首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice husk application and its long-term effects on charge characteristics and elemental composition of a chemically degraded Oxisol have not been rigorously studied. The objective of the study was to determine the ability of composted rice husk (CRH) to preserve organic carbon (C), generate negative charge, and release various ions in heavy clay Oxisol. The topsoil and subsoil, representing natural and erosion conditions, respectively, were incubated with CRH for 24 months. Results showed carbon types of CRH, as revealed by solid-state cross-polarization magic angle spinning 13C nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy, were relatively unchanged from months 5 to 12 after incubation, indicating limited decomposition. Carbon types were dominated by O-alkyl and di-O-alkyl C with small proportions of alkyl, methoxyl, aromatic, phenolic, and carboxyl C. After 24 months of incubation, O-alkyl and di-O-alkyl C decreased, indicating susceptibility, whereas alkyl, methoxyl, aromatic, and phenolic C increased, indicating resistance to decomposition. Values of pH0 and point zero net charge (PZNC) were measured using potentiometric titration and ion adsorption indices, respectively. Values of pH0 and PZNC decreased during CRH incubation for both topsoil and subsoil, suggesting the increase of soil negative charge. Total negative charge for topsoil and subsoil increased from 2.7 to 3.5 cmolc/kg and 2.5 to 3.2 cmolc/kg, respectively. This reflects that CRH was able to mask soil positive charge to increase negative charge. In situ soil solution study indicated CRH could release various elements in the order of potassium (K) > sulfur (S) > natrium (Na) > silicon (Si) > magnesium (Mg) > calcium (Ca). In addition, toxic elements, aluminum (Al) and manganese (Mn), were significantly suppressed. The implication of the study is that CRH offers a means to increase cation exchange capacity and nutrient content of highly weathered soils while preserving organic C, thereby reducing CO2 emission from agriculture.  相似文献   

2.
Abstract

Biochar application has been recognized as an effective option for promoting carbon (C) sequestration, but it may also affect the production and consumption of methane (CH4) and nitrous oxide (N2O) in soil. A 1-year field experiment was conducted to investigate the effects of rice husk charcoal application on rice (Oryza sativa L.) productivity and the balance of greenhouse gas exchanges in an Andosol paddy field. The experiment compared the treatments of rice husk charcoal applied at 10, 20 and 40 Mg ha?1 (RC10, RC20 and RC40, respectively), rice husk applied at 20 Mg ha?1 (RH20), and the control (CONT). Rice straw and grain yields did not significantly differ among the treatments. The seasonal cumulative CH4 emissions were 38–47% higher from RC10, RC20 and RC40 than from the CONT. However, the increases were not in proportion to the application rates of rice husk charcoal, and their values did not significantly differ from the CONT. On the contrary, the RH20 treatment significantly increased the cumulative CH4 emission by 227% compared to the CONT. The N2O emissions during the measurement were not affected by the treatments. As a result, the combined global warming potential (GWP) of CH4 and N2O emissions was significantly higher in RH20 than in the other treatments. There was a positive linear correlation between C storage in the top 10 cm of soil and the application rate of rice husk charcoal. The increases in soil C contents compared to the CONT corresponded to 98–149% of the C amounts added as rice husk charcoal and 41% of the C added as rice husk. Carbon dioxide (CO2) fluxes in the off season were not significantly different among RC10, RC20, RC40 and CONT, indicating that C added as rice husk charcoal remained in the soil during the fallow period. The CO2 equivalent balance between soil C sequestration and the combined GWP indicates that the rice husk charcoal treatments stored more C in soil than the CONT, whereas the RH20 emitted more C than the CONT. These results suggest that rice husk charcoal application will contribute to mitigating global warming without sacrificing rice yields.  相似文献   

