首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
Abstract

A two-year field experiment was conducted to investigate the impact of short crop rotation and organic amendments on rapeseed yield under weed competition conditions. The primary experimental plots consisted of either triticale or pea as a prior crop, consisting of four subplots with either 25 tons of composted cattle manure (CCM), 150?kg urea N ha?1 (N), 25 tons composted cattle manure + 75?kg urea N ha?1 (CCM?+?N), or no urea N or manure added as the control (C0). Rapeseed seed yield was not significantly affected by previous crops, except for rapeseed grown after pea which had slightly higher seed yield (2058?kg ha?1) than those grown after triticale (1942?kg ha?1). Plants that received CCM?+?N produced the highest amount of seed yield (2447?kg ha?1), but were not significantly different from plants that received just urea N (2218?kg ha?1). Weeds gained more biomass when the previous crop was pea compared to those whose previous crop was triticale. Weeds in plots that received CCM?+?N produced the greatest biomass, followed by N, and CCM plots, respectively.  相似文献   

2.
To efficiently use nitrogen (N) while protecting water quality, one must know how a second-year crop, without further N fertilization, responds in years following a manure application. In an Idaho field study of winter wheat (Triticum aestivum L.) following organically fertilized sugarbeet (Beta vulgaris L.), we determined the residual (second-year) effects of fall-applied solid dairy manure, either stockpiled or composted, on wheat yield, biomass N, protein, and grain N removal. Along with a no-N control and urea (202 kg N ha?1), first-year treatments included compost (218 and 435 kg estimated available N ha?1) and manure (140 and 280 kg available N ha?1). All materials were incorporated into a Greenleaf silt loam (Xeric Calciargid) at Parma in fall 2002 and 2003 prior to planting first-year sugarbeet. Second-year wheat grain yield was similar among urea and organic N sources that applied optimal amounts of plant-available N to the preceding year’s sugarbeet, thus revealing no measurable second-year advantage for organic over conventional N sources. Both organic amendments applied at high rates to the preceding year’s sugarbeet produced greater wheat yields (compost in 2004 and manure in 2005) than urea applied at optimal N rates. On average, second-year wheat biomass took up 49% of the inorganic N remaining in organically fertilized soil after sugarbeet harvest. Applying compost or manure at greater than optimum rates for sugarbeet may increase second-year wheat yield but increase N losses as well.

Abbreviations CNS, carbon–nitrogen–sulfur  相似文献   

3.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

4.
Appropriate nitrogen (N) management practices are of critical importance in improving N use efficiency (NUE), maize (Zea mays) yield and environmental quality. A six-year (2005–2010) on-farm trial was conducted in Ottawa, Canada to assess the effects of N rates and application methods on grain yield and NUE. In four out of the six-year study, grain yield increased by 60–77 kg ha?1 by sidedress, compared to 49–66 kg ha?1 for each kg N ha?1 applied at preplant. Grain yield response to N between the two strategies was similar in the other growing seasons. Sidedress strategy required 15 kg N ha?1 less of the maximum economic rate of N (MERN) than preplant application. Our results indicate that sidedress application of 90–120 kg N ha?1 with a starter of 30 kg N ha?1 resulted in greater yield, grain quality and NUE than preplant N application in this cool, humid and short growing-season region.  相似文献   

5.
The purpose of this research project was to 1) evaluate rate of compost application and 2) to compare compost with uncomposted raw material and inorganic fertilizer N application upon maize and soybean growth and productivity, and upon soil characteristics. During the first three years of the study, the source of uncomposted material and compost was food waste and ground newsprint. During years 4 to 9 of the study, the source of uncomposted material and compost was dairy cow manure and wood chips. Application rates in field site 1 were 0, 11.2, 22.4, 33.6 and 44.8 Mg ha?1 compost, 44.8 Mg ha?1 uncomposted material and 140 kg ha?1 fertilizer N (as urea). Application rates in field site 2 were 0, 22.4, 44.8, 67.2 and 134.4 Mg ha?1 compost, 134.4 Mg ha?1 uncomposted manure and 180 kg ha?1 fertilizer N (dry matter basis). The high rates of compost application significantly raised organic matter levels, and available P and K compared to inorganic fertilizer N. Uncomposted manure and increasing compost application rates significantly increased grain yield, number of kernels per plant and plant weight. Composting significantly reduced pathogen indicator bacteria concentrations. The data of this study suggest that on these high organic matter soils 22.4 Mg ha?1 to 44.8 Mg ha?1 are optimal compost application rates.  相似文献   

