首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Carrots, Daucus carota L., were grown on both sphagnum peat and mineral soils from 1969 to 1972 inclusive. Fertilizer treatments consisted of three rates of N, of P and of K applied in all possible combinations.

In practically every instance rates of N, P and K applied to sphagnum peat were reflected in the levels of these nutrients found in carrot leaves. This was not the case with mineral soils. On sphagnum peat there were eight opportunities, and on mineral soils seven, for each of the three applied nutrients to influence yields. On peat N increased yields in three instances, P in one and K in five. On mineral soils N decreased yields in two instances, P decreased them in one and increased them in one while K had no effect.

The results suggest that on sphagnum peat carrots may require N, P and K up to 250, 50 and 150 kg/ha respectively whereas on mineral soils maximum rates would be 25, 25 and 50 kg/ha.  相似文献   

2.
Abstract

Research data are limited on K and Wg requirements of peanuts (Arachis hypogaea L.) grown on sandy soils either with or without irrigation. Purposes of this study were (1) to determine Mg, K, and irrigation effects on yield, sound mature kernels (SMK's), and diseases of ‘Florunner’ peanuts grown on two sandy soils and (2) to determine sufficient amounts of Mg and K in peanut leaves and soils. Field experiments were conducted for three years on a Lakeland sand (thermic, coated Typic Quartzipsainments) and a Fuquay loamy sand (siliceous, thermic, Arenic Plinthic Paleudults). Both soils initially tested low in Mehlich 1 extractable K and Mg, but Lakeland was lower than Fuquay in both K and Mg. Factorial treatments were 0, 67, 67 (split into three applications), and 134 kg Mg/ha as MgS04 and 0, 56, 112, and 224 kg K/ha as KC1.

Neither irrigation, K, nor Mg treatment affected number of diseased plants. (Sclerotium rolfsii) or pod rot on either soil. Also, yield and % SMK's were not affected by any treatment any year on Fuquay soil. On Lakeland soil, yields were increased by irrigation 60.3% in 1980 and 11.0% in 1982, by K rates of 56 kg/ha or more each year, and by Mg rates of 67 kg/ha or more in 1978 and 1982. Yields (3‐yr average) were increased 14.7% by Mg with K and 30.7% by K with Mg. Magnesium plus K increased yields 69.3% over the control. Treatments had no consistent effects on % SMK's. Concentrations of K and Mg in leaves and soils were increased by increased rates of application but were not affected by irrigation. Minimum sufficiency levels for maximum yield were 10 and 2.0 g/kg for leaf K and Mg and 20 and 11 ng/kg for soil K and Mg (0 to 30 cm depth), respectively.  相似文献   

3.
Abstract

The lime and N requirements for triticale (X Triticosecale Wittmack) have not been established because of the relatively short history of the crop. This study was designed to evaluate the effects of lime and high N rates on triticale, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and rye (Secale cereale L.) on Dickson silt loam (Typic Paleudult) and Decatur silty clay loam (Rhodic Paleudult) in 1974–1976. The soils had pH values of 4.9 and 5.5 with no lime and 5.4 and 5.8, respectively, when limed as recommended. The fertilizer rates were 112, 140, and 170 kg N/ha. Yields and N, P, K, Ca, Mg, Mn, Fe, Al, Zn, Cu, and B were determined in straw and grain. Liming the Dickson soil increased the straw yields of barley at 112 kg N/ha and grain yields of the cultivars generally at the 170 kg N/ha rate. Liming the Decatur soil did not have consistent effects on straw yields but increased the grain yields of the wheat and rye cultivars. Increasing N rate increased the straw yields of wheat on Dickson but decreased the grain yields of barley in the same soil with no lime. Nitrogen fertilization did not have consistent effects on the Decatur soil. The N, P, K, Ca, Mg, and Mn compositions suggested that more differences occured at the species level than at the cultivar level.  相似文献   

4.
Abstract

We studied the effects of liming on dry matter production, nutrient composition, and grain yields of wheat in field experiments conducted on two soil types at three locations during the 1976–77 and 1977–78 growing seasons. Lime sources were commercial agricultural lime, finely divided stack dust, and dolomitic limestone (which contained 10.6% Mg). Lime applied at 2,800 kg/ha in the 1976–77 and 10,750 kg/ha in the 1977–78 experiments provided Mg from the dolomite at rates of 300 and 1,140 kg/ha, respectively.