3.
Oxisols, which are highly weathered, occupy a large area of Malaysia. These soils are infertile because of low pH, calcium (Ca), magnesium (Mg), and potassium (K) levels but high aluminum (Al) content. The infertility can be ameliorated by applying soil amendments. A study was conducted to determine the effects of basalt and/or rice husk compost application on cocoa growth planted on an Oxisol. The results showed that either basalt or rice husk compost and their combinations were effective ameliorants. Basalt application increased soil pH and exchangeable Ca and Mg while decreasing exchangeable Al. Accordingly, soil solution Ca, Mg, and K increased and Al and manganese (Mn) concentrations decreased. Silicate released from basalt was able to lower the pHo (the pH at which the net charge of the variable charge minerals is zero), indicating a negative charge was being generated, which led to increase in the cation exchange capacity (CEC) of the Oxisol. The improvement in soil fertility because of application of the amendments had improved cocoa growth. Leaf K and P of the cocoa planted on the basalt-treated soils were within the sufficient range for cocoa growth. Rice husk compost applied at a rate of less than 20 t ha?1 in this trial was not able to supply sufficient N to the cocoa. Basalt application at an appropriate rate effectively ameliorates acidic soil infertility, but it takes time to realize the positive effects of application as it slowly dissolves under field conditions.  相似文献   

4.
Generation of different biowastes is increasing day by day, and ultimate load on agricultural lands has increased. Concerns over increased phosphorus (P) application with nitrogen (N)–based compost application shifted the trend to P‐based applications. But focus on only one or two nutritional elements will not serve the goals of sustainable agriculture. Full insight into nutrient availability from different composts is necessary. The need to understand the nutrient release and uptake from different composts has increased because of the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, current greenhouse studies were designed to evaluate the bioavailability and leachability of some micronutrients [calcium (Ca), magnesium (Mg), and zinc (Zn)] from different biocomposts under chloride (Cl?) and sulfate (SO4 ?2) saline environment. In the first pot experiment, soil was amended with livestock compost (AC), poultry compost (PC), and composted sludge (SC) at the rate of 200 kg P ha?1 equivalent bases. Pots were irrigated with artificial saline water of sodium chloride (NaCl) or sodium sulfate (Na2SO4; 60 mmolc L?1), and leachates were collected for Ca and Mg analysis. As composts were applied on total P bases, which left varying amounts of nutrients in each treatment, it was observed that nutrient uptake and release differed greatly regardless of the total amount applied with each compost type. Amount of Ca applied with PC (3.9 g pot?1) was greater, but Ca concentration in leachate was greater under AC‐amended treatments. Magnesium concentration also varied greatly under compost types. Among the saline irrigation, Ca and Mg concentration in leachate increased under both saline irrigations compared to nonsaline treatment, and SO4 ?2 had relatively greater ionic strength to replace cations than Cl?. Calcium, Mg, and Zn uptake by maize stem and leaves were greater from SC‐amended pots followed by PC, SC, and control. Irrespective of the salt types, Ca and Mg uptake reduced under both saline irrigations, whereas Zn uptake increased as compared to nonsaline treatment. Among the salt types, it was observed that plant growth and nutrient uptake was more influenced by Cl? than SO4 ?2 saline irrigation. In the second experiment, soil was saturated with NaCl and NaSO4 (75 mmolc L?1) and amended with AC. The trend of nutrient uptake under both salt types was similar to first experiment, and the results of AC amendments have been discussed. It can be inferred from the results that regardless of the total amount applied, nutrient uptake greatly varies under different composts and their availability depends upon the source rather than total amount applied. Analogously, sulfate‐dominated irrigation water can increase the leaching of Ca and Mg from root zone more than chloride.  相似文献   

5.
Abstract

A micro-plot 15N-tracer experiment was established in three different soils of a long-term soil fertility field experiment. The nutrient-poor loam sand has been subjected to various treatments over the years and this has resulted in different organic C (0.35% – 0.86%), microbial biomass (38.3 – 100.0 µg C mic g?1 soil), clay and fine silt contents. Using the 15N-pool dilution technique, we assessed gross N-transfer rates in the field. Gross N mineralization rates varied strongly among the three plots and ranged between 0.4 and 4.2 µg N g?1 soil d?1. Gross nitrification rates were estimated to be between 0 and 2.1 µg N g?1 soil d?1. No correlation between gross N mineralization rates and the organic matter content of the soils was established. However, gross nitrate consumption rates increased with increasing soil C content. The 15N-pool dilution technique was successfully used to measure gross N transfer rates directly in the field.  相似文献   

