NO3? became the dominant form of mineral N present. During nitrification, soil pH declined and the ionic strength of the soil solution increased substantially with NO3? becoming the dominant anion present in solution. There were concomitant increases in the concentrations of Ca2+ and, to a lesser extent, Mg2+ in the soil solution as NO3? concentrations increased. After approximately 30 d, concentrations of exchangeable NO3? had risen to 250–330 mg N kg?1, soil solution NO3? concentrations had increased to about 80 mmol, dm?3, and ionic strength in the soil solution had increased to 130–140 mM. These results demonstrate the dominating effect of N transformations in causing large fluctuations in the pH, ionic composition and ionic strength of the soil solution in the urine patch. It was concluded that nutrient availability in the patch was affected directly by nutrient addition in urine, and also probably indirectly through the fluctuations in soil solution pH and ionic strength that occur.  相似文献   

16.
为探究长期秸秆覆盖对免耕区作物产量、土壤氮素组分及微生物群落特征的影响,以稻–麦定位免耕试验为研究对象,选取了其中免耕且秸秆移除和免耕且秸秆覆盖2个处理,于试验开展第12年(2018年)小麦收获后,统计分析近五年产量数据,并采集各处理0~5、5~10、10~20、20~30 cm的土壤样品,测定土壤全氮及活性氮组分,利用磷脂脂肪酸(PLFA)方法表征土壤微生物群落。结果表明:(1)秸秆覆盖显著提高了小麦产量(增幅为6.49%),对水稻产量影响不显著。(2)秸秆覆盖对土壤氮组分的影响略有差异:它显著提高了土壤0~5 cm全氮、硝态氮和铵态氮以及0~10 cm颗粒有机氮、0~5 cm和10~20 cm可溶性有机氮含量,对微生物生物量氮无显著影响;它提高了0~5 cm和10~20 cm可溶性有机氮占全氮的比例,对其他组分占全氮比例无显著影响。(3)秸秆覆盖显著提高了土壤微生物总PLFA和细菌PLFA丰度,对真菌PLFA和放线菌PLFA无影响,降低了土壤真菌/细菌比;微生物生物量氮、土壤全氮、颗粒有机碳/颗粒有机氮比是显著影响土壤微生物群落组成的关键土壤环境因子。(4)无论秸秆覆盖与否,土壤全...  相似文献   

17.
Abstract

In semiarid and arid regions, plant growth is limited by high pH, salinity, and poor physical properties of salt‐affected soils. A field experiment was conducted in the semiarid region of Kangping in northeast China (42°70′ N, 123°50′ E) to evaluate a soil‐management system that utilized a by‐product of flue‐gas desulfurization (FGD). Soil was treated with 23,100 kg ha?1 of the by‐product. Results of corn growth were grouped into three grades (GD) according to stages of corn growth: GD1, seeds did not germinate; GD2, seeds germinated but corn was not harvested; and GD3, plants grew well and corn was harvested. The pH, electrical conductivity (EC), bicarbonate (HCO3 ?), carbonate (CO3 2?), exchangeable and soluble calcium (Ca2+), chloride (Cl), and sulfate (SO4 2?) in surface soils of the three grades (>20 cm) was measured to assess the correlation between corn growth and soil properties. Vertical differences in subsoil properties (0‐100 cm) between GD1 and GD3 were compared to known benchmark soil profiles. The FGD by‐product significantly increased EC, exchangeable and soluble Ca2+, and SO4 2? and decreased CO3 2?, exchangeable sodium (Na+), and soluble Na+. pH, EC, HCO3 ?, CO3 2?, and Cl? were higher in surface soils of GD1 than GD3. Soil hardness, soil moisture content, Cl?, and calcium carbonate (CaCO3) were higher in GD1 than in GD3, whereas the amount of available P was lower in GD1. Interestingly, the concentration of Cl?, a toxic element for plant growth, was 2.5 and 1.5 times higher in GD1 than in GD3 and control soil, respectively. In the comparison study of subsoils, GD1 and GD3 were classified as having typical characteristics of saline‐alkali soil (pH>8.5; exchangeable‐sodium‐percentage [ESP]>15; EC>4.0) and alkali soil (pH>8.5; ESP>15; EC<4.0), respectively.  相似文献   

