首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Onions were grown on two areas of sphagnum peat. One (old area) had been fertilized and cropped for a 5‐year period and the other (new area) had not. Fertilizer treatments on both areas consisted of an N, a P and a K series. Each nutrient was applied at four rates in combination with constant rates of the other two.

In practically all instances comparable treatments resulted in lower N, P and K levels in plant tissue samples from the new area than from the old where residual effects from previous cropping and fertilization were evident. Yield data indicate that initially, previously unfertilized sphagnum peat should receive N, P and K at 275–300, 40–50 and 70–80 kg/ha respectively.  相似文献   

2.
Abstract

Fertilizer treatments for cabbage, grown on sphagnum peat, consisted of an N, a P and a K series. Each nutrient was applied at four rates in combination with constant rates of the other two.

Results indicated that 270 kg N/ha, the highest rate used, may not have been adequate whereas P and K at 80 and 150 kg/ha respectively were. In the N, the P, and the K series, highest head weights coincided with midribs containing 2.06% N, 0.48% P and 4.18% K respectively.  相似文献   

3.
Abstract

Soybeans, Glycine max (L.) Merr., field peas, Plsum sativum I., and fababeans, Vicia faba L., were each grown at either three or four locations. Fertilizer treatments consisted of three rates of N, three of P and three of K applied in all possible combinations.

In general fertilizers had minimal effects on yields and on the percentages of N, P, K, Ca and Mg in leaf tissue. The most consistent effect was a decrease in leaf Mg with application of increasing; rates of K.

Average yields at different locations ranged from 1735–2997 kg/ha for soybeans, 2940–3246 kg/ha for field peas and 1569—4435 kg/ha for fababeans. The results suggest, however, that factors other than soil chemical properties probably had an appreciable effect on yields.  相似文献   

4.
It has been considered that natural peat soils and swamp forest ecosystems in the tropics are quite oligotrophic. This concept seems to be related to the low mineral contents in the soil solid phase of the peat soils. However, some nutritional elements such as K, Mg, Ca, and/or P may be abundant in the soil solution phase and could easily migrate in peat soils. In order to analyze the nutritional environment of peat soils, chemical composition of the soil solid phase and soil solution was compared.

This study was carried out in Naman Forest Reserve, Sibu and in/around Sg. Talau Peat Research Station, Mukah, Sarawak, Malaysia. In both areas, each of the three study sites with a different depth of underlying mineral layer was selected for sampling of soil and soil solution. All the soils studied except for one shallow peat profile were classified into Oligotrophic peat based on Fleischer’s criteria. The soil solution collected monthly showed the following characteristics in its composition.

1. Concentrations of Al, Si, and Fe were higher in the soil solution from the shallow peat than in that from the deep peat, reflecting the effect of underlying mineral layers on the soil solution composition.

2. Concentrations of Na, Mg, and Cl in the soil solution and Na and Mg contents in the soil solid phase reflected the distance from the sea. In the Naman series, accumulation of K and Ca in the soil solution was larger in the surface layer in the deep peat than in the shallow peat, though such clear trend was not observed for the K content in the soil solid phase.

3. The concentrations of N and P were fairly high in the soil solution in all the profiles except for P in the profile near the center of the peat dome. Dissolved P consisted mostly of ortho-phosphate, whereas a larger part of N was in the organic form.

4. At the Sago plantation farm on deep peat, depletion of K and P was observed during the rainy season. Such instability in the concentrations in the soil solution was attributed to forest clear-cutting and subsequent disturbance of nutrient cycling.