6.
Upland rice is an important crop in the cropping systems of South America, including Brazil. Two greenhouse experiments were conducted to determine influence of lime and gypsum on yield and yield components of upland rice and changes in the chemical properties of an Oxisol. The lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. The gypsum rates were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1. Lime as well as gypsum significantly increased plant height, straw and grain yield, and panicle density in a quadratic fashion. Adequate lime and gypsum rates for maximum grain yield were 1.11 g kg?1 and 1.13 g kg?1, respectively. Plant height, straw yield, and panicle density were positively related to grain yield. Lime as well as gypsum application significantly changed extractable calcium (Ca), magnesium (Mg), hydrogen (H)+aluminum (Al), base saturation, and effective cation exchange capacity. In addition, liming also significantly increased pH, extractable phosphorus (P) and potassium (K), calcium saturation, magnesium saturation, and potassium saturation. Optimum acidity indices for the grain yield of upland rice were pH 6.0, Ca 1.7 cmolc kg?1, base saturation 60%, and calcium saturation 47%. In addition, upland rice can tolerate 42% of acidity saturation.  相似文献   

7.
The different responses of two populations of Suaeda salsa (Linn.) Pall. (saline seepweed) from an intertidal zone and a saline inland zone to salinity [1 or 500 mM sodium chloride (NaCl)] and nitrogen [N; 0.05, 1, or 10 mM nitrate (NO3 ?)‐N] were investigated. Greater NO3 ?‐N supply (10 mM) increased shoot dry weight for the two populations of S. salsa, especially for S. salsa from the saline inland zone. Greater NO3 ?‐N supply (10 mM) increased the concentrations of chlorophyll and carotenoid in leaves and the NO3 ? and potassium (K+) concentrations in shoots for both populations. Greater NO3 ?‐N supply (10 mM) increased shoot Na+ in S. salsa from the intertidal zone. In conclusion, S. salsa from the saline inland zone is more responsive to NO3 ?‐N supply than the intertidal population. Greater NO3 ?‐N supply can help the species, especially the intertidal population, to grow and to mediate ion homeostasis under high salinity.  相似文献   

8.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

9.
Accurate estimation of the available potassium (K+) supplied by calcareous soils in arid and semi‐arid regions is becoming more important. Exchangeable K+, determined by ammonium acetate (NH4OAc), might not be the best predictor of the soil K+ available to crops in soils containing micaceous minerals. The effectiveness of different extraction methods for the prediction of K‐supplying capacities and quantity–intensity relationships was studied in 10 calcareous soils in western Iran. Total K+ uptake by wheat grown in the greenhouse was used to measure plant‐available soil K+. The following methods extracted increasingly higher average amounts of soil K+: 0.025 M H2SO4 (45 mg K+ kg?1), 1 M NaCl (92 mg K+ kg?1), 0.01 M CaCl2 (104 mg K+ kg?1), 0.1 M BaCl2 (126 mg K+ kg?1), and 1 M NH4OAc (312 mg K+ kg?1). Potassium extracted by 0.01 M CaCl2, 1 M NaCl, 0.1 M BaCl2, and 0.025 M H2SO4 showed higher correlation with K+ uptake by the crop (P < 0.01) than did NH4OAc (P < 0.05), which is used to extract K+ in the soils of the studied area. There were significant correlations among exchangeable K+ adsorbed on the planar surfaces of soils (labile K+) and K+ plant uptake and K+ extracted by all extractants. It would appear that both 0.01 M CaCl2 and 1 M NaCl extractants and labile K+ may provide the most useful prediction of K+ uptake by plants in these calcareous soils containing micaceous minerals.  相似文献   

