首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Phosphorus fertilizer recommendations were compared by interpretations from P isotherms, Olsen extractable P and the Mitscherlich‐Bray model based on the Olsen method for 15 soils from the Chaouia (dryland) region of Morocco. The P isotherms were fit to straight line and second degree polynomial equations. The P buffer indexes (PBI) derived from the isotherms were not significantly correlated to P buffer capacities as measured by a single P buffer capacity index, but negatively correlated to Olsen P (r = ‐0.63), relative yield (r = ‐0.76) and P uptake (r = ‐0.66). Phosphorus in solution was a quadratic function of P added in 0.01 M CaCl2equilibrium solution. The P fertilizer recommendations to maintain soil solution P concentrations at 0.01, 0.12 and 0.20 mg P L‐1were higher than recommended by direct interpretation of plant response to Olsen extractable P and the quantity based on the Mitscherlich‐Bray model as calculated from Olsen available P values. The P fertilizer recommended to maintain soil solution P of 0.10 mg P L‐1was significantly correlated with Olsen P (r = 0.71) as was that recommended Mitscherlich‐Bray log transformation model (r = 0.81), and nonlinear least square estimation (r = 0.78). Field research will be needed to evaluate if the P fertilizer recommended to maintain this solution P concentration is adequate for maximum economic wheat grain yield under field conditions  相似文献   

2.
Abstract

Poor accessibility and cost of soil testing reduce effectiveness of fertilizer use on small‐scale subsistence farms, and inadequate funding promotes adoption of soil tests in developing countries with minimal validation. For example, Mehlich I extraction of phosphorus (P) currently used extensively in Guatemala may not be suitable for Guatemala's broad range of soils. At least four alternatives are available but relatively untested [Bray 1, Mehlich III, Olsen, and pressurized hot water (PHW)]. Pressurized hot water is relatively simple and inexpensive but is not yet tested against other extraction methods under variable P or potassium (K) fertilization levels. To determine whether PHW‐extracted nutrients could be used to predict maize yield and nutrient concentration and uptake, soil, plant tissue and grain samples were obtained from a multiple‐site field study, and calibration studies were conducted using five rates of P and three rates of K on soils incubated without plants or cropped with maize in greenhouse and field conditions. In the multiple‐site field study, maize yield related significantly to PHW‐extractable P (r2=0.36) and to leaf P concentration (r2=0.23), but Mehlich I–extractable P did not. In the two soils used in the greenhouse study, maize yield, vegetative P concentration, and total P uptake by maize were predicted by PHW‐extractable P (R2=0.72, 0.75, and 0.90, respectively). In the field experiment, grain yield was not improved by P or K application, but P concentration of maize leaf tissue did relate significantly with PHW‐extracted P (R2=0.40). Mehlich I did not. There were no yield responses to K application in any experiment, but relationships defined between extractable K for all five K‐extraction procedures and soil‐applied K were similarly significant. In comparison, PHW was as good as or better than Olsen whereas Bray 1 and Mehlich III were less consistent. Mehlich I was overall the poorest P extractant. Mehlich I extraction of P should be replaced by one of the four alternatives tested. PHW is the least expensive and, therefore, most viable for use in Guatemala soils.  相似文献   

3.
Abstract

A long‐term (1968–1987) field study using corn‐soybean in rotation was conducted to compare the effect of rock phosphate (RP) and superphosphate (SP) at two lime levels on crop yield, soil available phosphorus (P) as Bray P‐1 (0.025M HCl + 0.03M NH4F) and Bray P‐2 (0.1M HCl + 0.03M NH4F) tests, and on the relationship between crop yield and available P tests. Treatments included a control, application of RP and SP ranging from 12 to 96 kg P2O5 ha‐1 yr‐1, and combinations of RP with SP or sulphur at various rates. The RP was applied once in 1968 at 8 times the annual rate while SP was applied annually until 1985. Corn and soybean yields increased with P application, more with SP than with RP. Bray P‐l and Bray P‐2 increased linearly with the amount of P applied as SP or RP. A significant correlation (r > 0.64) was found between corn yield and Bray P‐2 at low lime level with both P sources. In contrast, a poor correlation (r < 0.50) was found between soybean yield and soil P tests. Both RP and SP were effective sources of P fertilizers for corn on soils treated with a small amount of lime compared with a large amount of lime. Under low lime the Bray P‐2 accounted for 41% and 66% variability in com yield with applied RP and SP, respectively. On the other hand, Bray P‐1 was only of value when SP was the source of P.  相似文献   