In general, the concentrations of N, P, K, and Ca in the soil solution were not low even in the Oligotrophic peat. However, in taking account of the fact that the peat soils showed low mineral contents in the available forms and that the bulk density was also quite low, the potential capacity to supply K, Ca, and/ or P was not necessarily high in spite of the apparent high intensity observed for the soil solution composition. Therefore, from the viewpoint of nutrient dynamics, the potential for the use of reclaimed peat land was considered to be rather limited especially under low input management.  相似文献   

5.
Abstract

The fourth, fully‐expanded leaves at sweet potato vine tips were sampled at harvest from two separate but similar experiments on njala upland soils after 7 years bush fallow to study the effects of timing and rates of K fertilizers on leaf nutrients and their relationships to sweet potato tuber yields. Potash showed significant effects on leaf P, leaf Zn, leaf Ca, leaf Mn, leaf K/P and leaf Ca/Mg. K x timing interaction affected leaf K/Mg and leaf K/P but timing of Z application did affect significantly neither leaf nutrients nor leaf nutrient ratios. Significant quadratic effect of K on tuber yields as well as significant cubic K x timing interaction effect on tuber yields were observed. There were significant negative correlations between tuber yields and leaf N and between tuber yields and leaf P, indicating that increases in either leaf N or leaf P depressed yields. On the basis of coefficient of determination, increases in leaf N contributed significantly more to yield variation than increases in leaf P. Analysis of covariance and multiple regression studies showed lack of significance of 10 nutrients on tuber yields. Sweet potato tissue which reflects differential nutrient levels with significant effect on tuber yields must be sought. Apart from the added fertilizer, the total effect of ether factors which affect nutrient status and crop performance must be considered.  相似文献   

6.
Abstract

Pearl millet and annual ryegrass were continually doubled‐cropped on Olivier silt loam soil for seven years at six levels of N, applied as ammonium nitrate in three applications to millet and in two applications to ryegrass. Forage yields increased as N application rates increased. During seven years at the 0 and 448 kg/ha N rate, millet produced 35% and 95%, respectively, as much yield as it produced at the 800 kg/ha N rate, while comparable values for ryegrass were 19% and 83%. At 448 kg/ha of N the two grasses produced a combined yield of over 20 Mg/ha of dry forage per year. Ryegrass yields following millet were consistently lower than yields previously obtained at this site.

Nitrogen applications consistently increased concentrations of N, Ca, and Mg in both forage grasses, while effects on P and K were variable and S concentrations were unaffected. The amounts of all nutrients removed in the forages were increased as yields increased with N application rates. Nitrate‐N levels considered to be toxic to ruminant animals occurred only where N applications exceeded 170 kg/ha at any one time. In vitro digestibility of each grass was consistently increased by N applications.

The percentage of fertilizer N that was removed in the crops ranged from 66% to 68% for millet and from 35 to 52% for ryegrass as N applications increased up to 448 kg/ha. Residual ammonium and nitrate levels in the top 1.2 m of soil were not increased by N rates of 448 kg/ha or lower. At the 800 kg/ha N‐rate, the apparent N recovery rate decreased and residual ammonium and nitrate levels increased throughout the soil profile.  相似文献   

7.
Abstract

Corn (Zea mays L.) was grown for three consecutive years on Congaree loam to measure the effects of rates of N, P, and K fertilization and irrigation on the nutrient concentration of leaves, the level of available K in the soil, and on the yield of corn. Plant nutrients consisting of 0, 56, 140, 224, and 280 kg N/ha; 0, 15, 37.5, 60, and 75 kg P/ha, and 0, 28, 70, 112, and 140 kg K/ha were applied in a central composite rotatable design in each of the three years. All plant residue was removed each year when the corn was harvested, and the plots remained fallow during the winter months. One half of the experiment was irrigated when there was a 50% depletion of available soil moisture in the 0‐ to 46‐cm soil depth.

Leaf composition was affected by fertilization and irrigation. A rapid decrease in available soil K in the 0‐ to 15‐cm depth was evident the first year with all rates of added K. The decline in available soil K was unaffected by irrigation and levels of applied N and P.