18.
Accumulation of excess sodium (Na+) in a soil causes numerous adverse phenomena, such as changes in exchangeable and soil solution ions and soil pH, destabilization of soil structure, deterioration of soil hydraulic properties, and increased susceptibility to crusting, runoff, erosion and aeration, and osmotic and specific ion effects on plants. In addition, serious imbalances in plant nutrition usually occur in sodic soils, which may range from deficiencies of several nutrients to high levels of Na+. The structural changes and nutrient constraints in such soils ultimately affect crop growth and yield. The principal factor that determines the extent of adverse effects of Na+ on soil properties is the accompanying electrolyte concentration in the soil solution, with low concentration promoting the deleterious effects of exchangeable Na+ even at exchangeable sodium percentage (ESP) levels less than 5. Consequent to an increase in the use of poor quality waters and soils for crop production, the problems of sodic soils can be expected to increase in future. The mechanisms that explain sodic behaviour can provide a framework in which slaking, swelling and dispersion of clay together with nutrient constraints in sodic soils may be assessed so that the practices to manage such soils can be refined for long‐term sustainable agriculture. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Knowing the concentrations of the nutrient elements in soils is important due to their toxic effect on humans and the environment. The aims of this study were to assess the effects of water quality, depths, and distances of lateral installation on soil chemical properties during turfgrass cultivation. A field experiment was conducted using a Split-Split-Plot design based on the randomized complete block (RCB) design with two treatments (well water and wastewater) and eight sub-treatments (45 and 60 cm distance of the laterals and 15, 20, 25, and 30 cm depths of laterals) in three replicates on a sandy loam soil, in Shahrekord, Iran. Soil samples were collected from 0 to 30 and 30 to 60 cm depth for measuring nitrate (NO3?), electrical conductivity (EC), and pH at the end of the experiment. During the experiment, fecal coliform was also measured at the soil surface. Results indicated that by increasing lateral distance, NO3? level increased in both layers. With installing laterals in deeper levels, NO3? concentration decreased at the beginning, then increased in the first layer, whereas in the second layer, NO3? concentration decreased. In addition, installing laterals in deeper depth caused an increase in soil EC in the top layer, but a decrease in the lower layer. However, the results showed that there was no significant effect of the treatments (well water and wastewater) and the sub-treatments (distance and depths of laterals) on soil pH. The results also show that with increasing laterals depth, fecal coliform level decreased at the soil surface.  相似文献   

20.
Abstract

City sewage sludge was applied to the surface layer (0–10 cm) of two sandy soils, slightly calcareous with 8.9% CaCO3 and moderately calcareous with 26.7% CaCO3, at the rates of 0, 25, 50, 75, and 100 Mg ha‐1. The effects of sewage sludge and its rates on total soluble salts, pH of soils and concentration and movement of some heavy metals within soils were investigated. Soil samples were packed at bulk density of 1.5 g cm‐3 in PVC columns and incubated for 19 weeks. The results indicated that total soluble salts (EC) of the treated layer increased with increasing sewage sludge rates. Soluble salts also increased with an increase in soil depth for both soils. The pH values of treated layers in two soils decreased with increasing sewage sludge rates. With increasing sewage sludge rates, concentrations of heavy metals [cobalt (Co), nickel (Ni), cadmium (Cd), and leaf (Pb)] increased in the treated layers compared to the untreated layers and their mobility was restricted mostly to the upper 30‐cm depth. Movement of Co and Pb in both the soils was predominately limited up to a depth of 40 cm for Co and 5 cm for Pb below the treated soil layer. Nickel and Cd movement was mostly limited to a depth of 10 cm in slightly calcareous soil and 5 cm in moderately calcareous soil. Metal movement in the respective soils is ranked as Co>Ni=Cd>Pb and Co>Ni=Cd>Pb. The low concentrations of heavy metals and the restricted mobility with soil depth, suggest that this material may be used for agricultural crop production without any toxic effect on plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号