4.
Abstract

Soil‐test correlation and calibration, a useful tool for fertilizer recommendations, has been little used in West Africa. Soils from a long‐term fertility experiment have been used to study the relationship between rice yields and soil extractable phosphorus (P) with Bray 1 and Olsen methods. The Cate and Nelson graphical method was used for critical limits of soil P determination. The critical limits of soil extractable P at 95% relative grain yield were 9 mg P for the Bray 1P and 17 mg P kg?1 for Olsen P. The Olsen P was more correlated (r=0.63) with rice grain yields than Bray P (r=0.50), but a strong correlation (r=0.92) was also observed between the values of the two methods. Results indicate that at levels less than these critical levels of extractable P, P fertilizers should be applied to increase rice yields.  相似文献   

5.
Abstract

The ammonium acetate (NH4OAc)‐EDTA soil phosphorus (P) extraction method was compared to either the Bray‐1 soil P extraction method for non‐calcareous soils or the Olsen soil P extraction method for calcareous soils to predict com and wheat plant tissue P concentration and grain yield responses. The NH4OAc‐EDTA method predicted yield and tissue P concentration responses to P fertilizer applications more accurately than the Olsen method at three of five sites. Both the Bray‐1 and NH4OAc‐EDTA methods were successful in predicting corn and wheat yield responses to P fertilizer applications in non‐ calcareous soils in many locations. However, a direct comparison of extracted soil P levels showed that the NH4OAc‐EDTA method extracted soil P at levels which were more closely related to the Bray‐1 method than the Olsen method.  相似文献   

6.
Abstract

Little attention has been devoted to calibrating plant tissue tests for phosphorus (P) in the field for upland rice in West Africa, although information is needed for improving crop production through efficient P nutrition. A field experiment was conducted under rainfed conditions in the 1994 season to establish the relationships between plant P content and grain yield of upland rice grown on an Ultisol, having a range in extractable P, in the humid forest zone of Ivory Coast. The critical limit of P content in the whole rice plant tops at the tillering stage, at 90% relative grain yield, was found to be 2 g kg‐1 P for the four upland rice cultivars tested. Total P uptake in the biomass was significantly correlated with rice grain (r=0.81, n=20) and straw (r=0.79) yields of the cultivars.  相似文献   

7.
Abstract

Fertilizer placement for corn (Zea mays L.) has been a major concern for no‐tillage production systems. This 3‐yr study (1994 to 1996) evaluated fertilizer phosphorus (P) or potassium (K) rates and placement for no‐tillage corn on farmers’ fields. There were two sites for each experiment involving fertilizer P or K. Treatments consisted ofthe following fertilizer rates: 0,19,and 39 kg P ha‐1 or 0, 51, and 102 kg K ha‐I. The fertilizer was broadcast or added as a subsurface band 5 cm beside and 5 cm below the seed at planting. Early plant growth, nutrient concentrations, and grain yields were measured. At the initiation of the study, soil test levels for P and K at the 0–1 5 cm depths ranged from optimum (medium) to very high across sites. Effects of added fertilizer and placement on early plant growth and nutrient concentrations were inconsistent. Added fertilizer had a significant effect on grain yields in two of twelve site‐years. Therefore, on no‐tillage soils with high fertility, nutrient addition, and placement affected early plant growth and nutrient utilization, but had limited effect on grain yield. Consequently, crop responses to the additions of single element P or K fertilizers under no‐tillage practices and high testing soils may not result in grain yield advantages for corn producers in the Northern cornbelt regardless of placement method.  相似文献   