6.
Field experiments were conducted in 2010 and 2011 at the Agricultural College of Shiraz University to evaluate the effects of cattle manure and nitrogen (N) fertilizers on soil properties such as soil organic carbon (SOC), soil organic nitrogen (SON), soil electrical conductivity, soil pH and corn yield under two tillage systems. Treatments included tillage systems in two levels as conventional tillage and reduced tillage as subplots, cattle manure (0, 25 and 50 tons ha?1) and N fertilizer (0, 125 and 250 kg N ha?1) as sub-subplots. Results showed that SOC and SON were significantly affected by tillage system in both years of the experiment. SOC and SON were higher in reduced tillage compared to conventional tillage. Tillage system had no significant effect on grain yield, plant height and 1000 seed weight. Increased cattle manure rates at 25 and 50 tons ha?1 increased grain yield by 27% and 38%, respectively, in 2010 and 25% and 25% in 2011. The results showed that application of cattle manure combined with N fertilizer might be an efficient management to increase soil productivity in southern Iran, in soils with poor organic content. Additionally, reduced tillage showed to be an efficient method to increase soil organic matter.  相似文献   

7.
The agronomic benefits of manure application to increase rice production have been recognized, but the impact on global change has always been a controversial topic. This study was designed to determine the separate and combined effects of cattle manure (CM) and nitrogen (N) fertilizer on rice yield, N efficiency, and methane (CH4) emissions from rice cultivation. A pot-scale experiment was conducted with four levels (0, 60, 120, and 180 kg ha?1) of N from urea and two levels (120 and 180 kg ha?1) of N from combination of urea and CM (Urea:CM = 60:60 and 60:120). Rice yield and physiological N efficiency were obtained using agronomic measurements. To determine the global warming potential (GWP) of each treatment, CH4 emissions were measured throughout the rice-growing period. Grain yield (GY) was not significantly different between the treatments of 120 and 180 kg ha?1 regardless of N source. However, both rates of CM treatments enhanced CH4 emission and differences in GWP were significant. In conclusion, urea applied at 120 kg N ha?1 was optimal for rice productivity and environmental impact (EI) despite CM played a crucial role in improving the N efficiency and total N in the soil after harvest.  相似文献   

8.
A field experiment was conducted at the Arkansas Valley Research Center in 2005 through 2007 to study the effects of manure and nitrogen fertilizer on corn yield, nutrient uptake, N and P soil tests, and soil salinity under furrow and drip irrigation. Manure or inorganic N was applied in 2005 and 2006 only. There were no significant differences in corn yield between drip and furrow irrigation even though, on average, 42% less water was applied with drip irrigation. Inorganic N or manure application generally increased grain yield, kernel weight, grain and stover N uptake, and grain P uptake. Nitrogen rates above 67 kg ha?1 did not increase grain yield significantly in 2005 or 2006, nor did manure rates in excess of 22 Mg ha?1. High manure rates increased soil salinity early in the season, depressing corn yields in 2005 and 2006, particularly with drip irrigation. Salts tended to accumulate in the lower half of the root zone under drip irrigation. Residual nitrate nitrogen from manure and inorganic N application sustained corn yields above 12.0 Mg ha?1 in 2007. More research is needed to develop best manure and drip irrigation management for corn production in the Arkansas Valley.  相似文献   

9.
ABSTRACT

Low concentrations of P and organic manure in savanna soils limit cowpea response to rhizobia. The study was conducted to determine the combined effect of P and organic manure on cowpea response to rhizobia in a factorial experiment arranged in randomized complete block design with three replications on smallholder farmers’ fields in northern Ghana in 2015. The factors were two levels of Bradyrhizobium inoculant, two levels of P fertilizer, three treatments of manure (fertisoil, cattle manure, and no manure). Addition of Bradyrhizobium inoculant to P and fertisoil significantly increased shoot biomass yield from 1677 kg ha?1 in the plots without Bradyrhizobium inoculation to 1913 kg ha?1. Likewise, the addition of Bradyrhizobium inoculant to P and cattle manure significantly increased shoot biomass from 1437 kg ha?1 to 1813 kg ha?1. Grain yield increases of 1427 and 1278 kg ha?1 were obtained over the control when either fertisoil or cattle manure and P, respectively, were added to Bradyrhizobium inoculant. The value cost ratio for adding Bradyrhizobium inoculant to phosphorus and fertisoil was two indicating that it could be attractive to risk-averse smallholder farmers. The study demonstrated the potential of the combined application of organic matter and P to improve cowpea response to Bradyrhizobium inoculation.  相似文献   