10.
Abstract

Speciation study of microelements in soils is useful to assess their retention and release by the soil to the plant. Laboratory and greenhouse investigations were conducted for five soils of different agro‐ecological zones (viz., Bhuna, Delhi, Cooch‐Behar, Gurgaon, and Pabra) with diverse physicochemical properties to study the distribution of zinc (Zn) among the soil fractions with respect to the availability of Zn species for uptake by rice plant. A sequential extraction procedure was used that fractionated total soil Zn into water‐soluble (WS), exchangeable (EX), specifically adsorbed (SA), acid‐soluble (AS), manganese (Mn)‐oxide‐occluded (Mn‐OX), organic‐matter‐occluded (OM), amorphous iron (Fe)‐oxide‐bound (AFe‐OX), crystalline Fe‐oxide‐bound (CFe‐OX), and residual (RES) forms. There was a wide variation in the magnitude of these fractions among the soils. The studies revealed that more than 90% of the total Zn content occurred in the relatively inactive clay lattice and other mineral‐bound form (RES) and that only a small fraction occurred in the forms of WS, EX, OM, AFe‐OX, and CFe‐OX. Rice (Oryza sativa L.) cultivars differ widely in their sensitivity to Zn deficiency. Results suggested that Zn in water‐soluble, organic complexes, exchange positions, and amorphous sesquioxides were the fractions (pools) that played a key role in the uptake of Zn by the rice varieties (viz., Pusa‐933‐87‐1‐11‐88‐1‐2‐1, Pusa‐44, Pusa‐834, Jaya, and Pusa‐677). Isotopic ally exchangeable Zn (labile Zn) was recorded higher in Typic Ustrochrept of Pabra soil, and uptake of Zn by rice cultivars was also higher in this soil. The kinetic parameters such as maximum influx at high concentrations (Imax) and nutrient concentration in solution where influx is one half of Imax (Km) behaved differentially with respect to varieties. The highest Imax value recorded was 9.2×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate for Pusa‐933‐87‐1‐11‐88‐1‐2‐1, and the same was lowest for Pusa‐44, being 4.6×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate. The Km value was highest for Pusa‐44 (2.1×10?4µmol cm?2 s?1) and lowest for Pusa‐933‐87‐1‐11‐88‐1‐2‐1 (1.20×10?4µmol cm?2 s?1). The availability of Zn to rice cultivars in Typic Ustrochrepts of Bhuna and Delhi soils, which are characterized by higher activation energy and entropy factor, was accompanied by breakage of bonds or by significant structural changes.  相似文献   

11.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

12.
Soil cultivation changes and usage of agricultural wastes can have profound impacts on greenhouse gas (GHG) emission from soil. In this study, the effects of soil cultivation and organic amendment on GHG emission were investigated using aerobic incubation. Surface soil (0–20 cm) from (1) rice–legume consecutive rotation (Rice) and (2) recently (<3 years) converted from rice field to plastic-covered intensive vegetable and flower production (VegC) were collected in Kunming, P.R. China. Rose (Rosa rugosa Thunb.) residues and cattle manure were applied at 5% by weight. Results indicated that N2O and CO2 fluxes were significantly influenced by soil cultivation, organic amendment, incubation time and their interaction (p <0.05). Applying cattle manure increased, while rose residue decreased, cumulative N2O emissions from soil (84 days). Rose residue application significantly increased cumulative CO2 emissions with peak values of 6371 (Rice) and 7481 mg kg?1 (VegC), followed by cattle manure addition figure of 2265 (VegC) and 3581 mg kg?1 (Rice). Both were significantly higher (p <0.05) than the un-amended Control at 709 (VegC) and 904 mg kg?1 (Rice). Our study demonstrates that a low C/N ratio in cattle manure is better than a high C/N ratio in rose residue in regard to reducing the global warming potential of agricultural soil.  相似文献   

13.
《Journal of plant nutrition》2013,36(6):1277-1286
Abstract

Male and female leaf discs of Jojoba [Simmondsia chinensis (Link) Schneider] were cultured on Murashige and Skoog (MS) media supplemented with various nitrate:ammonium ratio and phytohormones concentrations. For the optimum callus growth, hormonal concentrations were remained equal for both male and female leaf tissues i.e., 0.4 mg L?1 2,4‐dichlorophenoxyaceticacid, 1.25 mg L?1 6‐benzyladenine and 0.5 mgL?1 kinetin. However, a statistically significant difference was observed when Murashige and Skoog media was supplemented with an additional nitrogen source. In female leaf tissue, maximum fresh and dry weights were recorded in Murashige and Skoog media supplemented with an additional source of NO3 ?:NH4 + (60 mM) whereas in male leaf tissue this addition was inhibitory. This study suggests that nitrogen requirement may be different for optimum callus growth in both male and female leaf tissues.  相似文献   