8.
Abstract

Long‐term tillage and crop management studies may be useful for determining crop production practices that are conducive to securing a sustainable agriculture. Objectives of this field study were to evaluate the combined effects of crop rotation and tillage practices on yield and changes in soil chemical properties after 12 years of research on the Clyde‐Kenyon‐Floyd soil association in northeastern Iowa. Continuous corn (Zea mays L.) and a corn‐soybean [Glycine max L. (Herr.)] rotation were grown using moldboard plowing, chisel plowing, ridge‐tillage, or no‐tillage methods. Tillage and crop rotation effects on soil pH, Bray P1, 1M NH4OAc exchangeable K, Ca, and Mg, total C, and total N in the top 200 mm were evaluated. Profile NO3‐N concentrations were also measured in spring and autumn of 1988. Crop yields and N use efficiencies were used to assess sustainability. Bray P1 levels increased, but exchangeable K decreased for all cropping and tillage methods. Nutrient stratification was evident for no‐tillage and ridge‐tillage methods, while the moldboard plowing treatment had the most uniform soil test levels within the 200 mm management zone. Chisel plowing incorporated fertilizer to a depth of 100 mm. Soil pH was lower with continuous corn than with crop rotation because of greater and more frequent N applications. Profile NO3‐N concentrations were significantly different for sampling depth and among tillage methods in spring 1988. In autumn the concentrations were significantly different for sampling depth and for a rotation by tillage interaction. Estimated N use efficiencies were 40 and 50 kg grain per kg N for continuous corn, and 48 and 69 kg grain per kg N for rotated corn in 1988 and 1989, respectively. The results suggest that P fertilizer rates can be reduced, but K rates should probably be increased to maintain soil‐test levels for this soil association. Crop rotation and reduced tillage methods such as ridge‐tillage or chisel plowing appear to meet the criteria for sustainable agriculture on these soils.  相似文献   

9.
Abstract

Incineration reduces sewage sludge volume, but management of the resulting ash is an important environmental concern. A laboratory incubation study and greenhouse pot experiments with lettuce (Lactuca sativa L.) and corn (Zea mays L.) were conducted to examine the potential for recycling elements in sewage sludge incinerator ash in agricultural systems. Ash rates in both the laboratory and greenhouse were 0, 0.95, 3.8, 15.2, and 61.0 g/kg soil (Typic Hapludoll). Ash was also compared to equivalent rates of citrate soluble P from superphosphate fertilizer in a soil‐less growth medium. During soil: ash incubation, Olsen P and DTPA extractable copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) increased with incubation time at the higher ash rates. Release rates diminished rapidly, however, and the limited release of these elements after 280 days was associated with decreasing pH. In the greenhouse, ash amendment increased extractable soil P, plant tissue P, and the growth of lettuce and corn. Ash was a less effective P source than superphosphate fertilizer in the soil‐less growth medium and Olsen P levels were more consistent with these differences than Bray P. Ash increased extractable soil levels and plant tissue concentrations of calcium (Ca), magnesium (Mg), sodium (Na), Cu, and Zn, but extractable soil manganese (Mn) and plant tissue Mn decreased. Ash increased soil pH and extractable SO4‐S. DTPA extractable Cd and Pb increased, but chromium (Cr) and nickel (Ni) decreased. Lettuce accumulated higher amounts of these trace metals than corn, but tissue concentrations were at control levels or below detection limits in both crops.  相似文献   

10.
Abstract

Red soils are widespread in Southern China and other subtropical regions in the world. An improved management of phosphorus (P) is crucial for sustainable agriculture and environmental quality in red soil regions. Plant‐availability of P in red soils mainly depends on fertilization and biological cycling. Both laboratory analyses and greenhouse experiments were conducted to examine the relationships between plant P uptake, chemical index of P, and microbial biomass P in red soils with different fertility levels. Microbial biomass P ranged from 2.1 to 43 mg kg‐1 in the red soils and was significantly correlated with total P (r=0.84*), organic P (r=0.87*), or Bray I extractable P (r=0.94**). Extractable P plus organic carbon accounted for >85% of the variation in microbial biomass P in the red soils. The significant relationship between microbial biomass P and extractable P suggests that microbial biomass P has a great potential in predicting P‐supply ability in soil. Greenhouse experiments showed that there were close relationships between ryegrass dry matter yield, plant P uptake or tissue P concentration and microbial biomass P in the red soils. The corresponding correlation coefficients were 0.79*, 0.90*, and 0.91*, respectively. These results imply that microbial biomass P plays an important role in the availability of P to plants, and is a potential biological index of P availability in the red soils.  相似文献   