Soil pH was significantly increased by liming, but Mg saturation percentages were significantly greater only at the 1,140 kg/ha rate. Forage dry matter and grain yields were not increased by lime applied at the lower rate, but significant increases were found in dry‐matter production in the late fall and spring samplings of the 1977–78 experiment. Those increases in plant growth and dry matter production were probably due to reductions in the soluble Mn and Al concentrations in the soil. Forage N and P concentrations were generally not influenced by liming. Potassium concentrations in forage from the limed plots were usually equal to or greater than those in forage from unlimed plots. Calcitic limestone sources generally increased forage Ca concentrations, but liming with dolomite more often than not depressed Ca concentrations below levels found in the check plots. Dolomite, when applied at the 1,140 kg/ha rate, effectively increased the forage Mg concentration, although the concentration exceeded 0.2% only during the early growth stages. Liming generally showed no significant reduction in the tetany potential of the wheat forage as predicted by the equivalent ratio K/(Ca + Mg).  相似文献   

5.
Abstract

Application of 11.2 kg B/ha and/or of 224 kg N/ha reduced the number of table beet (Beta vulgarisL. cv Detroit Dark Red) roots with B deficiency compared to low rates or no N or B application in three field experiments. In two of the three experiments, the 224 kg/ha N rate decreased B concentration in leaves when no B was added yet B deficiency of roots was reduced compared to the 56 kg/ha N rate. B application increased B concentration in leaves. Calcium concentration in leaves was higher at 224 kg N/ha than for 56 kg N/ha. Nitrogen concentration in leaves was increased by increasing the rate of N while K concentration was decreased at the higher N rate. Average number of roots with B deficiency was significantly higher for the Morse strain than for the Harris strain of ‘Detroit Dark Red’ in one experiment where the two strains were compared. There were no differences between the two strains in leaf B concentration but Ca concentration was higher in the Morse strain than for the Harris strain. Yields were higher at the 224 kg/ha rate of N than at 56 kg N/ha but were not consistently affected by B and K applications. There was no clear relationship of leaf N, Ca and K concentrations to B deficiency of roots  相似文献   

6.
Abstract

Pearl millet and annual ryegrass were continually doubled‐cropped on Olivier silt loam soil for seven years at six levels of N, applied as ammonium nitrate in three applications to millet and in two applications to ryegrass. Forage yields increased as N application rates increased. During seven years at the 0 and 448 kg/ha N rate, millet produced 35% and 95%, respectively, as much yield as it produced at the 800 kg/ha N rate, while comparable values for ryegrass were 19% and 83%. At 448 kg/ha of N the two grasses produced a combined yield of over 20 Mg/ha of dry forage per year. Ryegrass yields following millet were consistently lower than yields previously obtained at this site.

Nitrogen applications consistently increased concentrations of N, Ca, and Mg in both forage grasses, while effects on P and K were variable and S concentrations were unaffected. The amounts of all nutrients removed in the forages were increased as yields increased with N application rates. Nitrate‐N levels considered to be toxic to ruminant animals occurred only where N applications exceeded 170 kg/ha at any one time. In vitro digestibility of each grass was consistently increased by N applications.

The percentage of fertilizer N that was removed in the crops ranged from 66% to 68% for millet and from 35 to 52% for ryegrass as N applications increased up to 448 kg/ha. Residual ammonium and nitrate levels in the top 1.2 m of soil were not increased by N rates of 448 kg/ha or lower. At the 800 kg/ha N‐rate, the apparent N recovery rate decreased and residual ammonium and nitrate levels increased throughout the soil profile.  相似文献   

7.
Abstract

Field trials were conducted for three years on the response of maize to nitrogen (N), phosphorus (P), and potassium (K) fertilizers on Oyo Soil Series (Arenic Haplustalf) and Iregun series (Aquic Haplustalf) in the derived savanna and southern guinea savanna zones of Nigeria, respectively. Nitrogen fertilizer as granulated urea at rates 0–300 kg N/ha, P fertilizer as single superphosphate at rates 0–120 kg P/h, and K fertilizer as muriate of potash at rates 0–180 kg K/ha were used for the different nutrient combinations. The base rates for N, P, and K were 100 kg N/ha, 40 kg P/ha, and 60 kg K/ha, respectively. The results of the trials showed that annual application of the blanket recommended N, P, and K rates to maize grown under intensive land use system could not produce optimum yield. Fertilizer efficiency varied along with soil test values from year to year. The highest response by maize in these zones was to N, the optimum rate ranged from 50–100 kg N/ha. Application of high rates of P and K fertilizers on soils with fairly sufficient nutrient level showed no significant effect on maize yield. But when P and K were applied at low rates (20 kg P/ha and 30 kg K/ha), their contents in the leaf and maize yield, in most cases, increased significantly. The results, however, showed that N, P, and K recommendations for optimum maize yield in both zones are 50–100 kg N/ha, 20 kg P/ha, and 0–30 kg K/ha, respectively.  相似文献   