10.
Field experiments were conducted during successive rainy seasons in 2006 in the Chau Thanh district of southern Vietnam to evaluate the effects of an inoculant plant growth promoter product called “BioGro” and N fertiliser rates on yield and N and P nutrition of rice. The results indicated that inoculation with BioGro, containing a pseudomonad, two bacilli and a soil yeast, significantly increased grain and straw yields and total N uptake in both seasons, as well as grain quality in terms of percentage N. Nitrogen fertilisation increased grain and straw yields as well as total N and P uptakes significantly in both cropping seasons. The estimated grain yield response to added N was quadratic in nature with and without added BioGro. In the first crop, BioGro out-yielded the control up to 90 kg urea N ha?1 whilst in the second season the beneficial effect of BioGro was observed up to 120 kg urea N ha?1, indicating either an interaction of the inoculant with higher yielding seasonal conditions or a cumulative effect of BioGro application. In the first season, the estimated N rate for maximum grain yield was 103 kg N ha?1 with BioGro while it was 143 kg N ha?1 without BioGro. The maximum estimated grain yields were 3.21 and 3.18 t ha?1 with and without BioGro, respectively. This information indicates that BioGro was able to save 40 kg N ha?1 with an additional rice yield of 30 kg ha?1 in the season. In the second rainy season, the estimated N rates for maximum grain yields were 94 and 97 kg N ha?1 with and without BioGro, respectively. The estimated maximum grain yields were 3.49 and 3.25 t ha?1 with and without BioGro, respectively. The two seasons’ combined results indicate that application of BioGro improved the efficiency of N use by rice significantly, saving 43 kg N ha?1 with an additional rice yield of 270 kg ha?1 in two consecutive seasons at the experimental site. The extra efficiency was shown by the fact that the same yield of rice was obtained with about 40 and 60 kg less fertiliser-N that the maximum yields with urea alone in the two successive harvests on the same plots.  相似文献   

11.
Field experiments were conducted with four nitrogen fertilizer treatments to study the effects of controlled-release urea combined with conventional urea on the nitrogen uptake, root yield, and contents of protein, soluble sugar, saponin, zinc (Zn), iron (Fe), magnesium (Mg), and copper (Cu) in Platycodon grandiflorum. Field experiments were conducted with four nitrogen (N) fertilizer treatments: no N fertilization; conventional urea with N rate of 175 kg N ha?1; conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 135 kg N ha?1. The results showed that nitrogen application significantly increased the yield of P. grandiflorum compared with the control. Treatment with controlled-release urea combined with conventional urea at 160 kg N ha?1 provided the highest yield of 7329.58 kg ha?1. Nitrogen application also increased the contents of soluble sugar, total saponin, protein, Zn, Fe, and Mg but decreased Cu content. Protein, saponin, and Zn contents were significantly higher, but Cu content was lower in P. grandiflorum fertilized with controlled-release urea combined with conventional urea than those fertilized with conventional urea alone. The combination of controlled-release urea with conventional urea at 160 kg N ha?1 was the optimal treatment under the experimental condition investigated in this study.  相似文献   

12.
Based on experiments conducted during 1988–2009 on rainfed pearl millet/sorghum with 9 treatments in Vertisols, an efficient treatment for sustainable productivity is identified. Twenty kg of nitrogen (N) from farmyard manure (FYM) + 20 kg N (urea) + 10 kg phosphorus (P) ha?1 in pearl millet and 40 kg N (urea) + 20 kg P + 25 kg zinc sulfate (ZnSO4) ha?1 in sorghum gave maximum yield and rainwater-use efficiency, whereas 20 kg N (FYM) + 20 kg (urea) + 10 kg P ha?1 in pearl millet and 40 kg (urea) + 20 kg P ha?1 in sorghum and gave maximum soil N, P, and potassium (K) over years. The regression model of 20 kg N (crop residue) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 for predicting sorghum equivalent yield separately through precipitation and soil variables, whereas 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 under combined model of both variables. Treatment of 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 was superior for attaining maximum sorghum equivalent yield of 1062 kg ha?1, net returns of Rs. 4805 ha?1, benefit/cost (BC) ratio of 1.50, and 127 kg ha?1 of soil N, 10.3 kg ha?1 of soil P, and 386 kg ha?1 of soil K over years.  相似文献   