11.
Abstract

Soil series of extensive acreage were selected to evaluate their S‐supplying power under greenhouse conditions using alfalfa in one study and corn and grain sorghum as test crops in a second study. The soils were divided into two major groups by textural classification for statistical evaluations. The addition of sulfur significantly increased dry matter yields and sulfur content of the plant material on all soils through the course of these studies. Significant predictors of sulfur uptake include extractable SO4‐S and organic matter. Organic matter was a significant predictor of the percent yield response above the check yields on soils receiving S applications using corn and grain sorghum as test crops. Based on this equation, yield response would be expected in this greenhouse study with an organic matter content of 2.6% or less.  相似文献   

12.
Abstract

Although numerous soil‐test methods for estimating extractable phosphorus (P) have been developed around the world, their results are difficult to compare because of the very different scale levels used. In the present study, the Bray–Kurtz method (Bray‐P) is used as a reference value. Two other methods [lactate‐P and sodium bicarbonate (NaHCO3)‐P] were modified to facilitate the comparison of extractable‐P determinations, mainly by adjusting the shaking time. These three methods were applied to 101 soil samples from an extensive region of Argentina with soil pH values ranging from 5.5 to 8.5. The results confirm that the Bray‐P and the two modified methods (lactate‐P and NaHCO3‐P) determine similar contents of extractable P but are not applicable to all types of soils and conditions. Equations that minimize the statistical error were selected for soil properties such as organic carbon (OC) content, pH, soluble salts, and calcium carbonate content. Correlation coefficients between Bray‐P and NaHCO3‐P increased to 0.91 and 0.95 in soils with high and low OC levels, respectively. It was also demonstrated that the lactate‐P test is not suitable for soils rich in calcium carbonate or soluble salts. These two modified methods are expected to be useful for testing P values that impact agricultural production.  相似文献   

13.
Abstract

This research was undertaken on a paleudult soil in southern Brazil, 30° south latitude, to quantify lime and P effect upon soybean (Glycine max (L.) Merrill). A lime x P factorial experience with lime treatments of 0, 0.5, 1, and 2 times SMP interpretation to pH 6.5, and 0, 44, 88, 132, and 176 kg P/ha with 3 replications were installed. The experiment was conducted for 2 years (1973–74, 1974–75), with leaf‐N, P, and K; yield; seed‐N, P, and K; Bray P2 (0.03N NH4F + 0.1N HC1) avail‐able‐P and soil pH measurements completed each year. Data was evaluated with linear, quadratic, logarithmic, polynomial, segmented line, and multiple regression using the coefficient of determination as goodness of fit.

The best model fit between P treatment and Bray P2 available‐P was a quadratic equation; the model between relative yield and Bray P2‐P with 54% of the relative yield attributed to Bray P2 available‐P, a sigmented line. This model indicated point of maximum yield (91% relative yield) was obtained at 7.4 ppm‐P, with no increase in relative yield with increasing levels of soil available‐P. To calculate the P fertilizer necessary to increase available soil‐P to the level of maximum yield of equation Yp = [1639(7.4 ‐ xs)]1/2, where Yp = kg P/ha fertilizer needed; and xs = initial Bray P2 soil available‐P in ppm's. The lime effect upon soil pH was best described as a linear relationship. Yield increase with lime at this site was not significant at the 5% level.

The leaf‐N, P, and K increased significantly with soil available‐P levels. A second degree polynomial with logarithmic function best defined these relationships. The calculated DRIS indices and sum proved useful to evaluate the plant‐N, P, and K balance of each treatment.

Only seed‐P level was directly related to soil available‐P. Both seed‐N and seed‐K were highly correlated with indirect effects of soil available‐P levels.