There were consistent yield responses each year to added N, no response to added P, and a response to added K only during the second year.  相似文献   

8.
Abstract

Field trials were conducted for three years on the response of maize to nitrogen (N), phosphorus (P), and potassium (K) fertilizers on Oyo Soil Series (Arenic Haplustalf) and Iregun series (Aquic Haplustalf) in the derived savanna and southern guinea savanna zones of Nigeria, respectively. Nitrogen fertilizer as granulated urea at rates 0–300 kg N/ha, P fertilizer as single superphosphate at rates 0–120 kg P/h, and K fertilizer as muriate of potash at rates 0–180 kg K/ha were used for the different nutrient combinations. The base rates for N, P, and K were 100 kg N/ha, 40 kg P/ha, and 60 kg K/ha, respectively. The results of the trials showed that annual application of the blanket recommended N, P, and K rates to maize grown under intensive land use system could not produce optimum yield. Fertilizer efficiency varied along with soil test values from year to year. The highest response by maize in these zones was to N, the optimum rate ranged from 50–100 kg N/ha. Application of high rates of P and K fertilizers on soils with fairly sufficient nutrient level showed no significant effect on maize yield. But when P and K were applied at low rates (20 kg P/ha and 30 kg K/ha), their contents in the leaf and maize yield, in most cases, increased significantly. The results, however, showed that N, P, and K recommendations for optimum maize yield in both zones are 50–100 kg N/ha, 20 kg P/ha, and 0–30 kg K/ha, respectively.  相似文献   

9.
Abstract

An experiment was conducted on some soils of Mesa de Guanipa, which are sandy, acid (pH 5.5), and have low levels of available P, K, Ca, and Mg. These soils are located at the Agropecuaria Guanipa farm in El Tigre, Anzoategui State, Venezuela. The main objective was to evaluate rates and sources of P, and rates of K on soybean yield (variety FP‐3), which is an activity of the project “Maximum soybean yields in Venezuela”;, financed by the Potash and Phosphate Institute of Canada. The rates and sources of P were 0, 75, and 150 kg P2O5/ha as triple superphosphate (TSP) and diammonium phosphate (DAP). Rates of potassium as K2O were 0, 60, and 120 kg/ha as potassium chloride (KCl). The experimental design was a randomized complete block with 3 replications and a final plant density equivalent to 400,000 plants/ha. A basic application of nitrogen and magnesium fertilizers was made to guarantee the supply of those nutrients. The soybean seeds were inoculated at planting with NITROBAC to ensure nodule formation. Yield results showed a good response to P application and low response to K. The combination of 150 kg P2O5/ha as TSP and 60 kg K2O/ha as KCl produced the maximum soybean grain yields of 2.857 kg/ha at 12% moisture as well as the highest net return of U.S.$393.9/ha. From the results obtained in this experiment as well as ones to be established during the next 3 years, it is expected that there will be an adjustment in the fertilization program followed by the soybean farmers of Mesa de Guanipa as they are now applying higher rates of K and lower rates of P than that applied in this experiment.  相似文献   

10.
Abstract

Bragg soybeans [Glycine max. (L. ) Merill] were grown under field conditions near Sanford, Florida on a tile‐drained Immokalee fine sand (sandy, siliceous, hyperthermic Arenic Haplaquod). The objectives were: 1) to assess the K and P fertilizer requirements of soybeans grown in central Florida 2) to correlate soil and tissue nutritional levels with extractable soil nutrients and 3) to assess the influence of K application time on yield.

Experimental treatments were four K rates (0, 50, 100, and 200 kg K/ha), three P rates (0, 25, and 50 kg P/ha), and two sidedress K rates (0 and 50 kg K/ha) at early bloom. Treatments were arranged in a randomized complete block design and replicated four times.

Yield increased with each increase in applied K. Statistical maximum yield was obtained on plots which contained 103 ppm double‐acid extractable K during the pod‐filling stage of growth. Tissue K at early bloom exceeded 2.85% at maximum statistical yield. Potassium applied broadcast at early bloom did not significantly influence yield.

This soil contained approximately 390 ppm double‐acid extractable P prior to P application. No significant yield response to applied P was observed, indicating that the original extractable P content of the soil was adequate for the yield level obtained.