13.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

14.
Abstract

During the last century, concerns about nitrate presence in the groundwater have tremendously increased worldwide, mainly because of its detrimental consequences on environment and human health. There are different factors contributing their past in nitrate pollution, farm manure is given due consideration. Knowing above facts, a field study was performed to check the effect of different farm yard manure (FYM) levels with urea on nitrate distribution in the soil profile and yield of wheat crop. The experiment was set out in a randomized complete block design, consisted of application of nitrogen at 125?kg ha?1 from urea, 80?kg ha?1 of N from urea +10 tons FYM ha?1 and 20 tons FYM ha?1 with three replications. Wheat (cultivar S7ehar-2006) was sown as test crop. Soil samples were examined to measure the nitrate concentration from four different depths (0–25, 25–50, 50–75, and 75–100?cm) after harvesting. Results showed that the straw yield, total biomass, spike length, and number of grains per spike and 1000-grain weight were significantly influenced by fertilizer strategies. All manure treatments significantly affected the infiltration rate and concentration of nitrate at different depths of the soil profile. Farm yard manure showed greater nitrate concentration up to 50?cm depth as compared to alone urea and combined application, while at the depth of 100?cm, combined application of urea and FYM showed a minimum concentration of nitrates than alone application of either urea or FYM.  相似文献   

15.
Organic amendments recycle nutrients, but N2O emissions are both environmental and agronomic concerns. We conducted a 4-year field experiment to determine no-till barley (Hordeum vulgare L.) yield and nutrient uptake and soil N2O emissions following a single application of six amendment treatments: (1) no amendment (Check); (2) synthetic N fertilizer (Fert); (3) fresh beef cattle feedlot manure (ManureF); (4) beef cattle feedlot manure compost (CompostR); (5) beef cattle feedlot manure composted with cattle mortalities (CompostM); and (6) separated solids from anaerobically digested cattle feedlot manure (ADM). Barley grown in Year 1 (2006), Year 2 (2007), and Year 4 (2009) (with Year 3 (2008) under fallow) had higher grain yields from ManureF (4.73 Mg ha?1) in Year 2 and ADM (6.30 Mg ha?1) in Year 4 (p < 0.05) than other treatments. The grain N and P contents were not affected (p > 0.05), but N uptake over 3 years (112.8 kg N ha?1 yr?1), and P uptake in Year 1 (19.1 kg ha?1 yr?1) and Year 2 (14.3 kg ha?1 yr?1) from ManureF, were higher (p < 0.05×) than other treatments. The cumulative N2O emissions from ManureF in Year 1 (1.488 kg N ha?1) and from ADM in Year 2 (1.072 kg N ha?1) were higher (p < 0.05) than other treatments while the fraction of applied N emitted as N2O was small (0.00 to 0.79%) and not affected by treatment. However, the percentages of applied N emitted as N2O from compost and ADM were similar to synthetic fertilizer and livestock manure.  相似文献   

16.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

17.
Information on the combined use of organic and inorganic fertilizers on wheat (Triticum aestivum L.) productivity is lacking under moisture stress conditions of Northwest Pakistan. The present experiment was designed to ascertain the combined effect of organic and inorganic fertilizer management on rainfed wheat. Four levels of farm yard manure, FYM, (0, 10, 20, and 30 Mg FYM ha?1) and nitrogen (0, 30, 60, 90, and 120 kg N ha?1) were used. The experiment was conducted at the Agriculture Research Farm of NWFP Agricultural University Peshawar, Pakistan during crop season of 2003–04. The experiment was laid out in randomized complete block design with four replications. Plant height, productive tillers m?2, grains spike?1, grain yield, straw yield, and harvest index were significantly higher in plots which received 30 Mg FYM ha?1. In the case of nitrogen (N) no distinctive differences between the effect of 90 and 120 kg ha?1 was observed for most of the parameters. Nitrogen application at 90 kg ha?1 had significantly higher; plant height, grains spike?1, grain yield, straw yield, and harvest index as compared with the lower levels, i.e., 0, 30, and 60 kg N ha?1 but were at par with 120 N kg ha?1. Significantly higher numbers of productive tillers m?2, grains spike?1, grain yield, straw yield and harvest index were recorded with application of 30 Mg FYM ha?1 + 90 kg N ha?1. The present study suggested that application of 30 Mg FYM ha?1 + 90 kg N ha?1 are promising levels for higher production of wheat under moisture stress conditions. Further research work is needed to ascertain the effect of N above 90 kg ha?1 under different moisture regimes.  相似文献   