Results from this study suggest the segmented line model would best interpret soybean yield response to Bray P2 available‐P for this soil. To obtain maximum yield using this model rather than the second degree polynomial would require less fertilizer P. Foliar analyses interpretation confirmed adequate plant‐P level would be supplied for maximum yield at this level of fertilization.  相似文献   

14.
Abstract

Bray 1 phosphorus (B1P) and sequential phosphorus (P) fractions were determined on soils treated with triple superphosphate (TSP), Gafsa (GPR), and Christmas Island phosphate rocks (CIPR), respectively, with and without manure. The fractions extracted in decreasing lability were iron oxide–impregnated paper strip P (Pi‐strip P), inorganic (Pi), and organic (Po) bicarbonate (NaHCO3‐Pi and ‐Po), hydroxide [sodium hydroxide (NaOH)‐Pi and ‐Po], hydrochloric acid (HCl) P, and residual (residue P). The magnitude of B1P was in the order TSP>GPR=CIPR. Average B1P from PRs was two‐fold the amount in TSP, whereas that of the fractions was NaOH‐P>Residue P<sodium bicarbonate (NaHCO3) P<Pi‐strip P <HCl. Bray 1 extracted mainly the most labile fractions (Pi‐strip P and NaHCO3‐Pi), and plant P uptake was correlated mainly to NaOH‐Po and NaHCO3‐Pi. Magnitude of various fractions differed between TSP and PRs. Both B1P and the fractions were equally correlated to P uptake (R2=0.38**). Nevertheless, sequential fractionation appears to be a powerful tool to identify the P status and availability in soil.  相似文献   

15.
Abstract

Soil phosphorus (P) deficiency is a constraint to crop production in many regions of sub‐Saharan Africa, which could be overcome through use of either soluble P fertilizer or sufficiently reactive phosphate rock (PR). A field study was conducted with corn (Zea mays L.) for three growing seasons (18 months) on a P‐deficient, acid soil in Kenya to compare a soluble P source (triple superphosphate, TSP) and relatively reactive Minjingu PR from Tanzania. In the 18 months following application of 250 kg P ha‐1, bicarbonate extractable inorganic soil P (Pi) was higher for application of TSP than PR, but Pi extracted with a mixed anion‐cation resin was comparable for TSP and PR. Inorganic P extracted by 0.1M NaOH, without prior extraction of resin and bicarbonate Pi, decreased during the 18 months following TSP application, but increased following PR application. After 18 months, about 7% of the added PR‐P remained as Ca‐bound P that was extracted with 1M HCl. The 1M HCl extractable P., however, underestimated residual PR‐P that gradually dissolved and supplied plant‐available P, as indicated by recovery of <40% of PR‐P added to soil in laboratory incubations even though PR solubility in HCl was >90%. Minjingu PR was an effective source of P for corn. Corn yields were comparable for TSP and PR, and the relative agronomic effectiveness of PR averaged 107% in Season 1 and 79% in Season 3. Anion resin and mixed anion‐cation resin appeared to be superior to bicarbonate and NaOH as a soil P test for use with both TSP‐ and PR‐treated soils.  相似文献   

16.
Abstract

Chloride (Cl) toxicity was suspected in corn (Zea mays L.) growing in a poorly‐drained Atlantic Coast Flatwoods soil where Cl toxicity of soybean {Glycine max (L.) Merr.} was a problem. Field and greenhouse research was conducted with rates of applied Cl in an effort to induce Cl toxicity in corn.

‘Trojan 114’ corn was grown in the greenhouse with Cl rates (KCl) of 0, 364, and 728 ug/g and in the field with rates of 0, 85, 170, and 340 kg/ha. Potassium sulfate (K2SO4) treatments were included to supply equivalent amounts of K as that in KCl.

Phytotoxicity of corn did not occur in greenhouse or field experiments with any fertilizer treatment. In the greenhouse Cl concentrations in 26‐day old corn plants grown in a poorly‐drained Flatwoods soil (Leefield sand ‐ arenic Plinthaquic Paleudult) for the 0 and 728 ug Cl/g treatments were 5.0 and 32.7 g/kg in shoots, 1.6 and 14.9 g/kg in ear leaves, and 1.3 and 16.5 g/kg in stalks, respectively. In the field, Cl treatments applied to corn grown in a poorly‐drained Flatwoods soil (Alapaha sand ‐ arenic Plinthic Paleaquults) were not as effective in increasing Cl concentrations in shoots and ear leaves as that for corn grown in a well‐drained soil (Tifton loamy sand ‐ thermic Plinthic Paleudult) apparently because of the greater amount of residual soil Cl in the poorly‐drained soil. Concentrations of Cl in shoots of corn receiving O and 340 kg Cl/ha were 3.8 and 18.0 g Cl/kg, respectively, for corn grown in the well‐drained soil and 16.1 and 18.0 g Cl/kg, respectively, for corn grown in the poorly‐drained soil. Grain yields were not affected by fertilizer treatments on either soil and Cl concentration in grain for corn grown in the Tifton soil was not different among treatments. These data indicate that corn is not very susceptible to high levels of soil Cl.  相似文献   