The quadratic regression of the ratio equivalents of double‐acid extractable K:Ca + Mg on the same ratio for the plant tissue is highly significant. This expression was a good predictor of tissue accumulation of these nutrients in that the coefficient for determination was 0.68.  相似文献   

11.
Abstract

Thirteen fertility trials were made throughout Quebec's corn growing region during 1972–74. These included eleven fertilizer combinations with corn silage as the test crop and were carried out on nine soils. Total dry matter and digestible nutrients (TDN) varied greatly from year to year, though, mean yields increased by 23 and 30 percent respectively with the 50 kg N/ha treatment, compared to control receiving no nitrogen fertilization. However, 150 kg N/ha was required to attain a maximum yield of 1250 kg/ha crude protein. Despite a 0.2 percent nitrate content found in the silage grown on the most northerly site, a 120 kg P/ha combined with 100 kg N and K gave the highest mean TDN production (9580 kg/ha).

Potassium fertilization affected plant K content of corn grown at the most northerly site only, where a 0.5 percent was found with the control on a suit containing low potassium levels. Further, striking increases in Ca and Mg concentrations were observed with corn grown on that soil. However, magnesium concentration ranging from 0.11 to 0.14 percent were found with nine field trials out of twelve. Also, low K:(Ca + Mg) ratios were found on three trials, which were increased with potassium fertilization levels of 150 kg K/ha. Accordingly, it is suggested that uptakes of 200, 48, 200, 30 and 30 kg/ha of N, P, K, Ca and Mg are required for good corn silage crops.  相似文献   

12.
Abstract

Oats (Avena sativa L. cv. Garry) were grown in microplots of three organic soils at site A (peat), site B (muck) and site C (mucky peat) in the summer of 1983. The soil surface (0 to 20 cm) varied in total Cu from 13 to 1659, 135 to 1745, and 81 to 1063 μg/g at sites A, B and C, respectively, due to applications of CuSO4.5H2O made at three rates in 1978, at sites A and B, and in 1979 at site C. Neither the rates of Cu application nor total soil Cu influenced yields. High levels of residual Cu increased the levels of Cu in straw at sites A and B, and in grain at site C. However, even the highest levels of Cu in straw and grains, were below the 20 μg/g which is often considered to be the threshold of Cu phytotoxicity. Data on the levels of other nutrients (P, K, Ca, Mg, Fe, Mn, Zn, B, Mo and S) in the tops and roots of oats generally revealed no significantly adverse effects of the Cu applications or total accumulated Cu in the three soils.  相似文献   

13.
Abstract

The lime and N requirements for triticale (X Triticosecale Wittmack) have not been established because of the relatively short history of the crop. This study was designed to evaluate the effects of lime and high N rates on triticale, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and rye (Secale cereale L.) on Dickson silt loam (Typic Paleudult) and Decatur silty clay loam (Rhodic Paleudult) in 1974–1976. The soils had pH values of 4.9 and 5.5 with no lime and 5.4 and 5.8, respectively, when limed as recommended. The fertilizer rates were 112, 140, and 170 kg N/ha. Yields and N, P, K, Ca, Mg, Mn, Fe, Al, Zn, Cu, and B were determined in straw and grain. Liming the Dickson soil increased the straw yields of barley at 112 kg N/ha and grain yields of the cultivars generally at the 170 kg N/ha rate. Liming the Decatur soil did not have consistent effects on straw yields but increased the grain yields of the wheat and rye cultivars. Increasing N rate increased the straw yields of wheat on Dickson but decreased the grain yields of barley in the same soil with no lime. Nitrogen fertilization did not have consistent effects on the Decatur soil. The N, P, K, Ca, Mg, and Mn compositions suggested that more differences occured at the species level than at the cultivar level.  相似文献   

14.
Abstract

Limited information is available which describes the response of established alfalfa (Medicago sativa L.) to topdressing applications of K fertilizer in the Southeastern United States. Field experiments were conducted for three years to determine alfalfa response to rates and time of K application. The experiments were established in two‐year old stands of alfalfa on a Decatur silty clay loam (clayey, kaolinitic, thermic Rhodic Paleudults) and a Hartsells fine sandy loam (fine loamy, siliceous, thermic Typic Hapludults) located in northern Alabama. Potassium as KCl was broadcast in the spring prior to regrowth. For split application treatments, the K was applied in early spring and after the second cutting. Annual total K rates ranged from 56 to 596 kg/ha. Potassium fertilization maintained alfalfa stand density on both soils, but the experiment on the Decatur soil was discontinued after two years due to severe stand loss when the lowest rate of added K was used. Alfalfa yields were increased by the application of K and maximum yields occurred when K was applied according to soil test recommendations made by the Auburn University soil testing laboratory. Potassium applications increased the concentration of K, decreased the concentration of Ca and Mg and had little effect on the concentration of N in tissue from the two cuttings sampled. The split application of K did not consistently increase forage production. There was little movement of K below 25 cm in either soil when K rates of 56 to 596 kg/ha/yr were repeated yearly for up to three years.  相似文献   