8.
Abstract

Magnesium and Ca concentrations in smooth bromegrass (Bromus inermis L) were not affected by late‐winter applications of N. Magnesium concentrations were constant until rapid growth in mid‐May then they declined until early June harvest. Highest seasonal concentrations were found in the fall regrowth. Calcium concentrations declined as plants matured in spring. Highest seasonal Ca concentrations were found in the fall regrowth. Nitrogen, P, and K concentrations and K/(Ca+Mg) ratios were increased by N applications during early spring but did not differ significantly by early June harvest. Nitrogen and P concentrations decreased as plants matured in spring and fall. K concentrations and K/(Ca+Mg) ratios changed inconsistently from sampling date to sampling date. Forage yields were approximately doubled by 67 kg N/ha and tripled by 202 kg N/ha. Significant yield differences were related to different N carriers.  相似文献   

9.
Abstract

Nitrogen rates of 112 and 224 kg/ha and K rates of 0, 56, 112, 168, and 224 kg/ha were applied to young ‘Desirable’ trees annually in order to determine leaf concentrations for optimum pecan yield and to measure their effect on other leaf minerals and the resulting effect on soil analysis. Yield was not affected significantly by treatments within any individual year of 11 years; however, when data were combined over years, yield was greatest at the 56 kg/ha rate of K and decreased at lower and higher rates. The decrease in yield with increasing K rates was smaller for the high than for the low N rate. Doubling the N rate increased leaf N only slightly, but increased leaf Cu and reduced soil pH, Ca, and Mg. Increasing K application had very little effect on leaf N. This study indicates that a lower leaf analysis threshold for the sufficiency range of 0.75% for K and 2.50% for N would be satisfactory for ‘Desirable’.  相似文献   

10.
Abstract

White yam (Dioscorea rotundata cv. Olonko) was grown consecutively for three growing seasons, i.e. from February to October of 1975, 1976 and 1977, and treated with six levels of nitrogen, viz: 0, 40, 60, 120, 160 and 200 kg N/ha in the field. Leaf samples were taken at four stages of growth as follows: vegetative, tuber formation, tuber development and tuber maturation, and analyzed for NO3‐N, P, K, Ca and Mg.

Increasing nitrogen fertilization consistently increased leaf‐NO3‐N, particularly at the vegetative stages of growth, while no consistent trend was established for leaf‐P. Leaf‐K was increased at low rate of nitrogen fertilization during tuber formation and maturation whereas leaf‐Ca increased only at tuber maturation in the presence of higher rates of nitrogen fertilization. There was a marked increase in leaf‐Mg at all stages of growth when N treatment was increased to 200 kg N/ha. A positive correlation (r = 0.84???) was obtained for leaf‐K at the vegetative growth stage with tuber yield, while leaf‐Mg was positively correlated with tuber yield at vegetative (r = 0.46?), tuber formation (r = 0.50?) and tuber development (r = 0.67??) stages. All other elements were negatively correlated with yield at all stages of growth. Tuber yield was highest at the 200 kg N/ha treatment.  相似文献   

11.
Abstract

Corn (Zea mays L.) is next to rice as an important food crop grown in South Sulawesi, Indonesia. However, yields obtained by farmers are rather low, around 0.6 to 1.0 ton/ha. Efforts to increase yield have been tried through the application of NPK fertilizers. A study was conducted to determine the effects of N, P and K application on corn yield and what soil constrains, in terms of nutrient elements in the corn plants, exist in the latsols found at Desa Tokka, Sinjai, and South Sulawesi. It was found that application of K significantly increased the growth and corn grain yields on the latosols at Sinjai. Without K, grain yield and the K content in the ear leaf were low. The correlation between grain yield and rate of K shows that an application of 72 kg K2O/ha together with 90 kg N and 80 kg P2O5 per ha produce the best yield of 3.6 tons/ha. The K content in the ear leaf of 1.8% was related to this maximum yield.  相似文献   

12.
Abstract

Thirteen fertility trials were made throughout Quebec's corn growing region during 1972–74. These included eleven fertilizer combinations with corn silage as the test crop and were carried out on nine soils. Total dry matter and digestible nutrients (TDN) varied greatly from year to year, though, mean yields increased by 23 and 30 percent respectively with the 50 kg N/ha treatment, compared to control receiving no nitrogen fertilization. However, 150 kg N/ha was required to attain a maximum yield of 1250 kg/ha crude protein. Despite a 0.2 percent nitrate content found in the silage grown on the most northerly site, a 120 kg P/ha combined with 100 kg N and K gave the highest mean TDN production (9580 kg/ha).