14.
Two different biosolids were obtained composting anaerobic (A) and aerobic (B) municipal sewage sludge (SS) with rice husk. Higher amounts of SS (1:1 v/v) could be used in this composting process than in conventional ones. The two biosolids were characterized by chemical analysis and compared with a conventional green manure plus municipal solid waste and municipal SS compost. The effect of these products on soil functionality was studied in a 14-week incubation experiment by their addition to two different soils (silty clay—Ustic Endoaquert—and sandy loam—Aquic Xeropsamment). The total organic C ranged from 20 to 26 % and total N from 1.6 to 2.5 % in the two biosolids. The most relevant difference was due to dissolved organic C that was lower in the anaerobic biosolid (1 mg?C?kg?1) than in the other products (5–6 mg?C?kg?1). The total trace elements (Cd, Cr, Cu, Ni, Pb and Zn) contents were under the limits fixed by the European legislation for soil application of SS (EC Directive 86/278/EEC, 1986). The three biosolids did not show strong negative effects on soil functionality during the incubation experiment, although some significant differences were found. The aerobic biosolid B mainly increased cumulative N release, microbial activity, basal respiration rate, microbial biomass-C-to-total organic C ratio, β-glucosidase, alkaline phosphomonoesterase and aryl-sulphatase activities. The anaerobic one (B) decreased basal respiration rate, microbial biomass-C-to-total organic C ratio and aryl-sulphatase activity. DTPA soil bioavailable heavy metals were not affected by biosolids additions.  相似文献   

15.
Field experiments were carried out during rainy (kharif) and winter (rabi) seasons (June–April) of 2008–2010 at Indian Agricultural Research Institute (IARI), New Delhi, to study the productivity, nutrients uptake, iron (Fe) use-efficiency and economics of aerobic rice-wheat cropping system as influenced by mulching and Fe nutrition. The highest yield attributes, grain and straw yields (5.41 tonnes ha?1 and 6.56 tonnes ha?1, respectively) and nutrient uptake in rice was recorded with transplanted and puddled rice (TPR) followed by aerobic rice with Sesbania aculeata mulch. However, residual effect of aerobic rice with wheat straw mulch was more pronounced on yield attributes, grain and straw yields (4.20 and 6.70 tonnes ha?1, respectively) and nutrient uptake in succeeding wheat and remained at par with aerobic rice with Sesbania mulch. Application of iron sulfate (FeSO4) at 50 kg ha?1 + 2 foliar sprays of 2% FeSO4 was found to be the best in terms of all the yield attributes, grain and straw yield (5.09 and 6.17 tonnes ha?1, respectively) and nutrient uptake and remained at par with 3 foliar sprays of 2% FeSO4. Although residual effect of iron application failed to increase the yield attributes, yield and nutrient uptake nitrogen, phosphorus and potassium (N, P, K) except Fe. The highest system productivity, nutrient uptake, gross returns, net returns, B: C ratio and lowest cost of cultivation were recorded with aerobic rice with wheat straw and Sesbania aculeata mulch. Application of FeSO4 at 50 kg ha?1 + two foliar sprays of 2% FeSO4 was found better in respect of system productivity, nutrient uptake, gross returns, net returns, B:C ratio and cost of cultivation in aerobic rice-wheat cropping system. The Fe use efficiency values viz. partial factor productivity (kg grain kg?1 Fe), agronomic efficiency (kg grain increased kg?1 Fe applied), agrophysiological efficiency (kg grain kg?1 Fe uptake), physiological efficiency (kg biomass kg?1 Fe uptake), apparent recovery (%) utilization efficiency and harvest index (%) of applied Fe were significantly affected due to methods of rice production and various Fe nutrition treatments in aerobic rice and aerobic rice-wheat cropping system.  相似文献   