15.
Abstract

Research data are limited on K and Wg requirements of peanuts (Arachis hypogaea L.) grown on sandy soils either with or without irrigation. Purposes of this study were (1) to determine Mg, K, and irrigation effects on yield, sound mature kernels (SMK's), and diseases of ‘Florunner’ peanuts grown on two sandy soils and (2) to determine sufficient amounts of Mg and K in peanut leaves and soils. Field experiments were conducted for three years on a Lakeland sand (thermic, coated Typic Quartzipsainments) and a Fuquay loamy sand (siliceous, thermic, Arenic Plinthic Paleudults). Both soils initially tested low in Mehlich 1 extractable K and Mg, but Lakeland was lower than Fuquay in both K and Mg. Factorial treatments were 0, 67, 67 (split into three applications), and 134 kg Mg/ha as MgS04 and 0, 56, 112, and 224 kg K/ha as KC1.

Neither irrigation, K, nor Mg treatment affected number of diseased plants. (Sclerotium rolfsii) or pod rot on either soil. Also, yield and % SMK's were not affected by any treatment any year on Fuquay soil. On Lakeland soil, yields were increased by irrigation 60.3% in 1980 and 11.0% in 1982, by K rates of 56 kg/ha or more each year, and by Mg rates of 67 kg/ha or more in 1978 and 1982. Yields (3‐yr average) were increased 14.7% by Mg with K and 30.7% by K with Mg. Magnesium plus K increased yields 69.3% over the control. Treatments had no consistent effects on % SMK's. Concentrations of K and Mg in leaves and soils were increased by increased rates of application but were not affected by irrigation. Minimum sufficiency levels for maximum yield were 10 and 2.0 g/kg for leaf K and Mg and 20 and 11 ng/kg for soil K and Mg (0 to 30 cm depth), respectively.  相似文献   

16.
Abstract

Using predictably excessive rates of N, P and K for potatoes on a well decomposed and intensively fertilized organic soil, it was observed that while N depressed yields somewhat, there were neither deleterious nor beneficial effects from the application of P or K. The highest rates of P and K used were 1792 and 3584 kg/ha respectively. Increasing rates of N decreased B concentrations in the potato leaf tissue while increasing rate of K resulted in increasing concentrations of B. Zinc tended to be higher in leaf tissue as excessive phosphorus application rates increased.  相似文献   

17.
Abstract

A pot experiment was conducted to determine most limiting nutrients for maize performance using nutrient omission treatments in three soil types of southwestern Nigeria. There were six treatments; full nutrient [120?kg nitrogen (N)/ha, 40?kg phosphorus (P)/ha, 80?kg potassium (K)/ha, 10?kg molybdenum (Mo)/ha, and 5?kg zinc (Zn)/ha]; full nutrient minus N, P, K, Mo, and Zn including control was replicated thrice. Treatments were arranged as split plot in a complete randomized design. Data were collected on growth parameters, shoot, root dry weights, and NPK uptakes. Data were subjected to analysis of variance and means separated using LSD0.05. Majeroku and Egbeda soils and full nutrient supported better maize growth and NPK uptakes. Shoot weight was higher in Egbeda while root weight was higher in Itagunmodi soil. Phosphorus was the most limiting in Egbeda and Itagunmodi soils, and nitrogen in Majeroku soil. In conclusion, maize growth, nutrient uptake and most limiting nutrient varied with soil types.  相似文献   