Potassium fertilization affected plant K content of corn grown at the most northerly site only, where a 0.5 percent was found with the control on a suit containing low potassium levels. Further, striking increases in Ca and Mg concentrations were observed with corn grown on that soil. However, magnesium concentration ranging from 0.11 to 0.14 percent were found with nine field trials out of twelve. Also, low K:(Ca + Mg) ratios were found on three trials, which were increased with potassium fertilization levels of 150 kg K/ha. Accordingly, it is suggested that uptakes of 200, 48, 200, 30 and 30 kg/ha of N, P, K, Ca and Mg are required for good corn silage crops.  相似文献   

13.
Abstract

A field experiment was conducted to optimize fertilizer inputs for maximizing the yield of irrigated com (Zea mays L.). This report is a summary of the nutrient composition of leaf and grain samples from the highest yielding treatment in the experiment. The experiment had 15 treatments replicated three times in a randomized complete block design. The N rate treatments were 45,100, 200, 300, and 400 kg N/ha with and without 50 kg P/ha, 67 kg K/ha, and 22 kg S/ha. The plant populations were 74,000 plants/ha (30,000 plants/A) and 100,000 plants/ha. The highest corn yield was 15.6 Mg/ha (250 bu/A with 15.5% moisture) which was produced with 300 kg N/ha combined with complete N, P, K, and S fertilization. It is assumed that samples of corn leaf and grain from a plot yielding that high would have nutrient concentrations in the sufficiency range. Many of the nutrient concentrations from these arbitrarily designated sufficiency ranges are close to the critical ranges and concentrations reported in the literature. It can be concluded that established critical concentrations and ranges could be useful for diagnosing high‐yielding corn. Furthermore, the negative DRIS indices for N, P, K, S, and Cu indicate that these nutrients are most likely to be limiting based on the published norms.  相似文献   

14.
Abstract

A corn fertility study was conducted at two locations in northern West Virginia to determine the response of corn (Zea mays L.) to applied Mg and Zn on two soils testing low in Mg by the ammonium acetate and Baker tests and low in Zn by the Baker test. The study consisted of three rates of Mg (0, 112, and 224 kg/ha) and three rates of Zn (0, 3.36, and 6.72 kg/ha) applied in a factorial design. The soil at the Morgantown location was medium textured with a CEC of 22.4, and the soil at the Reedsville location was coarse textured with a CEC of 15.8. Yield responses to applied Mg were obtained only on the coarse textured soil at the Reedsville location where exchangeable Mg was less than 5% of the CEC and equilibrium Mg was less than 9.0 10 ‐4M. No yield response to Zn was obtained at either location.  相似文献   

15.
Abstract

Limited information is available on optimum N levels in winter wheat (Triticum aestivum L.), particularly at higher yield levels. Three experiments were conducted in the Coastal Plain region of Virginia where N was applied at rates of 0, 67, 90 and 112 kg/ha to Wheeler, Mc Nair 1003 and Coker 747 soft red winter wheat varieties. Yields ranged from 2.33 to 5.83 Mg/ha in the study. Nitrogen fertilization increased yield up to the 67 kg/ha rate and increased N concentration in the plant tissue up to 67 or 112 kg of N/ha, depending on variety. Optimum N concentration, i.e., N concentration at maximum (100%) yield for Wheeler, Mc Nair 1003 and Coker 747, over the three experiments, was 4.54%, 4.52% and 4.81%, respectively, for entire above‐ground plant samples collected at Feekes growth stage 4 and 4.72%, 4.73% and 4.44% for flag leaf samples collected at Feekes growth stage 10. A N sufficiency range of 4.00–5.00% is suggested for use for the plant parts sampled for both growth stages.  相似文献   

16.
Abstract

Using predictably excessive rates of N, P and K for potatoes on a well decomposed and intensively fertilized organic soil, it was observed that while N depressed yields somewhat, there were neither deleterious nor beneficial effects from the application of P or K. The highest rates of P and K used were 1792 and 3584 kg/ha respectively. Increasing rates of N decreased B concentrations in the potato leaf tissue while increasing rate of K resulted in increasing concentrations of B. Zinc tended to be higher in leaf tissue as excessive phosphorus application rates increased.  相似文献   