16.
Abstract

Castor and sunflower, drought‐tolerant crops, are cultivated in the semi‐arid tropics of the world. The nutrient‐rich residues of these crops are mostly burnt because of their high C/N (C/N)‐ratios. These high C/N‐ratio residues can be composted and recycled successfully, if they are supplemented with other low C/N‐ratio farm‐based organics and some chemical additives. To study the rate kinetics and half‐life of decomposition of castor (C/N ratio: 75∶90) and sunflower (C/N ratio 57∶47) residue mixtures and the manure value of the compost thus prepared, two on‐farm experiments were conducted at Hayathnagar Research Farm (17° 18′ N latitude, 78° 36′ E longitude, and an elevation of 515 m above sea level) of Central Research Institute for Dryland Agriculture, Hyderabad, India. The decay rate constants obtained on the basis of the exponential functions using the data on weight loss, C concentration, and C/N ratios indicated that among the four combinations of treatments, castor stalks+gliricidia loppings+cattle dung had the fastest rate of decomposition with an average rate constant value of 0.0043 day?1. To achieve 50% decomposition (half‐life), the time periods computed for castor stalks+gliricidia loppings+cattle dung and sunflower stalks+gliricidia loppings+cattle were 197 and 278 days, respectively. On an average basis, sunflower‐based manure contained a significantly higher amount of total N (14.6 gm kg?1) than castor‐based manures (12.2 gm kg?1). The corresponding total hydrolyzable N values were 8.2 and 8.15 gm kg?1, respectively. Amino acid N was found to be the predominant constituent of the total acid hydrolyzable N in the manure. Use of earthworms in composting enriched the manure in terms of mineral [nitrate (NO3)+ammonium (NH4)‐N] and hexosamine‐N fractions. The full article deals with the decomposition patterns (periodical changes in weight loss, C concentration and C/N ratios), decay‐prediction functions, composting, and manure quality of the castor‐ and sunflower‐based residue mixtures.  相似文献   

17.
Seventeen Mollisols having pH(1:2) in the range of 6.00 to 8.42 were analyzed with five extractants, and the extractable zinc (Zn) ranges were 0.84 to 2.75 mg Zn kg?1 soil for diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), 0.91 to 2.72 mg Zn kg?1 soil for DTPA + ammonium bicarbonate (pH 7.6), 1.82 to 7.18 mg Zn kg?1 soil for Mehlich 3, 1.22 to 3.83 mg Zn kg?1 soil for ethylenediaminetetraacetic acid (EDTA) + ammonium carbonate, and 0.88 to 1.18 mg Zn kg?1 soil for 1 mol L?1 magnesium chloride (MgCl2) (pH 6.0). Zinc extracted by DTPA (pH 7.3) and Mehlich 3 showed significant positive correlation with sand content, whereas only Mehlich 3 showed negative correlation with soil pH. All extractants showed significant positive correlation with each other except for 1 mol L?1 MgCl2‐extractable Zn, which had significant positive correlation with only Mehlich 3– and EDTA + ammonium carbonate–extractable Zn. A greenhouse experiment showed that Bray's percentage yield of rice was poorly correlated to extractable soil Zn but had a significant and negative linear correlation with soil pH (r = ?0.662, significant at p = 0.01). Total Zn uptake by rice had a significant positive correlation with 1 mol L?1 MgCl2– and Mehlich 3–extractable Zn. A proposed parameter (p extractable Zn + p OH?) involving both soil extractable Zn and pH terms together showed significant and positive correlation with Bray's percentage yield and total Zn uptake of rice. The calculated values of critical limits of soil Zn in terms of the proposed parameter were 14.1699 for DTPA (pH 7.3), 13.9587 for DTPA + ammonium bicarbonate, 13.7016 for Mehlich 3, 13.9402 for EDTA + ammonium carbonate, and 14.1810 for 1 mol L?1 MgCl2 (pH 6.0). The critical limits of Zn in rice grain and straw were 17.32 and 22.95 mg Zn kg?1 plant tissue, respectively.  相似文献   