17.
Abstract

Phosphorus extractants have not been tested extensively in the Southeast. An experiment was carried out to compare four P extractant methods using samples from a field P‐K factorial experiment with soybeans (Glycine max (L.) Merr.) at three locations in Georgia over four years. There were five P rates ranging from none to 80 kg ha‐1. Soils and plant tissue were sampled at mid‐summer and yields were recorded. The four P extractants compared were Olsen, Mehlich 1, Mehlich 2, and Bray 1. Quadratic regressions for soil P versus plant P and P rates were not significant compared to linear regressions. There were no significant yield responses to P. All extractants except Olsen were similar in their response to added fertilizer P as measured by linear r2 values. Olsen P gave lower linear r2 values both with P rate and with plant P. Mehlich 1 values were highly correlated with Mehlich 2 (0.94**) and Bray 1 (0.96**). Mehlich 2 and Bray 1 gave nearly the same soil P values with linear regressions of slope of 1.0 and low intercepts. Results from these experiments show that Mehlich 1, Mehlich 2, or Bray 1 could be used successfully on these soils, but that Olsen should be avoided.  相似文献   

18.
Abstract

Little attention has been devoted to calibrating soil tests for phosphorus (P) in the field for upland rice in West Africa. The information is needed to improve fertilizer P recommendations. A field experiment was conducted in the rainy season of 1994 to establish the relationship between extractable P by Bray 1 and grain yield of four upland rice cultivars grown on an Ultisol in the forest zone of Ivory Coast. The critical limit of Bray 1 P in the soil at 90% relative rice grain yield varied from 12.5 to 15.0 mg P/kg of soil for the four cultivars tested. The P critical limit in the soil tended to be lower for the cultivars of rice earlier found to be efficient at converting applied P into grain yield.  相似文献   

19.
Abstract

Plant samples were taken from a corn field at an early and later sampling dates in an 82.5 ft. grid. The samples were analyzed for phosphorus (P) using both an acid‐digest method and a simple acetic‐acid extraction. Values for P composition were compared to soil Bray PI levels taken from the same locations. Mapping from the plant analysis methods and soil PI values were compared. Acid‐digest P levels were significantly correlated with soil P levels at each sampling. Acetic acid extracts were significantly correlated with soil P only at the late sampling. Acetic acid and acid‐digest P were strongly correlated with each other at the early sampling and also significantly correlated at the late sampling. Plant analysis using both methods may be useful in mapping relative P uptake levels throughout a field, but the levels may or may not be related to soil PI levels. Some ground truthing with soil sampling may be neccessary to interpret plant analysis P before fertilizer application is directed.  相似文献   

20.
Abstract

This study was conducted to measure season‐long uptake of P by corn grown under no‐till and conventional‐till management at three levels of P supply‐low, adequate, and high as defined by grain yield‐to test the feasibility of using whole‐plant P uptake as an indicator of the P supply in soil; and to calibrate soil P extractable with both Mehlich No. 1 (HC1 + H2SO4) and Mehlich No. 2 (HC1 + H2SO4 + NH4F) versus whole‐plant P uptake over the response region.

Rates of P uptake were essentially linear over about 10 weeks of the growing season. P uptake rates were consistently higher under no till than conventional till, and these uptake rate differences were magnified under low moisture conditions. The critical P uptake rate for corn on this Matapeake soil was between 25 and 30 mg P/plant/week. Rates below these resulted in significant grain yield reductions in a good growth year. The soil P extractant containing F was a more consistant indicator of soil P sufficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号