17.
Abstract

Sulfur (S) deficiency has been reported in some upland soils of the southern United States and S application has improved forage quality on the low‐S soils. A field experiment was conducted for three years to determine ryegrass (Lolium multiflorum L.) dry matter yield and forage quality response to S fertilization. Prilled elemental S was applied each year at two rates (0 and 45 kg S/ha) in combinations with three rates of nitrogen (N) (168, 224, and 280 kg/ha). Wet depositions of S in rain were monitored over the seasons. Sulfur fertilization generally did not increase seasonal dry matter yield and plant uptake of S. Nitrogen application generally increased dry matter yield and protein content during the season. Averaged over the three‐year period, however, forage yield and S uptake increased from 7.7 to 10.5 Mg/ha and 13.9 to 18.8 kg/ha, respectively, as N fertilization increased from the lowest to highest treatment rates. Forage dry matter for each harvest ranged from 0.6 to 2.2 Mg/ha, while S, protein, in vitro dry matter digestibility (TVDMD), and N/S ratio tended to decline seasonally from 2.5 to 1.8, 266 to 142, and 795 to 716 g/kg, and 17.8 to 11.9, respectively. Sulfur input from rainfall was small with a three‐year average of 5.8 kg/ha (±0.64 SE). In some locations of the southern United States, S may not be limiting even when applying high rates of N to high‐yielding forages which annually remove large quantities of S. Because of the lack of yield response from S application and low inputs of S from wet deposition, S from sources other than rainfall may have been considerable.  相似文献   

18.
Abstract

Limited information is available which describes the response of established alfalfa (Medicago sativa L.) to topdressing applications of K fertilizer in the Southeastern United States. Field experiments were conducted for three years to determine alfalfa response to rates and time of K application. The experiments were established in two‐year old stands of alfalfa on a Decatur silty clay loam (clayey, kaolinitic, thermic Rhodic Paleudults) and a Hartsells fine sandy loam (fine loamy, siliceous, thermic Typic Hapludults) located in northern Alabama. Potassium as KCl was broadcast in the spring prior to regrowth. For split application treatments, the K was applied in early spring and after the second cutting. Annual total K rates ranged from 56 to 596 kg/ha. Potassium fertilization maintained alfalfa stand density on both soils, but the experiment on the Decatur soil was discontinued after two years due to severe stand loss when the lowest rate of added K was used. Alfalfa yields were increased by the application of K and maximum yields occurred when K was applied according to soil test recommendations made by the Auburn University soil testing laboratory. Potassium applications increased the concentration of K, decreased the concentration of Ca and Mg and had little effect on the concentration of N in tissue from the two cuttings sampled. The split application of K did not consistently increase forage production. There was little movement of K below 25 cm in either soil when K rates of 56 to 596 kg/ha/yr were repeated yearly for up to three years.  相似文献   

19.
Abstract

Four years after yearly applications of N (0, 67, 134 and 268 kg/ha in a N rate trial) soil pH and soil extractable K, Ca and Mg were reduced. Boron application (1 kg/ha in a N x B interaction trial) increased hot water extractable soil B and soil extractable Mg. Old and new cane leaf N concentration was increased by N application but B application resulted in only a very small effect. Both N and B applications increased leaf B concentrations. Leaf Mn was increased by N application, probably because of the reduced soil pH. Boron had little effect on leaf Mn. It was concluded that leaf tissue is not suitable for determining the requirements of N and B fertilizer because of the instability of B concentrations in the leaves within and between seasons. Sampling of new cane leaves in July showed promise for diagnosing Mn requirements since the concentration during that month was relatively stable in three separate years of sampling.  相似文献   

20.
Abstract

Corn (Zea mays L.) was grown for three consecutive years on Congaree loam to measure the effects of rates of N, P, and K fertilization and irrigation on the nutrient concentration of leaves, the level of available K in the soil, and on the yield of corn. Plant nutrients consisting of 0, 56, 140, 224, and 280 kg N/ha; 0, 15, 37.5, 60, and 75 kg P/ha, and 0, 28, 70, 112, and 140 kg K/ha were applied in a central composite rotatable design in each of the three years. All plant residue was removed each year when the corn was harvested, and the plots remained fallow during the winter months. One half of the experiment was irrigated when there was a 50% depletion of available soil moisture in the 0‐ to 46‐cm soil depth.

Leaf composition was affected by fertilization and irrigation. A rapid decrease in available soil K in the 0‐ to 15‐cm depth was evident the first year with all rates of added K. The decline in available soil K was unaffected by irrigation and levels of applied N and P.

There were consistent yield responses each year to added N, no response to added P, and a response to added K only during the second year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号