18.
Although many studies have examined the effect of different application rates of cattle manure, swine manure, and urea fertilizer on the distribution of phosphorus (P) fractions in soil, few studies have correlated P fractions in soil with inorganic P (Pi) and organic P (Po) in leachates. As part of a long-term field study, cattle and swine manures were applied to a loamy soil based on a nitrogen (N) content equivalent of 100 (low) and 400 (high) kg total N ha?1 yr?1 and were compared to urea fertilizer at 100 kg N ha?1 yr?1 and an unamended control soil. Readily available Pi [resin and sodium bicarbonate (NaHCO3)] was significantly greater in cattle manure– and swine manure–amended soil at a high application rate than in the control. With some exceptions, urea did not significantly affect P fractions in sequentially extracted P pools. Leaching of Pi and Po was at levels of environmental concern when cattle and swine manures were applied at the high application rate but not at the low application rate. Cattle manure had significantly greater concentrations of Pi and Po removed by leaching compared to swine manure, most likely because of its narrow N/P ratio and greater amount of P added. Positive correlations were observed between resin Pi and total leachate Pi and between NaHCO3-Pi and total leachate Pi, indicating the value of these measurements in predicting P mobility. The results suggest that a threshold (40 μg P g?1 of soil) must be exceeded before a positive correlation occurs.  相似文献   

19.
Long-term fertilizer experiments were conducted on cotton (Gossypium hirsutum) for 21 years with eight fertilizer treatments in a fixed site during 1987–2007 to identify an efficient treatment to ensure maximum yield, greater sustainability, monetary returns, rainwater-use efficiency, and soil fertility over years. The results indicated that the yield was significantly influenced by fertilizer treatments in all years except 1987 1988, and 1994. The mean cotton yield ranged from 492 kg ha?1 under the control to 805 kg ha?1 under 25 kg nitrogen (N) [farmyard manure (FYM)] + 25 kg N (urea) + 25 kg phosphorus (P) ha?1. Among the nutrients, soil N buildup was observed with all treatments, whereas application of 25 kg N + 12.5 kg P ha?1 exhibited increase in P status. Interestingly, depletion of potassium (K) was recorded under all the fertilizer treatments as there was no K application in any of the treatments. An increase in soil N and P increased the plant N and P uptake respectively. Using relationships of different variables, principal component (PC) analysis technique was used for assessing the efficiency of treatments. In all the treatments, five PCs were found significant that explained the variability in the data of variables. The PC model of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 explained maximum variability of 79.6% compared to other treatments. The treatment-wise PC scores were determined and used in developing yield prediction models and measurement of sustainability yield index (SYI). The SYI ranged from 44.4% in control to 72.7% in 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1, which attained a mean cotton yield of 805 kg ha?1 over years. Application of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 was significantly superior in recording maximum rainwater-use efficiency (1.13 kg ha?1 mm?1) and SYI (30.5%). This treatment also gave maximum gross returns of Rs. 30272 ha?1 with benefit–cost ratio of 1.60 and maintained maximum organic carbon and available N, P, and K in soil over years. These findings are extendable to cotton grown under similar soil and agroclimatic conditions in any part of the world.  相似文献   

20.
Crop response to manure application may extend beyond the year of application due to residual nutrient availability. A field experiment was conducted to evaluate feedlot manure application (at 0 22.5, 45, 90 and 180 Mg ha?1) and subsequent residual effects (24-yr) on wheat and sorghum grain yields. Sorghum grain yields increased significantly with manure and nitrogen (N) fertilizer application. However, winter wheat grain yield showed no consistent response to manure and fertilizer application in the 9-yr when manure was applied. Averaged across the subsequent 24 years, residual feedlot manure and annual N fertilizer application significantly increased sorghum and winter wheat grain production. Application of cattle manure did increase soil organic matter content, pH and plant available soil nutrients. Our finding showed that growers could take advantage of the long-term benefits of nutrients supplied from manure application to bolster crop production, improve soil quality and reduce fertilizer input cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号