18.
The effects of temperature and water potential on nitrification were investigated in two Iowa soils treated with Stay‐N 2000. The soils were incubated at 10, 20, and 30 °C after soil water potentials of ?1, ?10, or ?60 kPa were applied to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and termination period of nitrification (t s). The highest K max were 18 and 24 mg kg?1 d?1 nitrate (NO3 ?)–nitrogen (N), respectively, at 30 °C and ?10 kPa in both the Nicollet (fine‐loamy, mixed, superactive, mesic Aquic Hapludoll) and Canisteo (fine‐loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) soils and reduced to 4 and 16 mg kg?1 d?1 NO3 ?‐N when Stay‐N 2000 was added. The extension of t′ due to the addition of Stay‐N 2000 was as high as 7 d in the Nicollet soil at 10 °C and ?1 kPa and as little as 2 d in the Canisteo soil at 20 °C and ?10 kPa.  相似文献   

19.
ABSTRACT

Lantana camara is an evergreen, which is the most notorious toxic weed of the terrestrial ecosystem. It is native to subtropical and tropical America, but a few taxa are indigenous to tropical Asia and Africa. An enormous quantity of green foliage is produced by this weed, which cannot be used as livestock feed due to its toxic properties. Management through utilization seems the only sustainable option for this problem. In this study, the composting of Lantana biomass was done and changes in chemical characteristics of waste biomass were measured. The composting caused decreases in pH, organic carbon, C:N ratio totK and totC by 2.0-, 1.25-, 1.66-, and 19-fold, respectively, but increases in electrical conductivity (EC), ash content, totN, totP, totZn, and totMg of 2.0-, 1.11-, 3.36-, 1.76-, 1.28-, and 1.70-fold, respectively. The C/N ratio (20.1) and soil respiration rate (47.12–66.20 mg CO2-C/100 g) suggested the compost maturity at 52 days. The high bacterial (38.67 CFU × 10?7 g?1), fungal (30.0 CFU × 10?3 g?1), and actinomycetes (32.0 CFU × 10?5 g?1) population in composted material suggested the suitability of compost for agronomic purposes. Phytotoxity measured through compost:water extract and compost pot trial suggested the germination index (GI) in the ranges of 52.3%–122.3% and 74.5%–166.9%, respectively. The high ranges of chlorophyll, protein, and carotenoids in seedling than control suggested the non-toxicity of ready materials. Results suggested that composting can be a potential technology to manage Lantana biomass for sustainable land fertility management programs.  相似文献   

20.
Abstract

Use of adequate rates of phosphorus (P) in crop production on high‐P‐fixing acid soils is essential because of high crop response to P fertilization and the high cost of P fertilizers. Information on lowland rice response to thermophosphate fertilization grown on Inceptisols is limited, and data are also lacking for soil‐test‐based P fertilization recommendations for this crop. The objective of this study was to evaluate response of lowland rice to added thermophosphate and to calibrate P soil testing for making P fertilizer recommendations. A field experiment was conducted for two consecutive years in central Brazil on a Haplaquept Inceptisol. The broadcast P rates used were 0, 131, 262, 393, 524, and 655 kg P ha?1, applied as thermophosphate Yoorin. Rice yield and yield components were significantly increased with the application of P fertilizer. Average maximum grain yield was obtained with the application of 509 kg P ha?1. Uptake of macro‐ and micronutrients had significant quadratic responses with increasing P rates. Application of thermophosphate significantly decreased soil acidity and created favorable macro‐ and micronutrient environment for lowland rice growth. Across 2 years, soil‐test levels of Mehlich 1–extractable P were categorized, based on relative grain yield, as very low (0–17 mg P kg?1 soil), low (17–32 mg P kg?1 soil), medium (32–45 mg P kg?1 soil), or high (>45 mg P kg?1 soil). Similarly, soil‐test levels of Bray 1–extractable P across 2 years were very low (0–17 mg P kg?1 soil), low (17–28 mg P kg?1 soil), medium (28–35 mg P kg?1 soil), or high (>35 mg P kg?1 soil). Soil P availability indices for Mehlich 1 extractant were slightly higher at higher P rates. However, both the extracting solutions had highly significant association with grain yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号