18.
秋延迟番茄氮、磷、钾优化施肥方案研究   总被引:4,自引:2,他引:2  
采用三因子二次饱和D-最优设计(310),研究了氮、磷、钾配施对秋延迟番茄产量和品质的影响,并建立了以氮、磷、钾用量为变量因子,番茄产量和品质为目标函数的三元二次数学模型。通过对模型解析表明,氮、磷、钾对番茄产量和品质均有显著影响,且两两间存在显著的互作效应,但以钾肥对番茄产量、品质的影响较大。在低水平条件下,番茄产量、品质均随氮、磷、钾使用量的增加而提高;当氮、磷、钾用量过多,则导致产量、品质降低。通过计算机模拟运算得出,本试验条件下,番茄产量达140 t/hm2、品质综合评分达95分以上的施肥方案为N 520.2~758.4 kg/hm2、P2O5294.8~367.3 kg/hm2、K2O 1051.5~1299.8 kg/hm2,适宜的N、P2O5、K2O施用比例约为1∶0.52∶1.84。  相似文献   

19.
Introduction: The application of organic fertilisers to replenish soil organic matter and improve soil fertility and productivity has become common agricultural practice.

Aim of the study: This research deals with the effects of soil amendment with sewage sludge compost (SSC) on organic carbon, nitrogen total, nitrogen mineral and available P, K, S and Mg mineralisation in two contrasting soils. The various statistical tools used in this study have allowed us to present another conceptualisation of nutrient increments or losses as an effect of SSC applied. In order to distinguish groups of nutrients which are similar, a cluster analysis was used. A two-way analysis of variance was applied to compare the increments of the content of nutrients in the soils.

Material and Methods: A 3-year pot experiment was conducted, employing a randomised, factorial design with two soils (light and medium) and one amendment treatment as a compost at a rate equivalent to 6 Mg ha?1. The following parameters of chemical soil properties were determined: contents of organic carbon (Corg), total nitrogen (Ntot), amounts of available P, K, Mg, S and mineral nitrogen (Nmin).

Results: The SSC showed a similar influence on the fertility of both soils. It was affirmed that application of SSC results in a statistically significant increase in the contents of soil organic carbon. The amounts of total and mineral N, as well as available P and S were subjected to different patterns of quantity changes expressed by both increase and loss. Moreover, a statistically significant loss of available K amounts was observed in both soils.

Conclusions: The findings of the study indicated that mature SSC becomes a long lasting fertiliser, slowly subjected to decomposition processes. Therefore, it may influence small increases in nutrient amounts in soils, in relation to the contents obtained for the control soil.  相似文献   

20.
Abstract

The effects of mixing lime and large quantities of phosphorus and potassium fertilizers with the subsoil were studied on 16 Maryland subsoils. These subsoils were covered with 10. cm of a fertile surface soil so the subsoils’ effect would be the major variable. Soybeans were grown on these soils in the greenhouse. These subsoils received 65.2 and 83.0 ug/g of phosphorus and potassium respectively. Two treated subsoils were also studied in the field. Simulated subsoiling in the field was accomplished by digging to a depth of 50.8 cm. Lime, 148 or 440 Kg P/ha, and 186 or 558 Kg K/ha were mixed with each 15 cm depth of subsoil. Soybeans and/or barley were planted on the field plots.

In general, the subsoils studied in the greenhouse indicated that the combined amendments of lime, phosphorus and potassium to the subsoils increased root production in the subsoil, nitrogen content in the soybean shoots, and yield.

First year field results on the Othello (Typic Ochraquult) soil indicated that soybean yields on treated subsoil plots were not significantly different from soil receiving the same surface applications of fertilizer. However the second year after treatment, the yields of double cropped soybeans and barley were increased by 706 Kg/ha (10.5 bu/acre) and 710 Kg/ha (14.4 bu/acre) respectively when compared to similar quantities of phosphorus and potassium applied to the surface soil of nonsubsoiled plots.

On the Monaouth (Typic Hapludult) soil, the first year yields of subsoil plots treated with lime, phosphorus, and potassium also failed to improve yields compared to surface application of the fertilizer. Lime, 440 Kg P/ha, and 558 Kg K/ha applied to the subsoil did significantly improve yields of full season soybeans over the untreated soil by 720 Kg/ha (10.7 bu/acre).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号